

THE DECIMALIZATION OF MALTESE CURRENCY

by
SALVINO BUSUTTIL

M A L T A
1968

ACKNOWLEDGEMENTS

This study has been undertaken for the Joint Council of the Malta Chamber of Commerce, the Federation of Malta Industries and the Malta Employers' Association to whom I am gratefuil for making it possible.

In my work I have been helped by the advice and assistance of Mr. L. Baron and Mr. M. Brincat Lisano to both of whom I extend my gratitude.

SALVINO BUSUTTIL.

THE DECIMALIZATION OF MALTESE CURRENCY

A Study of the Implications

INTRODUCTION

It has been announced that Malta is contemplating changing over to the decimal system even insofar as her currency is concerned. When most parts of the world use decimal currency, it is to be expected that, in an age of increasing uniformity, there should be serious study of the implications inherent in a change to such a system.

With Britain's decision, in the light of the findings of the Halsbury Committee ${ }^{1}$, to adopt decimal currency, there is an urgent need for Malta to reach an early decision in this matter. For obviously Malta cannot remain isolated while the rest of Europe and, indeed, North Africa used decimal currency. Malta must therefore so determine her choice of a currency system as to affect as minimally as possible the general economic life of the country.

This Report is therefore divided into two main parts. In the first place, it studies and assesses the options available to Malta if a change of currency is contemplated. In the second place, it will seek to identify the short-term and long-term effects. This will be done primarily in terms of an eventual adoption by Malta, as this Report recommends, of the U.K. decimal currency system.

[^0] Cmmd. 2145.

CHAPTER ONE

THE OPTIONS

A decision concerning the possible decimalization of currency immediately introduces the problem of having to choose one decimal system from amongst the several which have been proposed.

We have considered most of the systems included in the Malta Government questionnaire and are of the opinion that the $£$-cent- $\frac{1}{2}$ system is the most suitable for Malta.

We present at the outset the main objectives which it is believed a new system should embody, followed by a brief description of each of the more important systems proposed. The main advantages and shortcomings of each are also presented.

Objectives:

A new currency system should have the following features.
(i) It should be significantly superior to the present system.
(ii) It should be simple i.e. convenient for most types of transactions undertaken by the various sections of the community both present and future.
(iii) Its introduction should not have adverse effects on the economy. Under the latter we consider the likely effects of changing from the pound as a major unit, the likely effect on prices etc.

CONSIDERATIONS ON TYPE OF SYSTEM

(A) CENT OR MIL SYSTEM

A two decimal quantity is simpler than a three decimal one. ${ }^{1}$ Consequently unless a three decimal, i.e. mil system, can be shown to be superior in other more important respects, it need not be considered further.

The main advantage of a mil system is that it allows great flexibility. The fact that most of our North African neighbours ${ }^{2}$ with whom we are developing trade relations also have mil systems is a favourable point. This is countered, however, by the fact that most other European countries and America (which are the source of most of our tourists) have cent systems. On balance, this appears to us to be more important than the previous point.

Most business machines marketed at present are for twoplace systems. It is evident that in the coming decades, business machines will play a greater part in our commercial activities, It would be awkward and unduly expensive were we to require companies to produce special machines for our needs.

These considerations lead us to believe that a cent system is preferable to the mil system.

Size of Major and Minor Units

Having considered the relative size of the major and minor units, we have to establish their actual value.

In terms of our second objective in this study, it is desirable that one of our present units of account, i.e. the pound, the shilling or the penny be retained and incorporated into the new system. In the event we opt for the pound; the case for preserv-

[^1]ing it as a major unit of account is given elsewhere in this report. (See Chapter Two)

Fractions

Next we must consider whether vulgar fractions should be allowed into the new system. Generally speaking, these are undesirable as they introduce several difficulties. Any gain in simplicity inherent in decimalization might be lost if too many fractions were introduced. Further, for accounting purposes special provisions would have to be made in machines and this would result in increased changeover costs etc. Nevertheless under the $£$-cent system, it seems that at least one fraction - the $\frac{1}{2}$ cent - would have to be introduced if large price increases are to be avoided - at least until inflation and other forces reduce the usage of such values in the same manner as has happened to the farthing.

It is useful, at this stage, to set down some possible systems for Malta. Seven options are listed ${ }^{1}$.

(The value of the minor unit need not actually be minted).
We will now examine briefly each system separately outlining the advantages and disadvantages.

[^2]\[

$$
\begin{gathered}
£ 5=1000 \text { MILS } \\
1 \mathrm{mil}=1.2 \mathrm{~d} .
\end{gathered}
$$
\]

The main advantage of this system is that the minor unit is not too small. Furthermore, this system is easily convertible from £. s. and d.

Against it, one can say that it requires three decimal places. Moreover, the major unit is considered to be "too heavy"; this, among other limitations, may tend to exert a greater inflationary pressure than other systems.

$$
\begin{aligned}
\text { Example: } \begin{aligned}
6 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d} . & =0.067 \text { (Nearest above) } \\
£ 2.3 \mathrm{~s} .6 \mathrm{~d} . & =0.435 \text { (Exact) }
\end{aligned} \text { (}{ }^{2} .
\end{aligned}
$$

SYSTEM 2

$$
£ 1=1000 \text { MILS }
$$

Value of 2 mil coin $=.48 \mathrm{~d}$.
Value of 5 mil coin $=2.40 \mathrm{~d}$.
The main advantage here is that the pound is retained as the major unit of account. Moreover, no fractions would be required.

From an economic standpoint, it may be contended that in this system price increases would be minimized.

Its adoption would, however, involve the loss of the exact equivalents of the small denominations. Moreover, one mill is a smaller value that what we really need. As a result, a large number of units would be involved for simple day to day transactions.

[^3]SYSTEM

$$
\text { £I = } 100 \text { CENTS }
$$

$$
1 \text { cent }=2.4 d
$$

The main advantage here again is that the pound is retained as a major unit of account.

Moreover, since it requires only two places, it would be a simple device to use.

Again, however, it would imply the loss of the exact equivalents of present small denominations.

It would also require the introduction of a $\frac{1}{2}$ cent coin. (This would be less of a disadvantage as time passes and inflationary and other causes erode its usefulness).

Example: $\quad 6 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d} .=£ 0.33 \frac{1}{2}$ (Nearest above)

$$
£ 2.3 \mathrm{~s} .6 \mathrm{~d} .=£ 2.17 \frac{1}{2} \text { (Exact) }
$$

SYSTEM 4

$$
10 /=100 \text { CENTS }
$$

$$
1 \text { cent }=1.2 \mathrm{~d}
$$

An important advantage here is that the shilling is maintained as a straight decimal, i.e. the actual shilling digits involved are unchanged.

Moreover, no fractions would be necessary. An additional merit of this system is that the major unit is reasonably 'heavy'.

It would involve, however, the loss of the pound as a major unit.
There would also be some risk of price increases as with the £-cent- $\frac{1}{2}$ system.

Example: $\quad 6 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d} .=0.67$ cent (Nearest above)

$$
£ 2.3 \mathrm{~s} .6 \mathrm{~d} .=£ 4.35 \quad \text { (Exact) }
$$

4

$$
-9-
$$

$$
\begin{aligned}
& 8 / 4=\text { CENT } \\
& 1 \text { cent }=1 \mathrm{~d} .
\end{aligned}
$$

The usefulness of this system lies in that it renders possible the exact equivalents of present values.

This should minimise the chances of price increases. Furthermore the present $\frac{1}{2}$ d., ld., and 3d. coins would remain in use.

In addition, the decimal part represents the number of pennies in the $£$. s. d. amount.

This system would, however, imply considerable difficulty in converting from amounts greater than $8 / 4$ to our system.

Again the pound is lost as a major unit of account.
A fraction for $\frac{1}{2}$ cent ($=\frac{1}{2} \mathrm{~d}$) might be required.
Example:
6s. $7 \frac{1}{2} \mathrm{~d} .=0.79 \frac{1}{2}$ (Exact)
£2. 3s. $6 \mathrm{~d} .=5.22$ (Exact)

SYSTEM 6

$$
\begin{aligned}
& 4 / 2=\text { CENT } \\
& 1 \text { cent }=\frac{1}{2} d .
\end{aligned}
$$

Here again the main advantage is the rendering possible of exact equivalents of present values.

As a result, the present $\frac{1}{2}$ d., 1 d., and 3d. coins remain in use.
Among the disadvantages, one could list the loss of the pound as a major unit of account. There would also be difficulty in converting sums from the present system.

Moreover, the miner unit (the halfpenny) will soon be too small. Thus the system will not be lasting.

Example:
6s. $7 \frac{1}{2} \mathrm{~d} .=1.5$ (Exact)
£2. 3s. 6d. $=10.44$ (Exact)

$$
-10-
$$

$$
\begin{gathered}
1 / 8=\text { CENT } \\
1 \text { cent }=1 / 5 \mathrm{~d} .
\end{gathered}
$$

An important merit of this system is, again, the possibility of having exact equivalents of present values.

Another useful aspect of this system is that a sizeable section of the community, particularly in the rural areas, is used to thinking in terms of the
SKUD i.e. 1s. 8d.

Among the disadvantages, we list the loss of the pound as a major unit of account.

The major unit, moreover, is too 'light'.
On the other hand, the minor unit is far too small for our present requirements. This would be aggravated with the passage of time.

There would also be considerable difficulty in converting from the present system - unless one is already used to thinking in terms of the skud even for large values.

```
Example: }\quad6\textrm{s}.7\frac{1}{2}\textrm{d}.=3.97\frac{1}{2}\mathrm{ (Exact)
```

£2. 3s. 6d. $=26.10$ (Exact)

In our view the final choice devolves on the importance one attaches to each of the following:
(a) Do we still require a half-penny and if so for how long?
(b) What increase in cost of living can be permitted?
(c) Is associability with the present system really essential?

We shall consider each issue separately.

(a) The Halfpenny

We think that there is no compelling reason for retaining or introducing a coin directly equivalent to the present halfpenny. 4

The likely effects of prices are not considered to be of such proportions as to warrant this introduction.

Its major use at present lies mainly in items of food sold in small quantities. Some bus fares still include the halfpenny; most internal and external postage rates do not involve the halfpenny.

It seems reasonable that within the next two decades the halfpenny will lose most of its present remaining significance.

(b) Rise in Cost of Living

The increase in the cost of living which is likely to be caused by a $£$-cent- $\frac{1}{2}$ system is discussed at length in the following chapter. This is estimated to be around 0.8%. As a general rule, it can be assumed that systems whose minor unit is smaller than the $\frac{1}{2}$ cent on the $£$-cent $-\frac{1}{2}$ system would cause even smaller fluctuations in the cost of living.
(c) Associability

A system in which conversion from $£$. s. d. is simple is preferable to others for which this is not so, all other factors being equal. The $10 /$ - cent system is very simple in this respect. It is a pure decimal system, requiring no fractions and the shillings appearing in a $£$. s. d. sum remain unaltered.

Whether this superiority in associability should be the deciding factor is a debatable point. Our view is that retaining the $£$ as a major unit is more important.

It is felt that there are considerable pragmatic reasons for retaining the pound once Britain has opted for this system. Malta has a large volume of transactions and relationships with Britain which could be impeded if Malta were to abandon the pound.

Malta is at the moment undergoing such a far-reaching change in her economic system that as far as possible extraneous factors which could affect the economy adversely should be kept
to a bare minimum. It is submitted that for Malta to opt, at this crucial moment in her economic life, for a system entirely different from the British one would imply net disadvantages through the confusion thereby arising.

Our educational system, for example, is such that most of our textbooks and our examinations are British or Britishoriented. We believe it would be detrimental to the development of education, at this juncture of Malta's national life, to overhaul completely our textbooks and our examinations insofar as these involve discussions or studies on or relating to currency systems in their widest connotation.

Moreover, as is pointed out in the Appendix, statistical and other records could still be easily used for comparative purposes. Contracts, laws and bye-laws would require no fundamental alterations.

Though the cause of associability will not be altogether served by this option, yet we think it preferable to any of the adverse effects on the economy which the removal of the $£$ as a major unit would involve.

Having concluded that mil systems, are undesirable, we are left with cent systems.

Of these systems the two major contenders are.
(i) the $£$-cent- $-\frac{1}{2}$
and (ii) the $10 /$-cent
We shall now consider these two systems against the desirable features mentioned earlier.

The $£$-cent- $\frac{1}{2}$ and $10 /$ - cent systems are both two place systems with "heavy" major units.

The $£$-cent $-\frac{1}{2}$ system would require the use of a half fraction as otherwise a minimum coin of 2.4 d . present value would not帾"

$$
-13-
$$

cover the price spectrum adequately. In this respect the $£$-cent $-\frac{1}{2}$ is not a pure decimal system.

The $10 /$ - cent system is better on this score, but would obviously involve larger numbers.

The requirement that the system should cover future needs seems to be best fulfilled by the $£$-cent $\frac{1}{2}$ system.

It seems reasonable to assume that the use of the $\frac{1}{2}$ cent will decline with time due to (i.e. 1.2d.) price inflation and the rise in standards of living. Under this system the minor unit of account would play a stronger part with time.

The difference which the $£$-cent- $\frac{1}{2}$ system and the 10 s. might have is difficult to assess. It is highly improbable, however, that this difference would be significant since the smallest unit in both systems is the equivalent of 1.2 d .

The major difference between the two systems lies in the problem of 'associability' as against the case for following Britain due to pragmatic reasons. As already pointed out, the choice would depend on the relative importance one attched to these two features.

CHAPTER TWO

THE EFFECTS OF DECIMALIZATION ON THE NATIONAL ECONOMY.

Any currency performs its functions properly including those of a high and stable level of employment, income and a sound balance of payments only as long as it enjoys the confidence of the public at home and abroad. In addition to these concepts, there is a legal or statutory side of a country's currency and it is desirable that the economic and legal concepts should not be in conflict with each other. It is therefore necessary to have the type of currency which tries to cover as many economic objectives as possible.

Indeed the acceptability of a currency at home or overseas depends primarily and ultimately on the economic policies pursued by a particular country. Economic policy as such is of course outside the scope of this study. But how far the attainment of economic objectives is facilitated by a particular medium of exchange deserves very close study.

In the preceding chapter, we have discussed the technical advantages and disadvantages of different systems of decimalization of currencies. In this chapter, to facilitate the amount of argument for or against the adoption of decimal currency, we assume that Malta will opt for a system similar to the one that has been accepted by Britain.

It is valid to proceed in this way because if Malta were to adopt the United Kingdom system, such an adoption could theoretically take place without having Malta's currency and Malta's monetary policy tied to sterling. Malta could have a currency based on the pound-cent system while she pursued an independent monetary policy with all its implications. Conm"
versely, Malta could have a different decimal currency system but no independent monetary policy ${ }^{1}$.

In a later section, we shall describe the expected rise in prices in Malta if this country were to adopt the U.K. decimal system. Indeed any change in the form of currency may trigger off higher prices; and higher prices due to decimalization may produce other price increases on other scores e.g. higher import prices, higher wages, higher aggregate demand (income). It is easier, however, to transmit higher costs into higher prices or to take advantage of rising incomes, when no other factor, e.g. that of decimalization, is present; on the other hand, the calculated and expected rise in prices due to decimalization would put the Authorities and the consumers more on their guard against additional price increases, which reduces or limits the freedom of retailers etc. to charge higher prices.

It must be pointed out that we have already had rising prices without overall benefits: the calculated rise in prices due to decimalization is a cost we have to pay for introducing decimalization and for retaining the ideal features of a new currency system - those of easy association with the present one, those of minimising difficulties, of public confusion and of cost.

The features of Association. The statistical summary of the Maltese Islands for December 1967 shows that the currency in circulation is made up of $£ 33,921,000$ in notes and of $£ 390,000$ in coins. Table A at the end of this report shows a much higher increase in the note component of our circulation; the number of five pound notes have increased fourfold since 1962 when they were introduced. It is easier to associate the present $£ 1$ and $£ 5$ notes with a new Maltese pound of equivalent denomination and, therefore, to associate the bulk of our present currency with a new volume of currency of equivalent denomination. It is probable that a part of all this currency is not owned

[^4]by Maltese residents but the latest data are not available to show more precisely the ease of association between the present bulk of the currency, and a new volume of currency of equivalent denomination, owned by Maltese residents.

Even in the case of small transactions of grocers, the most predominant prices are those of $1 /-$ and 6 d . The shilling is thus a sort of a norm of small transactions just as the $£ 1$ and the $£ 5$ are for large transactions. Removal of the shilling from a new currency will require the creation of a new norm in people's minds for small transactions. Translation of a new norm in terms of an old one requires some effort, at least in the short term. The skud, for example, was a name used very long ago and may still be in isolated agricultural areas. But it is higher than the shilling and it would trend to raise prices if it were to be substituted for the shilling.

Minimising Difficulties and Public Confusion. The creation of a new norm for small transactions, as already stated, will create difficulties; a new norm for large transactions will create confusion. Let us take two examples, assuming that the new norm is the skud.
(a) An item which costs 5 s. will have to be denominated in 3 Skudi, but one which costs 5 s. 6 d. will be denominated with 3 skudi and 30 cents ($1 \mathrm{~d} .=5$ cents). To realize better the difficulties, let us express the cost of an article costing 4 . skudi and 20 cents into present denominations.

That is $4 \times 20+\frac{20 \text { cents }}{5 \text { cents }}$ pence

$$
=80 \text { pence }+4 \text { pence }=84 \text { pence }=7 /-
$$

Larger multiples of skudi and of cents will present much more difficulties. Very few people can work out the conversion mentally, correctly and in a short time, all of which efforts are avoided by retaining the present shilling.
(b) The case against other norms for large transactions is
even more impressive. The price of a pair of shoes costing 18 skudi or a suit costing 120 skudi would obviously take some time to be associated with present currency values.

The Cost. The additional cost in adopting the U.K. system is lower than the additional cost in adopting a different system. We can use all new machines using the British decimal currency system and thus benefit from the economies of scale.

Conversely, to have machines tailor-made for our own exclusive requirements would probably entail a prohibitive cost. Attention would also have to be paid to the capacity of such machines; for clearly, if this capacity could not exceed, say, a value equivalent to ten pounds their usefulness would be drastically diminished. The machines we have in mind are cash registers, franking machines and adding machines. Imports of these machines since 1960 are given in Table B. As we become more machine-minded (e.g. in retail shops), imports of such machines will increase. In addition, some of the machines imported since about 1964 have a device which can easily convert them to the decimal currency system which will be adopted in Britain.

Prices "There is no way of achieving certainty or accuracy in forecasting the effect of any particular system on prices", as the Halsbury Committee say in their report ${ }^{1}$. In spite of this limitation, we are presenting an estimate of the expected rise in prices, following the adoption of a system with 1.2 pence as the smallest denomination.

We undertook the study along the following lines.
(a) We edged upwards the present price denominations from 1 d . to 12 d . A price of 1 d . is thus raised to 1.2 or half the New Penny, and one of $4 \frac{1}{2} \mathrm{~d}$. is raised to 4.8 or 2 New Pence.

1. 'Report of the Committee of Inquiry on Decimal Currency', Para. 139.

We left unchanged prices currently marked at $2.5 \mathrm{~d} ., 6.0 \mathrm{~d}$. and 12.0 d . The exercise is presented in Table C.
(b) Consumer prices in January 1968 were the main basis of our estimates. Another exercise based on July prices will be required as a cheque on the present one.
(c) Prices of large transactions e.g. furniture, bedroom suits, consumer durables were not included in our considerations, firstly because they will not be affected directly by decimalization (and of course, there are other smaller prices which will not be affected by decimalization), and secondly because their inclusion in our estimate would have dwarfed the percentage increase in prices due to decimalization.
(d) Each price considered was weighted according to the weights adopted in the Interim Index of Retail Prices.

Results. The overall effect of decimalization is about 1.0% point increase in the prices mainly obtaining in January 1968. It varies from 2.4% points increase in the case of Food items to about 10 s .0 d . in a basketful of food items costing $£ 21.15 \mathrm{~s} .6 \mathrm{~d}$. to smaller or no increases in other items. The sharp increase in Food items is due both to the appreciable volume of expenditure on Food and the weights given to Food items in the Price Index. Transactions denominated in sixpences, shillings and pounds should not increase as a result of decimalization.

The largest increases will be suffered by the low income groups whose purchases include a great number of small transactions, the price of which proportionately increases most.

Details are given in Table D.

Since Food items would have increased most, an alternative approach has been adopted to verify the results obtained. The existing lowest and highest prices of Food items were weighted by the external weights in the Interim Index of Retail Prices. The new and higher price of each food item was similarly weighted.

A basketful of goods which includes each item of food considered in the first exercise cost 391 pence at the lowest price and 644 pence at the highest price in January 1968. The same basket will cost 406 pence and 649 pence respectively, after decimalization or 3.8% and 0.9% more. A straight average will give a $\mathbf{2 . 3 5 \%}$ increase.

In conclusion, it may be said that the effects of a changeover to a decimal currency system as contemplated here would not be unduly harmful to the economy of Mailta.

APPENDIX

THE £-and-1-2 AND THE 10s. CENT SYSTEMS COMPARED

It seems to us that the $£$-cent $-\frac{1}{2}$ system is superior to the 10 s.-cent on several relatively minor counts. We discuss these here.

The 10s.-cent system would require the introduction of a new name for its major unit. This is simple in theory but it is probable that it would be difficult to choose a name which would find general acceptance. Some sections of the population would opt for some traditional name while others would insist on something more contemporary.

Whatever name be adopted, we shall probably find ourselves still thinking in terms of the pound for several years. (This is not unlikely - several people still think and carry out transactions in terms of the skud).

It is true that the 10 s.-cent system is a pure decimal system whereas the $£$-cent- $\frac{1}{2}$ is not, due to the presence of the $\frac{1}{2}$ cent (which is equivalent to 1.2 d .). However, such a situation would virtually be reversed after a decade or two as the lowest value, i.e. 1.2d., would lose it value and fall into disuse. With the 10 s.-cent system, this would result in the lowest unit of account, i.e. the cent, being discarded. This is very much the same situation as that in the U.S. where the 1 cent has negligible value. With the $£$-cent- $-\frac{1}{2}$ system a decrease in the value of the $\frac{1}{2}$ cent would make the system a pure decimal one. The $\frac{1}{2}$ cent would ultimately be withdrawn.

The time factor also favours a 'heavy' major unit. Larger and larger numbers would have to be used the smaller the major unit. (The situation in Italy where the original 1 cent is nonexistent and the Lira hardly has any purchasing power is an extreme case.) It seems that whilst the $£$-cent- $\frac{1}{2}$ system would evolve into a better and more suitable system, the 10 s . cent would decay over time.

4

$$
-21-
$$

The latter system would involve large numbers anyway．An object costing $£ 571$ would be marked as 1142 units．Large quan－ tities are clearly more complicated to deal with than smaller ones．In doubling each quantity，we would in effect be halving the capacity of business machines．

In introducing a new major unit of account the 10 s ．cent system would require a complete break with our present system． With our economy in its present state of flux such a step would seem inadvisable．The $£$－cent $-\frac{1}{2}$ system，in preserving the major unit，would not disrupt transactions involving quantities larger than one pound．Transactions involving large sums of money would in fact not be affected by the changeover．Statistical and other records would hardly be effected in the main．

All these relatively minor points add up substantially in favour of the $£$－cent－$\frac{1}{2}$ system．We fail to see how the alleged superiority of the $10 \mathrm{~s} .-$ cent system in associability could over－ come all the other factors put together．The use of the 10s．as a major unit of account cannot be shown to be significantly superior to the $£$ ．Consequently we do see that such a change－ over is warranted．

$\begin{aligned} & \text { 唇 } \\ & =6 \end{aligned}$		ぶ オ゙
若		
	$\underset{\sim}{\Perp}$	
	4	 N O O M O O－N
	－	
$\begin{aligned} & \text { 苞 } \\ & \text { Z } \end{aligned}$	$\frac{1}{\text { in }}$	
	$\frac{\square}{\text { N }}$	
	$\frac{1}{\sim}$	
	\pm	

Imports of Cash Registers, Franking Machines, Adding Machines

Year	1960	1961	1962	1963	1964	1965	1966	1967
Number	38	60	65	36	31	33	141	- 12
			Cash	sters				
Value $£$	4,072	7,930	6,303	3,067	3,424	2,115	9,456	2,875
			Franking	chines				
Number	-	-	-	-	-	-.	-	-
Value $£$	-	--	-	-	-	414	107	626
			Adding	hines				
Number	77	64	62	121	128	145	259	247
Value $£$	2,722	2.002	2,365	5,908	6,791	9,701	12,350	19,249

ESTIMATED ESCALATION OF PRICES

Current Pence	$\frac{1}{2}$ N.P. 1.2	$\begin{gathered} 1 \mathrm{~N} . \mathrm{P} . \\ 2.4 \end{gathered}$	$1 \frac{1}{2}$ N.P. 3.6	2 N.P. 4.8	$2 \frac{1}{2}$ N.P. $6 \cdot 0$	3 N.P. $7 \cdot 2$	$\begin{gathered} 3 \frac{1}{2} \text { N.P. } \\ 8.4 \end{gathered}$	$\begin{gathered} 4 \text { N.P. } \\ 9 \cdot 6 \end{gathered}$	$\begin{aligned} & 4 \frac{1}{2} \text { N.P. } \\ & 10 \cdot 8 \end{aligned}$	5 New Pence 12.0
$1 \cdot 0$	x									
1.5		x								
$2 \cdot 0$		x								.
$2 \cdot 5$		x								
- 3.0			x							
3.5			x							
4.0				x						
$4 \cdot 5$				x						
$5 \cdot 0$					X					
$5 \cdot 5$	m . .	-			x					
$6 \cdot 0$					X					
$6 \cdot 5$						X				
$7 \cdot 0$						x				
$7 \cdot 5$										
$8 \cdot 0$.					x			
$8 \cdot 5$								X		
$9 \cdot 0$								x		
$9 \cdot 5$								X		
$10 \cdot 0$										
$10 \cdot 5$									X	
11.0										
$11 \cdot 5$										X
$12 \cdot 0$					4	ad				X

THE EFFECT OF DECIMALIZATION (ON THE U.K. SYSTEM) ON LOCAL PRICES IN PENCE

	Old	New	Increase	\% Increase
Food	5,226•3	5,350.3	$124 \cdot 0$	$2 \cdot 4$
Bev./Tobacco	1,271.7	1,287.0	$14 \cdot 3$	$1 \cdot 1$
Housing (Maintain.)	$712 \cdot 8$	$712 \cdot 9$	$0 \cdot 1$	$0 \cdot 0$
Fuel/Light	$724 \cdot 3$	$727 \cdot 6$	$3 \cdot 3$	0.45
Soft Furnishings	2,845•3	2,845•3	$0 \cdot 0$	-
Hardware	1,100.7	1,100•8	$0 \cdot 1$	$0 \cdot 0$
Clothing	5,236.3	5,236•3	-	-
Transport	$166 \cdot 4$	$173 \cdot 6$	$7 \cdot 2$	4•3(*)
Miscellaneous	$349 \cdot 4$	$354 \cdot 8$	$5 \cdot 4$	1.5
	17,634.2	17,788.6	$154 \cdot 4$	$0 \cdot 8$

(*) If all bus fares are considered the percentage increase would be 5.6% for transport and the overall increase would be 1.1%.

TABLE E
GROSS DOMESTIC PRODUCT - 1966
£m.

MANUFACTURING WAGES - 1966 in £m.			
	1966	1966+1\%	
Food	$0 \cdot 3$	0.303	
Beverages	0.4	0.404	
Tobacco	$0 \cdot 1$	0.102	
Textiles etc.	$0 \cdot 7$	0.707	
Wood, Cork etc.	$0 \cdot 2$	0.202	
Printing - Publishing	$0 \cdot 3$	$0 \cdot 303$	
Chemicals	$0 \cdot 2$	$0 \cdot 202$	
Non-Metallic	$0 \cdot 2$	$0 \cdot 202$	
Metals	$0 \cdot 1$	$0 \cdot 101$	
Machinery	$0 \cdot 1$	$0 \cdot 101$	
Transport Equipment	$4 \cdot 1$	$4 \cdot 141$	
Others	$0 \cdot 2$	0.202	
	6.9	6.969	a total of $£ 69,000$

COMPARISON 1	$\begin{array}{r} \mathrm{OF} \\ 2 \end{array}$	3	LE DE	5	$\begin{gathered} \text { SYS } \\ \hline \end{gathered}$	7	8	9	10	11	12	$\underset{13}{T A B L E}$	$\underset{14}{G}$
	$\left\|\begin{array}{c} \text { Value } \\ \text { of } \\ \text { Minor } \\ \text { Unit } \end{array}\right\|$		Value of Hundred Minor of Units Major Unit in a Cent System $)$	Equivalents of present coins and banknotes									
System and Size of Major Unit				$\frac{1}{2} \mathrm{~d}$.	1 d.	3d.	6d.	ls.	2 s.	2s. 6d.	10s.	£1	$£ 5$
$\begin{aligned} & \hline \text { GROUP A } \\ & 8 \mathrm{~s} .4 \mathrm{~d} . \text { - cent }\left(+\frac{1}{2}\right) \\ & \text { or } 100 \text { penny } \\ & \hline \end{aligned}$	1 d.	10d.	8s. 4d.	(12c.) *	1c. *	3 c .	6 c .	12c.	24c.	30c.	lu. 20c.	2u. 40 c .	12 u.
4 s .2 d . - cent or 100 halfpenny	$\frac{1}{2} \mathrm{~d}$.	5d.	4s. 2d.	1c. *	2c. *	6 c.	12c.	24c.	48c.	60 c.	2u. 40 c .	4u. 80c.	24 u .
$\begin{aligned} & \text { GROUP B } \\ & £-\text { cent }+\frac{1}{2} \end{aligned}$	$2 \cdot 4 \mathrm{~d}$.	2 d .	£1	-	-	-	$2 \frac{1}{2} \mathrm{c}$.	5c.*	10c.*	$12 \frac{1}{2} \mathrm{c}$.	50c.*	£1	£5*
£-mil ...	0.24d.	2.4d.	2s.	-	-	-	25m.*	50m.*	100m.*	125 m .	500m.*	£1*	£5*
$\begin{aligned} & \text { GROUP C } \\ & 10 \text { s. }-\operatorname{cent}\left(+\frac{1}{2}\right) \end{aligned}$	1-2d.	1 s.	10s.	-	-	($2 \frac{1}{2} \mathrm{c}$.)	5c.*	10c.*	20c.*	25c.*	1u.*	2u.*	10u.*
£5-mil ($+\frac{1}{2}$)	1-2d.	1 s .	10s.	-	-	(212m.	5 m .*	10m.*	$20 \mathrm{~m} .^{*}$	25m*	100m.*	200m.*	1u.*
1s. 8d. cent	-2d.	2d.	1s. 8d.	-	5c. *	15.c.	30c.	60c.	1u. 20c.	1u. 60 c .	6u. 0c.	12u.0c.	60u. 0c.

EXPLANATION f lesser ${ }^{2}$ gives the value in $£ \mathrm{~s}$. d . of the "cent" or "mil". When the value of this minor unit is high, a fractional coin
2. Cols. 5 to 14 list the equivalents of present $£$. s . d. coins and notes only where this equivalent decimal amount can be made up exactly in decimal coins. Sometimes this depends on whether a $\frac{1}{2}$ cent or $\frac{1}{2}$ mil is to be part of the system. Whereever there is doubt about the need for such a $\frac{1}{2}$ (i.e. when it would represent about the present halfpenny in value) we show equivalents in brackets. We assume (a) that a $\frac{1}{2}$ cent coin would b : needed in a $£$-cent or 16 s . 8d.-cent system where it would be worth a penny or more, and (b) that it would not be needed in any system where it would be worth less than about halfpenny.
3. Coins without exact equivalents (in the sense described in note 2 above) would, in general, have to be withdrawn soon after decimalization and replaced by coins of different values. Some coins and notes "with exact equivalents would also ultimately have to be replace notes marked with an asterisk (*) represent true decimal denominations and could probably remain in circulation until gradually displaced by coins and notes of identical dimensions but slightly different designs. (Sometimes even a change in design would be unnecessary - e.g. with $£ 1$ and $£ 5$ notes in Group B systems).
4. This chart gives most, but not all, systems which we have studied.

TABLE H
COMPARISON BETWEEN INCREASES IN LOWEST AND HIGHEST PRICES OF FOOD ITEMS

	Least Price		Highest Price	
	Old	New	Old	New
Bread Rolls	0.159	0.191	0.159	0.191
Fancy Bread Loaves	0.159	0.191	0.954	0.954
Ration Bread	18.260	21.912	18.260	21.912
Flour Plain	1.048	1.100	1.572	1.572
Self Raising	0.390	0.421	0.429	0.468
Custard Powder	0.108	0.108	0.216	0.216
Biscuits	0.735	0.882	2.940	2.940
Galletti	0.240	0.240	0.240	0.240
Butter	0.224	0.230	0.608	0.614
Margarine	1.331	1.584	5.280	5.280
Margarine Pkts.	0.270	0.288	0.330	0.360
Cooking Fat	4.1.14	4.896	14.960	15.504
Sugar Ration	0.584	0.701	0.584	0.701
Sugar Non-Ration	4.672	4.906	4.672	4.906
Cheese	1.932	1.932	24.398	25.285
Paste Ration	7.729	9.048	0.664	0.697
Peas	3.570	3.570	7.140	7.140
Tomato Paste	2.892	3.470	2.892	3.470
Beans	0.388	0.461	0.518	0.614
Dried Beans	0.680	0.816	1.190	1.224
Dried Peas	0.512	0.614	0.646	0.768
Currants	0.227	0.270	0.405	0.432
Tinned Fish	2.030	2.084	6.390	6.612
Bacon	4.800	4.800	12.800	13.120
Ham	2.820	2.820	7.755	7.896
Soups	4.583	5.460	7.800	7.800
Salt	0.071	0.084	0.084	0.084
Corn Flakes	1.616	1.697	3.192	3.274
Rice	0.104	0.109	0.130	0.133
Biscuits	3.920	4.1.16	5.880	5.880
Butter Pkts.	4.760	4.855	5.248	5.426
Milk (Tinned)	34.758	34.758	34.758	34.758
	106.8	113.1	177.9	180.5

TABLE H- (Continued)

	Least	rice	Highe	Price
	Old	New	Old	New
Tea Weight Pkts.	8.985	9.344	10.362	10.739
Rkotta	3.560	3.652	4.296	4.296
Eggs	71.240	72.334	72.240	72.336
Corned Beef	2.000	2.040	3.500	3.600
Sauce	0.927	0.950	1.584	1.584
Wine	8.460	9.620	13.650	14.040
Edible Oil	28.340	28.776	30.520	31.392
Nescafé	0.225	0.238	0.306	0.3113
Canned Fruits	2.808	2.870	2.808	2.870
Frozen Fish	6.431	6.811	7.741	7.740
Sausages	3.000	3.000	4.700	4.700
Milk Pasteurized	7.544	7.921	7.544	7.921
Beef	22.660	23.113	67.980	67.980
Pork	17.420	17.768	43.104	43.104
Mutton	1.350	1.404	3.780	3.780
Frozen Meat	3.024	3.110	5.760	5.875
Sausages	1.500	1.560	4.200	4,200
Apples	0.832	0.874	1.872	1.872
Lemons	0.811	0.854	0.214	0.214
Oranges	0.108	0.108	0.252	0.252
Bananas	2.148	2.148	5.012	5.155
Peaches	1.876	1.930	4.020	4.020
Plums	0.624	0.624	1.664	1.747
Grapes	1.232	1.378	2.952	2.952
Melons	1.611	1.718	2.010	2.090
Potatoes	50.940	50.940	101.880	101.880
Onions	3.570	3.672	10.200	10.200
Tomatoes	5.950	6.120	7.650	7.650
Cabbages	1.360	1.428	1.700	1.836
Caudiflowers	1.020	1.224	1.360	1.632
Lettuce	2.380	2.448	2.720	2.856
Bogue	18.720	19.008	34.560	34.560
Lampuki	1.702	1.776	3.552	3.552
$4 "$	106.8	113.1	177.9	180.5
	284.1	292.8	465.8	468.9
	390.9	405.9	643.7	649.4
		+ 15.0		+5.7
		$=3.8 \%$		$=0.9 \%$

[^0]: 1. 'Report of the Committee of Inquiry on Decimal Currency"
[^1]: 1. We realize that a one decimal system is simpler still. However, such a system would be too lacking in flexibility.
 2. Libya, Tunisia, Egypt.
[^2]: 1. A more detailed picture of the technical implications of these seven options is given in Table G.

 4" -7-

[^3]: Example:
 6s. $7 \frac{1}{2}$ d. $=£ 0.332$ (Nearest Above)
 $£ 2.3 \mathrm{~s} .6 \mathrm{~d} .=£ 2.175$ (Exact)

[^4]: 1. The distinction, in our view, is important. Our independent currency system could be ensured from a technical point of view by inscribing the word "Maltese" on our coins.
