
Temporal Plan Quality Improvement and
Repair using Local Search

Josef Bajada 1, Maria Fox and Derek Long
Department of Informatics, King’s College London,

Strand, London WC2R 2LS, United Kingdom.
{josef.bajada, maria.fox, derek.long}@kcl.ac.uk

Abstract. This paper presents an approach to repair or improve the quality of
plans which make use of temporal and numeric constructs. While current state-
of-the-art temporal planners are biased towards minimising makespan, the focus
of this approach is to maximise plan quality. Local search is used to explore the
neighbourhood of an input seed plan and find valid plans of a better quality with
respect to the specified cost function. Experiments show that this algorithm is
effective to improve plans generated by other planners, or to perform plan repair
when the problem definition changes during the execution of a plan.

Keywords. temporal planning, scheduling, optimisation, local search, plan repair

Introduction

Real world planning problems often need to take into account time and resources together
with concurrency and exogenous events. PDDL 2.1 [1] and 2.2 [2] introduced the
constructs necessary to model such problem domains, under the form of durative actions,
numeric fluents and timed initial literals. Nevertheless, most of the state-of-the-art
temporal planners struggle to cope with complex metric functions and concurrency. Most
planners are biased to generate feasible plans that minimise plan length or makespan.
However, in some problem domains it is preferable to generate plans that minimise a
certain cost rather than plan duration. This is especially true for domains where plan
execution is continual and the goal is to maintain some variables within specific bounds,
or new goals are queued into the system during the plan’s execution. One example
is the demand-side electricity aggregator domain. In this case the system needs to
find a plan, comprising of task-completing actions and load-shifting actions, within a
planning horizon that features frequent electricity price fluctuations, with the objective
of minimising wholesale electricity costs [3].

In this paper we present a domain-independent approach that generates high quality
plans, in terms of some cost function. The proposed technique involves performing a
local search on a provided input seed plan to explore its neighbourhood for better quality
plans. This process can then be repeated until the time allocated for the algorithm has

1This research is funded by the UK Engineering and Physical Sciences Research Council (EPSRC) as part
of the project entitled The Autonomic Power System (Grant Ref: EP/I031650/1)

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-41

41



elapsed. One can also utilise one of the existent temporal planners to generate a valid
feasible plan, and use that as the input seed plan to find better quality plans. The proposed
algorithm is also effective for plan repair, when exogenous events or changes in goals
invalidate a plan.

1. Background

Local search is commonly used in various combinatorial problems, such as discrete
optimisation, and it has also proved to be successful in classical planning. LPG [4] is one
popular planner that uses this approach. An action graph that connects the initial state
to the goal is found by adding or removing random actions from the problem’s planning
graph. The process is then repeated until the action graph becomes a solution graph, that
is, until it has no flaws and the goal facts are present in the final state, making it a valid
plan. While the original version of LPG caters only for propositional planning, it was
later enhanced [5] to support some of the temporal constructs introduced in PDDL 2.1.
Local search was also proposed as a solution for plan improvement in the context of
classical planning [6]. In this case a neighbourhood graph of states is constructed from
the states of the given seed plan, and the shortest plan that leads from the initial state to
the goal is then extracted using Dijkstra’s algorithm.

We propose to use local search to find plans in domains that not only require
concurrent durative actions, but also have invariant conditions that are potentially
mutually exclusive. Furthermore, our objective is to find plans of a high quality with
respect to some metric. A problem’s time-related constraints and characteristics, such as
action durations and timed events, are used to build a planning time line. The respective
plan violations at each time point are analysed and the respective metrics at each state
are also calculated. This enables the algorithm to consider concurrent actions and also
account for non-linear numeric effects. Most state-of-the-art temporal planners struggle
with concurrent durative actions and non-linear numeric effects. While these planners
are biased towards finding shorter plans, our approach can find plans of a better quality.
Moreover, valid plans generated by these planners can be used as input seed plans for our
algorithm, which will then search for a better plan in terms of some objective function.
The input seed plan does not have to be valid, which also makes this algorithm useful
for plan repair. If a plan becomes invalid due to changes in the environment, the new
problem definition can be analysed in conjunction with the old plan to generate a new
valid plan for the new version of the problem.

Local search algorithms comprise of two main components:

1. A neighbourhood function, which transforms an input state into a set of new
but very similar states, with a very limited number of differences.

2. An evaluation function, which determines the states that are more desirable,
according to some objective.

Using these two components new neighbours are generated, evaluated and explored
according to the algorithm being used. Hill climbing algorithms incrementally choose
neighbours that provide a better solution until no further improvements are possible. This
carries the risk of getting stuck into a local minimum. Other flavours of local search
algorithms include simulated annealing [7], which allows the exploration of inferior
solutions with a certain probability, improving the chances of finding a global minimum.

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search42



2. Temporal Planning

Our notion of temporal planning follows the semantics of PDDL 2.1 [1], where actions
have a duration, together with conditions and effects that are associated with the start,
end or execution of the action. We also consider exogenous timed events, as defined in
PDDL 2.2 [2]. The following definitions formulate the fundamental underpinnings of
these semantics.

Definition 2.1. A temporal problem, P = 〈A, I,L,G〉, consists of a set of possible actions
A, the initial state I, a set of timed initial literals L, and a goal condition G.

Definition 2.2. A temporal plan, π = {a0,a1, ...,ak}, is defined as a list of durative
actions. Each action a has a start time, denoted start(a), and a duration, dur(a).

The start time of a durative action is a positive rational number, indicating the time,
after the start of the plan, when the action should commence. The duration is also a
positive rational number. Multiple durative actions can be executed concurrently in a
temporal plan.

Definition 2.3. A durative action, a, may have conditions that need to be satisfied just
before it starts, referred to as startCond(a), conditions that need to be satisfied just before
it ends, referred to as endCond(a), and invariant conditions that need to hold throughout
the execution of the action, referred to as inv(a).

Definition 2.4. A durative action, a, may have effects that are applied when the action
starts, referred to as startE f f (a), and effects that are applied when the action ends,
referred to as endE f f (a).

PDDL 2.1 [1] also defines continuous effects, to represent continuously changing
values with respect to the time elapsed from the start of the action. This construct is not
currently supported in the work presented here.

Timed initial literals (TILs) were introduced in PDDL 2.2 [2] to support predictable
exogenous state-changing events that will occur at some predetermined time during the
plan. A timed initial literal, l, has a time when it is predicted to take place, time(l),
and an associated proposition that will become true or false. This construct is useful
to denote external changes in the environment, or time windows when certain activities
can take place. For example, in the demand-side electricity aggregator domain, TILs are
used to perform tariff switches. TILs can be seen as instantaneous actions without any
preconditions that will take place at a predefined time.

Each durative action, a, can be translated into two snap actions [8], a�, correspond-
ing to the start of the action, and a�, corresponding to the end of the action. Snap
actions are essentially instantaneous actions where pre(a�) = startCond(a), pre(a�) =
endCond(a), e f f (a�) = startE f f (a) and e f f (a�) = endE f f (a).

In order to avoid ambiguity in the application of action effects, a total order is
enforced by introducing a minimal time separation ε between two successive actions,
and only one snap action is allowed to be applied at a certain point in time. The sequence
Eπ = {e1,e2, ...,en} corresponds to the state-changing activities (snap actions and TILs)
of π , with time(ei) denoting the time when ei will be executed.

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search 43



Definition 2.5. A plan’s state time-line ϒ(π) = {〈0,s0〉,〈t1,s1〉,〈t2,s2〉, ...,〈tn,sn〉} is a
sequence of pairs 〈t,s〉 where t is a rational number corresponding to the time from the
start of the plan when the current state will become s. State s0 is the initial state.

A period, pi, denotes the time interval between two successive states on the time-
line. These periods are used to identify possible insertion points where new actions could
be added to the plan. The last period pn is open-ended since it denotes the time interval
that follows the final state sn, thus allowing actions to be added to the end of the plan.

∀〈ti,si〉 ∈ ϒ(π), where 0 ≤ i ≤ n : pi =

{
〈ti, ti+1〉, if i < n
〈ti,∞〉, if i = n

(1)

The invariant conditions of a period pi correspond to all the invariant conditions of
the actions running concurrently throughout that period, as defined in Equation 2.

invp(pi) =
⋃

a∈Ai

inv(a), where 0 ≤ i < n and

Ai = {a|start(a)≤ ti < ti+1 ≤ start(a)+dur(a)}
(2)

3. The Neighbourhood of a Temporal Plan

We define a plan π ′ as the neighbour of a plan π , denoted π ′ ∈ N(π), if π ′ can be
obtained by either adding one applicable action at some point on the time-line, removing
an existent action from the plan, or moving an action to start and end at a different time
point on the plan’s time-line. Each of these operations will naturally change the plan’s
state time-line and also the invariant conditions for each period.

3.1. Adding an Action

By adding a new durative action, anew, to start within period pi and end within period
p j, where 0 ≤ i ≤ j ≤ n, two new states, ss and se, will be added to the time-line,
corresponding to the two snap actions of anew. The state ss = startE f f (anew)(si), reflects
the start effects of anew applied to state si. The state se = endE f f (anew)(s′j), reflects
the application of the end effects of the action, where s′j is the new state obtained from
applying all subsequent actions following ss in sequence up till t j. All the states sx,
where i < x ≤ n, following ss on the time-line, need to be propagated and updated to
s′x, to account for the effects of the new action. All the states {s0, ..., si} will remain
the same while the subsequent states will be updated. The new action will naturally run
concurrently with any other actions scheduled to run during periods {pi, ..., p j}, making
it possible to find solutions in cases where concurrency is required [9].

A durative action, anew, is only eligible for addition to the plan’s time-line at an
arbitrary time point during period pi if it satisfies the following compatibility criteria:

1. The state si satisfies the start conditions of anew, that is si |= startCond(anew).

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search44



2. The new state ss satisfies all the invariant conditions during that period, including
those of anew, that is ss |= inv(anew)∪ invp(pi).

3. All the subsequent states of ss up to and including se satisfy the invariant
conditions of anew, that is ∀s ∈ {ss,s′i+1, ...,s

′
j,se} : s |= inv(anew)

This ensures that the new action is compliant with the plan. However, this does not
mean that subsequent conditions or invariants associated with any periods p j, where
j > i, will not be violated by adding anew at pi. Nevertheless, invalid neighbouring plans
can still lead to valid plans that are further away in the neighbourhood of the seed plan π .
By considering a violated plan π ′, that can be repaired through further exploration, the
algorithm improves its chances of escaping from local minima.

The set {p j|i ≤ j ∧ start(p j) < end(pi) + dur(anew) ∧ end(p j) > start(pi) +
dur(anew)} (where start(p) and end(p) correspond to the start and end time-point of
period p respectively) defines the possible candidate periods where anew can end. Each
possibility that also satisfies the above compatibility criteria can be used to obtain a valid
neighbouring plan π ′. The start time of anew is then set to an arbitrary value that satisfies
max[start(pi),start(p j)−dur(anew)]< start(anew)< min[end(pi),end(p j)−dur(anew)]
and ∀e ∈ Eπ : start(anew) �= time(e) �= start(anew)+dur(anew).

3.2. Removing an Action

Any durative action, adel , that is already in the plan, can be selected for removal. The
two states, sd and sr, where 0 < d < r ≤ n, correspond to states obtained by applying the
start and end effects of the action adel respectively. By removing the action, these two
states are removed from the plan’s time-line, and the rest of the states that follow sd are
updated accordingly.

3.3. Moving an Action

Moving an action, amov, can be seen as a macro action that involves removing an action
and adding it again at a different point on the time-line. The effect of this modification
would be a change in the plan’s total ordering of the actions rather than a change of the
plan’s set of actions. This is especially useful in domains where the order of the actions
has an impact on the cost of the plan, or exogenous events change the action costs at
specific time points. This move needs to satisfy the same compatibility criteria used for
adding an action to be considered a valid operation.

Substituting an action with another one might intuitively also seem like a valid
neighbourhood operation. However, the benefits of such an operation in a temporal
context, where actions have different durations and action swapping can change the total
ordering of state-changing events, need to be analysed further.

4. Evaluation of Neighbouring Temporal Plans

A temporal plan obtained through the neighbourhood function needs to be evaluated
on two levels. Firstly, we need to determine how close the plan is to a valid solution.
Secondly, we need to measure the cost of the plan, with respect to some cost function. In
order not to get stuck in local minima, inferior plans to the current one are also evaluated

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search 45



and explored, with a certain probability. This is governed by a probability distribution
that diminishes proportionally with the exploration distance, that is the number of nodes
traversed from the best one. This means that immediate neighbours of the best plan have a
higher probability of being accepted than ones further away in the neighbourhood graph.
However, valid plans that have a better cost than the current best plan will always be
accepted. This is intuitively similar to the approach used in simulated annealing [7],
where a temperature value decreases with each iteration, and the probability of accepting
a weaker solution is computed using a function of this temperature. However, in our
case we reset the distance each time we restart searching again from the best plan, thus
assigning a high acceptance probability to closer neighbours, irrespective of when they
were discovered.

4.1. Computing a Plan’s Validity

Let αi = {a|start(a) = ti} be the set of actions in a plan π starting at a time point ti,
and ωi = {a|start(a)+dur(a) = ti} be the set of actions ending at a time point ti, where
0 < i ≤ n. Equation 3c defines the set of conditions that need to be satisfied at time point
ti, in terms of the start and end conditions of actions starting or ending at ti, defined by
Equations 3a and 3b respectively. G(ti) represents any goal conditions that need to be
satisfied at ti. Goals that are only required to be satisfied at the end of the plan and do not
have any time constraints are included in the set G(tn).

startCondT (ti) =
⋃

a∈αi

startCond(a) (3a)

endCondT (ti) =
⋃

a∈ωi

endCond(a) (3b)

cond(ti) = startCondT (ti)∪ endCondT (ti)∪ invp(pi)∪G(ti) (3c)

The conditions that are actually satisfied at ti are those that are satisfied by the state
si−1, defined as σ(ti) = {c|c ∈ cond(ti)∧ si−1 |= c}. Conversely, φ(ti) = cond(ti)\σ(ti)
defines the set of conditions that are not satisfied at ti. A plan is considered valid if
∀ti ∈ {t1, ..., tn} : φ(ti) = /0. If a plan is invalid, the number of violations v(π) is calculated
by accumulating all the unsatisfied conditions at a given time point ti, excluding any
conditions that were already unsatisfied at ti−1. This helps to avoid inflating the violation
count from a common condition that is required by more than one action or by the same
action at more than one point on the time-line. This process is defined recursively through
Equations 4a to 4d, where 0< i≤ n. cond+(ti) represents the cumulative set of conditions
that need to be satisfied at ti together with any conditions that were not satisfied at ti−1.
Similarly, σ+(ti) represents the cumulative conditions that are satisfied at ti, including
any conditions carried forward from previous states, and conversely φ+(ti) represents
the cumulative set of conditions unsatisfied at ti. We can then extract φ ∗(ti), the set of
conditions that are introduced at ti.

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search46



cond+(ti) = cond(ti)∪φ+(ti−1) (4a)

σ+(ti) = {c|c ∈ cond+(ti)∧ si−1 |= c} (4b)

φ+(ti) = cond+(ti)\σ+(ti) (4c)

φ ∗(ti) = φ(ti)\φ+(ti−1) (4d)

If a condition becomes satisfied at t j, but becomes unsatisfied again at a later time
tk, (where i < j < k), and is needed by an action at or after tk, it is counted twice. This
is because at least two additional actions are needed to make the plan valid. Equation 5
defines the violation count v(π) for a plan π . If v(π) = 0, the plan π is valid.

v(π) =
n

∑
i=1

|φ ∗(ti)| (5)

4.2. Acceptance Probability Function

In order to promote the exploration of a broader neighbourhood we need a function
that has a high probability of accepting plans that are close neighbours of the initial
plan. On the other hand, in order to avoid exploring deep branches that do not lead to a
solution, we need such a function to asymptotically decrease towards 0 in proportion to
the exploration distance d, parametrised by the maximum distance m we want to explore.
One candidate that fits these criteria is the sigmoid function defined in Equation 6.

gm(d) = 1−
(

1
1+ e(m−d)

)
(6)

We also want to increase the chances of accepting a good candidate at any
exploration distance, depending on its fitness ratio with respect to the previous plan. This
value is computed using the function f (π ′,π), which compares two plans π ′ and π , as
shown in Equation 7.

f (π ′,π) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c(π ′)+1
c(π)+1

, if v(π) = v(π ′) = 0

v(π ′)+1
v(π)+1

, otherwise

(7)

If both plans are valid, the actual cost function c(π) is used, which is subject to
the respective domain and problem instance. If one of the plans is invalid, the fitness
ratio with respect to an adjacent plan is calculated using the number of violations in the
two plans. In both cases 1 is added as a smoothing parameter. Equation 8 defines the
acceptance probability function of exploring π ′ from its adjacent neighbouring plan π ,
with the current distance from the best plan π∗ being d.

pm(π ′,π,d) = gm(d) f (π ′,π) (8)

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search 47



5. Searching for Temporal Plans

The algorithm to search for a better temporal plan, starting from an initial seed plan π ,
involves exploring its neighbourhood until a better one is found. A plan π ′ is considered
better than π , denoted by the relation ≺c, if the plan π ′ has no violations, and either π is
not a valid plan, or the cost of π is more than that of π ′. Formally, π ′ ≺c π if (v(π ′) =
0)∧(v(π)> 0∨c(π ′)< c(π)). Given that the neighbourhood of a plan can be very large,
a neighbour is generated randomly, with the search taking the form of a random walk
guided by the acceptance probability function, pm, as described in Algorithm 1. The set
visited keeps track of the plans explored during one random walk to avoid cycles.

Algorithm 1 Local search for a better temporal plan
Require: Seed plan π∗, maximum distance m

1: π ← π∗ ; d ← 0
2: visited ←{π}
3: while not(π ≺c π∗) and not(term) do

4: if d ≥ m then

5: π ← π∗ ; d ← 0
6: visited ←{π}
7: end if

8: π ′ ← select random plan from N(π)\ visited
9: if (v(π ′)> 0) and (v(π ′)< v(π∗)) then

10: π∗ ← π ← π ′ ; d ← 0
11: visited ←{π}
12: else if π ′ ≺c π then

13: π ← π ′ ; d ← d +1
14: visited ← visited ∪{π}
15: else

16: r ← random double between 0 and 1
17: if r ≤ pm(π ′,π,d) then

18: π ← π ′ ; d ← d +1
19: visited ← visited ∪{π}
20: end if

21: end if

22: end while

23: return π

In its simplest form, this algorithm carries the risk of running indefinitely if no better
plan is found, or if no valid solution actually exists. The terminating condition term
determines whether the loop should stop or continue iterating, even if no better plan has
been found. This terminating condition could depend on the total number of iterations,
the time elapsed from the start of the search, or some other context-dependent condition.
Once a better plan is found, this algorithm can be executed again using the new plan as
the input seed plan π∗, in order to improve the plan quality further.

The initial seed plan can be an invalid one. This algorithm will compute the number
of violations in the seed plan and try to find valid plans that do not have any violations.
This makes it also suitable for plan repair, since it will exploit the plan structure of the
initial plan to try to find a similar one that satisfies all the required conditions.

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search48



6. Preliminary Experiments

The proposed algorithm has been implemented within a temporal plan solver capable of
parsing PDDL 2.2 domain and problem files, together with a seed plan for the problem.
This solver performs a local search and outputs a new improved plan. If no seed plan is
provided, it will try to find a feasible solution to the problem, which will then be used as
the seed plan for subsequent iterations.

Some preliminary experiments have been performed with two temporal domains;
the Transport domain, from the IPC 2008 competition, and the Aggregator domain,
specifically designed to find solutions for managing demand-side electrical loads. Since
the original version of the Transport domain was designed to minimise time, it has been
slightly modified to also keep track of the total fuel used. The problem instances were
also modified to make alternative cheaper or more expensive solutions also possible.

The aggregator domain represents a demand-side electricity aggregator that needs
to schedule flexible load (such as dish-washing or EV charging), and also use storage
devices to shift load to more preferable times of the day. Both the forecasted inflexible
load and wholesale electricity prices fluctuate throughout the day and the goal is to
find the best combination of actions that minimises the cost of inflexible and flexible
load. The cost of the plan is calculated by adding the inflexible and flexible load
components and multiplying the result with the energy cost at that time. This domain
is particularly challenging for existent planners due to the fact that this cost depends on
various variables that are changing over time rather than accumulating a monotonically
increasing cost with each action.

Table 1 shows an example of how an initial seed plan generated by the planner POPF
[10] for the Aggregator domain was improved to minimise the costs by moving activities
to cheaper periods and making use of batteries. Each line indicates a separate durative
action in the plan. The number before the action indicates its start time, while the number
in square brackets indicates its duration.

Table 1. Initial seed plan and improved plan for the Aggregator domain.

Seed Plan 0.000: (start-metering) [1440.000]
0.001: (perform wash-dishes-h3 wash-dishes-normal) [110.000]
0.001: (perform wash-dishes-h2 wash-dishes-fast) [80.000]
0.001: (perform wash-dishes-h1 wash-dishes-fast) [90.000]

Improved

Plan

0.0: (start-metering) [1440.0]
251.222: (charge battery-s1 charge-normal) [166.667]
296.667: (perform wash-dishes-h2 wash-dishes-fast) [80.0]
298.333: (charge battery-s2 charge-normal) [66.667]
308.944: (perform wash-dishes-h3 wash-dishes-normal) [110.0]
315.0: (perform wash-dishes-h1 wash-dishes-fast) [90.0]
626.667: (discharge battery-s1 discharge-fast) [83.333]
630.0: (discharge battery-s2 discharge-fast) [44.444]

Figure 1a shows the plan improvements when running the proposed algorithm on a
problem instance of the Transport domain with 5 cities, 2 trucks and 2 packages. Figure
1b shows the plan improvements for the Aggregator domain with 10 household tasks,
10 electricity storage units and 6 tariff switches over 24 hours. One should keep in mind
that the potential plan improvement is naturally problem dependent and Figure 1 only
demonstrates that for temporal numeric planning problems that have a broad solution
space this approach is capable of improving plan quality.

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search 49



��

����

����

����

����

����

�� �� �� �� �� �� �	 �

��

���

���

�	�

���

����

��
��
��
�	



��
�
��
	

�
���
���

����
������	

�����
�������	���
���

(a) Transport domain

��

�����

�����

�����

�����

�����

�	���

�
���

�����

��� ��� ��� ��� ��� �	� �
� ��� ��� ����
��

���

���

���

���

���

��
��
��
�	



��
�
��
	

�
���
���

����
������	

�����
�������	���
���

(b) Aggregator domain

Figure 1. Improvements in plan costs with respect to the number of iterations.

7. Conclusions and Future Work

We have presented an algorithm that improves the quality of plans for temporal planning
problems with numeric properties. While current state-of-the-art temporal planners are
very capable of finding feasible plans, the proposed algorithm is able to exploit the
structure of such plans to find better solutions. Preliminary experiments have been
performed using two temporal domains and it has been demonstrated that this algorithm
can improve plan quality, albeit more effective in problems with a broad solution space.

Future work includes incorporating techniques that shorten the makespan of a plan
when it does not have any impact on the plan cost and inter-period optimisation to find
the best schedule of a sequence of actions. Support for additional PDDL 2.1 constructs
such as continuous effects and duration inequalities is also being investigated, together
with further experiments with other domains using temporal and numeric characteristics.

References

[1] M. Fox and D. Long, “PDDL2.1: An extension to PDDL for expressing temporal planning domains,”
Journal of Artificial Intelligence Research, vol. 20, pp. 61–124, 2003.

[2] S. Edelkamp and J. Hoffmann, “PDDL2.2: The language for the classical part of the 4th international
planning competition,” Tech. Rep. 195, 2004.

[3] J. Bajada, M. Fox, and D. Long, “Challenges in Temporal Planning for Aggregate Load Management
of Household Electricity Demand,” in 31st Workshop of the UK Planning & Scheduling Special Interest
Group (PlanSIG), 2014.

[4] A. Gerevini, A. Saetti, and I. Serina, “Planning Through Stochastic Local Search and Temporal Action
Graphs in LPG.,” Journal of Artificial Intelligence Research, vol. 20, pp. 239–290, 2003.

[5] A. E. Gerevini, A. Saetti, and I. Serina, “Temporal Planning with Problems Requiring Concurrency
through Action Graphs and Local Search,” in Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS 2010), no. Icaps, pp. 226–229, 2010.

[6] H. Nakhost and M. Martin, “Action Elimination and Plan Neighborhood Graph Search : Two Algorithms
for Plan Improvement,” in Proceedings of the 20th International Conference on Automated Planning
and Scheduling (ICAPS 2010), pp. 121–128, 2010.

[7] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing.,” Science (New
York, N.Y.), vol. 220, pp. 671–80, May 1983.

[8] A. Coles, M. Fox, D. Long, and A. Smith, “Planning with Problems Requiring Temporal Coordination,”
in Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI-08), pp. 892–897, 2008.

[9] W. Cushing, S. Kambhampati, Mausam, and D. S. Weld, “When is Temporal Planning Really
Temporal?,” in 20th International Joint Conference on Artificial Intelligence (IJCAI-07), 2007.

[10] A. Coles, M. Fox, and D. Long, “POPF2: a Forward-Chaining Partial Order Planner,” The 2011
International Planning Competition, pp. 65–70, 2011.

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search50


