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Abstract Teleparallel Gravity offers the possibility of
reformulating gravity in terms of torsion by exchanging the
Levi-Civita connection with the Weitzenböck connection
which describes torsion rather than curvature. Surprisingly,
Teleparallel Gravity can be formulated to be equivalent to
general relativity for a appropriate setup. Our interest lies in
exploring an extension of this theory in which the Lagrangian
takes the form of f (T, B) where T and B are two scalars that
characterize the equivalency with general relativity. In this
work, we explore the possible of reproducing well-known
cosmological bouncing scenarios in the flat Friedmann–
Lemaître–Robertson–Walker geometry using this approach
to gravity. We study the types of gravitational Lagrangians
which are capable of reconstructing analytical solutions for
symmetric, oscillatory, superbounce, matter bounce, and sin-
gular bounce settings. These new cosmologically inspired
models may have an effect on gravitational phenomena at
other cosmological scales.

1 Introduction

The possibility of cosmological bouncing solutions has
attracted a lot of attention in recent years due to the ability
of this approach to avoid the unnaturalness of the Universe
initiating from a big bang singularity. In these scenarios, cos-
mic contraction reduces the effective radius of the cosmos to
a minimum size which then produces an expanding Universe
[1–6]. This may also open up possibilities for potential quan-
tum gravity theories in the early Universe such as in Refs.
[7–10]. Moreover, apart from preventing an initial singular-
ity, bouncing cosmologies have shown to be a competitive
alternative to the standard inflationary paradigm [11,12], and
in some realisations, such as in the matter bounce scenario
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[13], produce a scale-invariant power spectrum similar to
inflationary models [14–16].

In the literature, an increasing number of studies con-
cerning potential viable bouncing cosmologies have been
explored. Firstly, the relatively recent idea of ekpyrotic/cyclic
[17,18] describes a cosmos that cyclically expands and con-
tracts, and has been analysed in f (R) theories of gravity [19].
Other works on this topic range from areas such as scalar-
tensor theories [20–22] among others to unimodular theories
[23]. However, these proposals are not without their prob-
lems. For instance in Ref. [24] it is found that a particular
scalar-tensor model produces an unstable evolution due to
ghosts when perturbations from an isotropic and homoge-
neous cosmology is considered.

Superbounce, and ekpyrosis bounce, have also been
attracting interest in the literature [25–27] with seminal
works such as Ref. [28] in which superbounce and the loop
quantum cosmology ekpyrosis bounce scenarios were inves-
tigated for f (R), f (G) and f (T ) gravity theories. These
effective theories of gravity offer qualitatively similar results
indicating a potential universality of this type of bounce sce-
nario. Another interesting proposal for potential bounce cos-
mologies is that of an oscillatory, or cyclic, bounce [4,29,30]
where a regular periodic bounce occurs at finite temporal
intervals, and may offer an new avenue to resolving cosmo-
logical problems in the early universe [31,32]. The differ-
ences between these bouncing scenarios can also be viewed
through the lens of Fig.1 where the fundamental cosmologi-
cal parameters are plotted for each bounce model.

The works discussed above and the majority of the lit-
erature on bouncing cosmologies is focused on a scenario
where general relativity (GR) or its modifications express
gravitation. However, another interesting possibility is that of
exchanging the fundamental expression of gravity in GR with
that of torsion in Teleparallel Gravity (TG). This is achieved
by changing the Levi-Civita connection, which is curvature-
ful, in GR (and its modifications) with the Weitzenböck con-
nection which is torsion-ful [33,34], but still satisfies the
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Fig. 1 For each bouncing scenario analyzed in this work, we plot rep-
resentative graphs of their scale factor and Hubble parameter, as well
as their total density and pressure contributions. The bouncing charac-

teristics are shown as clearly as possible, as are potential singularities
(if they occur). Model V shows a Type IV singularity for which α = 3

metricity condition. Curvature in GR is expressed not through
the metric tensor but through the connection. In this way, TG
produces a novel framework in which gravity is realised as a
torsional geometric deformation. Thus, we can construct the-
ories of gravity based on the Weitzenböck connection. One
such theory is that of the teleparallel equivalent of general
relativity (TEGR) which has an associated Lagrangian that is
equivalent to GR up to a boundary term [35,36]. Therefore,
this produces the same dynamical equations as that of GR
while being sourced by a different gravitational action.

The boundary term between GR and its TEGR equivalent
is the source of many differences in modifications to these
theories, which have been studied broadly in the literature

[37,38]. This boundary term arises naturally in GR due to
the appearance of second-order derivatives in its Lagrangian.
This boundary term [39,40] is the source of the generically
fourth-order contributions that arise in extensions to GR [41–
43]. TG features a weakened Lovelock theorem [44–46]
which means that it allows a much wider range of gravita-
tional actions that lead to generically second-order equations
of motion. This is a pivotal point for TG since it organically
circumvents the appearance of Gauss–Ostrogradsky ghosts
in many of its manifestations. One interesting use of this is in
the formulation of Horndeski theories of gravity within the
TG context [46].
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The TEGR Lagrangian immediately generalizes to pro-
duce f (T ) theory [47–51] in much the same way that the
Einstein–Hilbert action leads directly to f (R) generaliza-
tions. In fact, a number of f (T ) gravity models have shown
promise in both cosmological regimes [37,52,53], as well
as for galactic scale physics [54] and in solar system tests
[55–58]. However, f (R) gravity is a fourth-order theory and
to fully embrace this possibility in the TG context, we must
consider f (T, B) gravity theories in which the second-order
and fourth-order derivative contribution to the field equations
contribute independently to the gravitational action.

Bouncing scenarios have been investigated in TG, firstly,
in terms of its f (T ) variant. In this setting, bouncing cos-
mologies have emerged as a natural consequence in several
early universe scenarios, such as the systematic approaches
in Refs. [59–61] show. Others works have also shown the pos-
sibility of a matter bounce scenario in f (T ) gravity. Beyond
f (T ) gravity, the literature also includes works on the effect
of considering TG as an effective field theory of loop quan-
tum gravity which gives interesting results that are consistent
with current observations [62,63]. Another aspect of bounc-
ing cosmologies in TG is that of f (T, TG) where the analog
Gauss-Bonnet extension of TG is explored [64–66]. This has
led to a number of viable models in which bouncing cos-
mologies can reproduce standard aspects of the early universe
[67,68].

Our study explores the possibility of bouncing cosmolo-
gies within the f (T, B) gravity framework where we choose
to consider the five most studied bouncing cosmology sce-
narios, namely symmetric bounce, superbounce, oscillatory
cosmology, matter bounce, and Type I–IV singularity cases.
In fact, some of these models have even been studied for
potential cosmological perturbations signatures such as Refs.
[1,15,17,21,29,69], among others.

In the present work, we investigate the possibility of
bouncing solutions within the f (T, B) gravity framework.
Our aim is to study several popular manifestations of bounc-
ing cosmologies that appear in the literature (discussed in
the following sections). This is achieved by considering a flat
Friedmann–Lemaître–Robertson–Walker (FLRW) geometry
in which the particular forms of the bouncing frameworks
emerge through the scale factor. To do this, we first intro-
duce the salient features of TG in Sect. 2 and discuss relevant
features that appear in f (T, B) gravity. In Sect. 3.1, we first
investigate the symmetric bounce cosmology, followed by
power law models in the context of superbounce scenarios
in Sect. 3.2. In Sect. 3.3, a cyclic cosmology described by
an oscillating scale factor exhibiting a Big Bang/Big Crunch
and a cosmological turnaround bounces are then investigated.
Finally, matter bounce and Type I–IV singularity cases are
investigated in Sects. 3.4 and 3.5 respectively. The ensuing
solutions are discussed in their relevant sections, with a dis-

cussion is given in Sect. 4. In this work, we work in units
where the speed of light is taken to be unity.

2 Teleparallel gravity and its extension f (T, B)

cosmology

GR describes gravitation through the Levi-Civita connection,
�̊σ

μν which is curvature-ful and torsion-less while satisfy-
ing the metricity condition [70] (we use overdots throughout
to denote quantities calculated with the Levi-Civita connec-
tion). TG is centred on the replacement of this connection
with a torsion-ful one that has vanishing curvature and satis-
fies the metricity condition [37,38,40]. To achieve this, the
Weitzenböck connection, �σ

μν , is used to replace the Levi-
Civita connection. In GR, the Riemann tensor is used exten-
sively because it gives a measure of curvature on a man-
ifold, and plays an important role in many modified theo-
ries of gravity [43]. However, by replacing the connection
with a curvature-less one implies that the Riemann tensor
will always vanish irrespective of the component values of
the metric tensor. It is due to this fact that TG requires the
bottom-up construction of different tensorial quantities to
produce theories of gravity.

The metric tensor, gμν is the fundamental dynamical
object of GR and many of its modifications. However, in TG
this is derived from the tetrad, eaμ which replaces the metric as
the acting variable of the theory [71]. Here, Latin indices refer
to Minkowski space, while Greek indices refer to the general
manifold, and the tetrad acts as a soldering agent between the
two. In this way, the tetrads (and their inverses eμ

a ) transform
between manifold and Minkowski space indices through

gμν = eaμe
b
νηab, ηab = eμ

a e
ν
bgμν, (1)

which also observe orthogonality conditions

eaμe
μ
b = δba , eaμe

ν
a = δν

μ, (2)

for consistency. The Weitzenböck connection can then be
defined as [33]

�σ
μν := eσ

a ∂μe
a
ν + eσ

a ωa
bμe

b
ν , (3)

where ωa
bμ represents the spin connection. This consti-

tutes the most general linear affine connection that is both
curvature-les and satisfies the metricity condition [71]. The
spin connection appears explicitly in the Weitzenböck con-
nection to preserve the covariance of the resulting field equa-
tions [72]. In theories based on the Levi-Civita connection
(such as GR), this feature is hidden in the inertial structure of
gravity and thus does not play an active role in the ensuing
equations of motion [39,70]. The spin connection for TG is
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flat and incorporates the Local Lorentz Transformation (LLT)
invariance of resulting theories. In this way, there will always
exist a Lorentz frame where the particular components of the
spin connection are allowed to be set to zero.

Considering the full breadth of LLTs (Lorentz boosts and
rotations), 
a

b , the spin connection can be completely repre-
sented as ωa

bμ = 
a
c∂μ
c

b [71]. Another reason for the spin
connection playing an active role in the theory is that for
any particular metric, Eq. (1) has an infinite number of tetrad
solutions, and are each counter-balanced by the spin connec-
tion. Thus, it is the tetrad and its associated spin connection
that render a covariant TG formulation.

Given a vanishing Riemann tensor for the Weitzenböck
connection, we need to replace this with a meaningful mea-
sure of torsion. This is achieved through the torsion tensor
which takes advantage of the anti-symmetric nature of tor-
sion, defined as [37,38]

T σ
μν := 2�σ

[μν], (4)

where square brackets denote the usual anti-symmetric oper-
ator. The torsion tensor represents the field strength of grav-
itation in TG [71], and it transforms covariantly under both
diffeomorphisms and LLTs. To formulate interesting theories
of gravity, we also necessitate two other quantities. Firstly,
consider the contorsion tensor which represents the differ-
ence between the Weitzenböck and Levi-Civita connections,
i.e.

K σ
μν := �σ

μν − �̊σ
μν = 1

2

(
T σ

μν + T σ
νμ − T σ

μν

)
, (5)

which plays an important role in relating TG with GR and
its modifications. The second central ingredient of TG is the
so-called superpotential defined as [71]

Sμν
a := 1

2

(
Kμν
a − eν

aT
αμ
α + eμ

a T
αν
α

)
, (6)

which has been shown to have a potential relation to the
energy–momentum tensor for gravitation [73,74]. Contract-
ing the torsion tensor with its superpotential produces the
torsion scalar [37]

T := Sμν
a T a

μν, (7)

which is calculated entirely on the Weitzenböck connection
in the same way that the Ricci scalar depends only on the
Levi-Civita connection. In the same way, the Ricci scalar as
calculated using the Weitzenböck connection will naturally
vanish (R = 0), but using the contorsion tensor this can be
related to the regular Levi-Civita calculated Ricci scalar (R̊)

through [34,75]

R = R̊ + T − 2

e
∂μ

(
eT σμ

σ

) = 0. (8)

This leads to the equivalency between the regular Ricci scalar
and the torsion scalar given by

R̊ = −T + 2

e
∂μ

(
eT σμ

σ

) = −T + 2∇̊μ

(
T σμ

σ

)
, (9)

where e = det
(
eaμ

) = √−g, and B := 2∇̊μ

(
T σμ

σ

)
is a

boundary term. The appearance of a total divergence term
guarantees the equivalence between the dynamical equations
that emerge from GR (Ricci scalar Lagrangian) and replacing
this with the torsion scalar. Thus, we can define the Telepar-
allel Gravity equivalent of general relativity (TEGR) as

STEGR = − 1

2κ2

∫
d4x eT +

∫
d4x eLm, (10)

where κ2 = 8πG and Lm is the regular matter Lagrangian.
While both Lagrangians lead to the same dynamical equa-
tions, their Lagrangians differ by a boundary term that plays
an important role in modified versions of GR. In TG, the
boundary term embodies the fourth-order derivative contri-
butions to the field equations while in GR, these are contained
in the Ricci scalar.

Thus, we can adopt the same reasoning that led to the
well-known f (R̊) gravity in the Levi-Civita connection con-
text [41,42], but in this circumstance, we have two contribut-
ing scalars, namely T and B. The torsion scalar and bound-
ary term exhibit the second-order and fourth-order derivative
contributions respectively. For this reason, we need to gener-
alize to a Lagrangian f (T, B) to suitably incorporate f (R̊)

gravity.
Limiting briefly to f (T ) gravity, this then produces gener-

ally second-order equations of motion unlike its f (R̊) gravity
counter-part. This occurs due to a weakening of Lovelock’s
theorem in TG [44–46]. Moreover, f (T ) gravity shares sev-
eral other properties with GR such as having the same polar-
ization structure for gravitational waves [76,77], and being
Gauss–Ostrogradsky ghost free [38,40].

On the other hand, f (T, B) gravity [76–82] acts as a novel
approach to modifying gravity which limits to f (R̊) grav-
ity when the arguments take the specific form f (T, B) =
f (−T + B) = f (R̊) gravity. By considering this as a mod-
ification to the TEGR Lagrangian, i.e.

S f (T,B) = 1

2κ2

∫
d4x e (−T + f (T, B)) +

∫
d4x eLm,

(11)
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we can take the variation to arrive at the following field equa-
tions [76,78]

eλ
a� fB − eσ

a ∇λ∇σ fB + 1

2
B fBe

λ
a

+ 2Sμλ
a

[
∂μ fT + ∂μ fB

] + 2

e
( fT − 1) ∂μ

(
eSμλ

a

)

− 2 ( fT − 1) T σ
μa S

λμ
σ − 1

2
(−T + f ) eλ

a = κ2�λ
a, (12)

where subscripts denote derivatives, and �=
νλe

a
ν�λ

a is the reg-
ular energy–momentum tensor for matter. These are derived
for a zero spin connection since for a flat FLRW cosmology,
this is an allowed value [76–79].

In order to probe the cosmology of f (T, B) gravity, we
consider the tetrad choice

eaμ = diag(1, a(t), a(t), a(t)), (13)

where a(t) is the scale factor, and which reproduces the flat
homogeneous isotropic FLRW metric

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2), (14)

through Eq. (1). An interesting feature of this choice of tetrad
is that this allows for vanishing spin connection components,
i.e. ωa

bμ = 0 [72,83]. Straightforwardly, we can determine
the torsion scalar through Eq. (7) as

T = 6H2, (15)

while the boundary term turns out to be B = 6
(
3H2 + Ḣ

)
,

which together reproduce the Ricci scalar, i.e. R̊ = −T +
B = 6

(
Ḣ + 2H2

)
. From here onwards, overdots refer to

derivatives with respect to coordinate time t . By evaluating
the field equations under these conditions results in the Fried-
mann equations

3H2 = κ2 (ρm + ρeff) , (16)

3H2 + 2Ḣ = −κ2 (pm + peff) , (17)

where ρm and pm respectively represent the energy density
and pressure of matter in the Universe, while f (T, B) enters
the governing equations as an effective fluid with energy den-
sity and pressure given by

κ2ρeff = 3H2 (3 fB + 2 fT ) − 3H ḟB + 3Ḣ fB − 1

2
f, (18)

κ2 peff = 1

2
f −

(
3H2 + Ḣ

)
(3 fB + 2 fT ) − 2H ḟT + f̈ B .

(19)

The effective fluid also observes the fluid equation [79]

ρ̇eff + 3H (ρeff + peff) = 0, (20)

and can be used to define an effective equation of state (EoS)

ωeff = peff

ρeff
(21)

= −1 + f̈ B − 3H ḟB − 2Ḣ fT − 2H ḟT
3H2 (3 fB + 2 fT ) − 3H ḟB + 3Ḣ fB − 1

2 f
.

(22)

Notice that ωeff = −1 is recovered for 
CDM where
f (T, B) takes on the TEGR limit. Furthermore, since we are
considering modified gravity as an alternative description to
dark energy, the matter fluid EoS is assumed to satisfy the
condition ω ≥ 0, which includes known fluids such as dust
and radiation.

In the following section, we will use the Friedmann equa-
tions to determine the arbitrary Lagrangian function for dif-
ferent settings of scale factor emanating from bouncing cos-
mology scenarios. We also note that places where the gravita-
tional Lagrangian exhibits

√
T or linear B contributions are

removed since they act as a total divergence term [67,68,81].

3 Reconstruction of bouncing cosmologies

In what follows, we consider the reconstruction procedure
for various bouncing cosmologies, namely

(I) Symmetric bounce;
(II) Superbounce;

(III) Oscillatory cosmology;
(IV) Matter bounce; and,
(V) Type I–IV and Little Rip cosmology.

This approach allows for the possibility to solve for the grav-
itational Lagrangian based on a desired cosmology, which
is either set through an analytical form of a(t) or H(t), or
through cosmological observations (as, for instance, carried
out in f (T ) gravity Ref. [84]). Either approach, however, has
its limitations.

In most scenarios, the behaviour of a(t) or H(t) would
be applicable, or known, only during specific periods.
This therefore limits the applicability of the reconstructed
Lagrangian as it would only suggest its possible approx-
imate form during certain periods [85]. For a more com-
plete picture, the reconstructed Lagrangian has to match the
behaviour over an extended number of cosmological epochs
either through a combination of different observations or
through reconstruction of unification of different epochs as
carried out, for instance, in Refs. [86,87].
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The reconstructed solutions obtained in this work are to
be treated in a similar fashion, namely that they are a repre-
sentation of the behaviour of the Lagrangian near the bounce
point. Thus, the solutions are not necessarily applicable at late
times. Nonetheless, they may provide a clearer picture of the
gravitational Lagrangian behaviour at early times which is
to be then matched with the overall behaviour of the grav-
itational Lagrangian throughout the whole universe history.
For this reason, as considered in Refs. [20,23,88] and other
related works, asymptotic forms of the solutions near the
bounce points shall be considered.

However, solving the resulting partial differential equa-
tions arising from the f (T, B) Lagrangian does not gener-
ate a general solution for the considered bouncing cosmolo-
gies. Thus, particular ansatz forms of the f (T, B) function
are instead considered. In particular, the following f (T, B)

model ansatz have been considered:

(i) g(T ) + h(B), (iv) Bg(T ),

(ii) Tg(B), (v) μ

(
T

T0

)σ (
B

B0

)γ

,

(iii) T + Bg(T ),

where μ, σ and γ are constants while T0 and B0 represent
the values of the torsion and boundary scalars at times when
the scale factor is taken to be unity.

The first additive separable model encompasses vastly dif-
ferent cosmological models, including TEGR (g = h = 0),

CDM (g + h = 2
), f (T ) gravity (h = 0), TEGR with a
modification (g �= T ) allowing for the g(T ) and h(B) func-
tions to truly represent the behaviour of the effective fluid
component, amongst others. The advantage of such models
is the fact that the Friedmann equation yields a decoupled
system of ordinary differential equations for the g(T ) and
h(B) functions making the system simpler to solve. Further
details are given in Appendix A.

Models (ii) and (iii) revolve on coupling scenarios which
act as modification terms to the TEGR Lagrangian. For the
second model ansatz, Frobenius and Green’s method were
repeatedly used to solve the resulting equations. An interest-
ing feature of model (iii) is that using the action in Eq. (11),
it follows that for no choice of potential free parameters
does TEGR appear as a subset of this model. In addition to
extensions of TEGR, it would also be interesting to develop
f (T, B) models that have this property and to test them
against observational behaviors and data. A detailed discus-
sion is provided in Appendix B.

On the other hand, model (iv), while being similar to model
(iii), is fundamentally different as the model cannot recover
TEGR and therefore is non-trivial. In this way, the resulting
Lagrangian would describe cosmological behaviours without
invoking TEGR. Despite this conceptual difference, models

(iii) and (iv) are indeed related as they only differ by a par-
ticular solution. Once the solution of model (iii) is obtained,
model (iv) is given to be

Model (iv) = Model (iii) − T + B ln T

6
. (23)

This minor difference has important implications when vac-
uum solutions are considered.

Lastly, the power-law ansatz model offers a simple
Lagrangian which encompasses various models depending
on the parameter choices of the free parameters μ, β and γ .
Some models include 
CDM (β = γ = 0), TEGR rescaling
(β = 1, γ = 0), and f (T ) power-law models (γ = 0) [49].
These models also appear in the study of Noether symmetry
[79]. A detailed explanation in determining the free parame-
ters according to the considered bouncing cosmology is given
in Appendix C.

Beyond these five ansatz models, it is remarked that any
bouncing reconstructed solution derived in any sub-class
of f (T, B) gravity, namely f (T ), f (B) and f (R) grav-
ity, are naturally solutions to the f (T, B) Friedmann equa-
tions. Nonetheless, the given ansatz choices allow for other
Lagrangian solutions, those which are not recovered in any
sub-case limit, to appear which may be of crucial importance
in other cosmological applications.

Faced with the diverse number of models which could
be reconstructed, a further constraint could be imposed in
order to be able to distinguish between models which could
be deemed as being physically viable. One such constraint
is by demanding that the gravitational Lagrangian must be
able to recover vacuum solutions such as Minkowski space-
time. Equivalently, this means that in the absence of mat-
ter, both T and B scalars are null. From the Friedmann
equations Eq. (18), this imposes the constraint f (0, 0) = 0
meaning that no cosmological constant emanates from the
Lagrangian.1 This condition shall be considered to discuss
the viability of the reconstructed solutions.

3.1 Model I: Symmetric bounce

The first bouncing cosmological model is the symmetric
bounce which was originally considered in Ref. [30] to gen-
erate a non-singular bouncing cosmology post an ekpyrotic
contraction phase. However, this bounce needs to be com-
bined with other cosmological behaviours, otherwise, it suf-
fers from issues with primordial modes not entering the Hub-
ble horizon [20,23,92].

1 Similar considerations appear in other gravitational theories, includ-
ing f (R) [89], f (T ) [90] and f (T, TG) [91].
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Table 1 A summary of the reconstructed Lagrangian solutions together
with the associated asymptotic forms close to the bounce in the case
of the symmetric bounce cosmology. The parameters x2 := 3T (1+ω)

2y ,

y := 12α
t2∗

, and z := B − y have been defined in order to sim-

plify the form of the solutions. Here, C1,2,3 are integration constants,
erf(x) is the error function and Lb

a(x) ≡ L[a, b, x] is Laguerre’s
function. The Green’s function G(z, s) and h(s) are as defined in
Appendix B

Model I: Symmetric bounce

f (T, B) Solutions Asymptotic form close to the bounce

g(T ) + h(B) g(T ) = T + T0�0A−3(1+ω)
[
e−x2 + √

πx erf(x)
]

g(T ) = T + T0�0A−3(1+ω)
(

1 + x2 − x4

6

)

h(B) = C1L
[
− 1

2 , 3
2 , 1

2

(
−1 + B

y

)]
h(B) = C1

(
17

14π
+ 11B

105πy + B2

70πy2

)

Tg(B) g(B) = C2

[
1 +

√
zπ
2y e

z
2y erf

(√
z

2y

)]
+ C3

√
ze

z
2y g(B) = D1

(
1 + z

y

)
+ D2

√
z

+1 + ∫
G(z, s)h(s) ds +1 − T0�0 A−3(1+ω) ln z

y

T + Bg(T ) g(T ) = T0�0 A−3(1+ω)

6T

[
e−x2 + x2 Ei(−x2)

]
g(T ) = T0�0 A−3(1+ω)

6T

μ
(

T
T0

)σ (
B
B0

)γ

No analytical solutions exist

This bouncing cosmology is characterised by a scale factor

a(t) = A exp

(
α
t2

t∗2

)
, (24)

where t∗ is some arbitrary time, with A > 0 and α > 0 being
positive constants. The Hubble parameter H , torsion scalar
T and boundary term B take the simple forms

H = 2αt

t∗2 , T = 24α2t2

t4∗
, B = 3T + 12α

t2∗
. (25)

Evidently, the bounce occurs at t = 0 with a preceding
contracting phase (t < 0) followed by an expansion phase
(t > 0). Moreover, the scale factor can be expressed in terms
of T as

a(T ) = A exp

(
T t2∗
24α

)
. (26)

For simplicity, by setting a(t0) = 1 for some time t0 > 0,
we obtain the expression

t0 =
√

− t2∗
α

ln A, (27)

which implies that the value of A has to be restricted within
the region 0 < A < 1. Consequently, we define the torsion
scalar T and the density parameter � at this time t0 as

T (t = t0) = T0, �(t = t0) = �0. (28)

This convention shall be applied for the rest of the models.
With these definitions, for the f (T, B) ansatz models

considered, the solutions are henceforth obtained and are

summarised in Table 1. Furthermore, given the nature of
application of bouncing cosmologies is mostly during times
close to the bounce point, the obtained Lagrangian solutions
can be further approximated by investigating their effective
functional forms close to the bounce. For the symmetric
bounce cosmology, close to the bounce we have |T | � 1
and |z| := |B − y| � 1.

Overall, the separable and the T + Bg(T ) models recover
an exact analytical form while the Tg(B) model only yields
analytical results in the absence of matter. Furthermore, the
power-law ansatz is unable to describe a symmetric bounce
cosmology as discussed in detail in Appendix C. Despite their
complicated forms, the asymptotic limits of the Lagrangian
reduce to simple expressions.

Starting with the additive model, at the lowest order, the
model effectively reduces to a TEGR rescaling with a cosmo-
logical constant. If higher order contributions are considered,
the Lagrangian behaves as an expanded power-series in T and
B. A similar Lagrangian appears in Ref. [93] where it has
been used in the context of the H0 tension. This quadratic
limiting order behaviour can be compared with the result-
ing f (R) asymptotic behaviour obtained in Refs. [20,88]
f (R) ∝ 144α−72R+α−2R2. As the latter has been derived
in the absence of matter sources, this solution is to be com-
pared with the h(B) solution. Through the use of the relations
R = −T + B = 2B−y

3 , the f (R) Lagrangian effectively
behaves as

Lgrav. ∝ 
0 + 
1B + 
2B
2, (29)

for constants 
0,1,2 leading to the observed quadratic
behaviour obtained here.

123



640 Page 8 of 20 Eur. Phys. J. C (2020) 80 :640

Finally, for the Tg(B)model case, the Lagrangian behaves
as

Lgrav. = D2
√
B − y − T0�0A−3(1+ω)

y
T ln(B − y)

∼ T ln(T ), (30)

while the Bg(T ) ansatz leads to an effective power-law
behaviour Lgrav. ∝ B

T ∝ 1 + y
T ∼ T−1.

When the vacuum constraint is considered, the resulting
conditions are summarised in Table 2. Overall, only the sep-
arable g(T ) + h(B) ansatz is able to satisfy this constraint
as the remaining models are unable to realise the condition
or yield a zero nonphysical gravitational Lagrangian.

3.2 Model II: Superbounce

Superbounce cosmologies, originally considered in [25], are
used to construct a universe which collapses and rebirths
through a Big Bang without a singularity [26]. This type of
cosmology is described by a power-law scale factor

a(t) =
(
ts − t

t0

) 2
c2

, (31)

where c >
√

6 is a constant, ts stands for the time at which
the bounce occurs, and t0 > 0 is an arbitrary time such that
when t = ts + t0, the scale factor has a unitary value. For this
model, the Hubble parameter H turns out to be

H = − 2

c2

(
1

ts − t

)
, (32)

which identifies the bounce to occur at t = ts . Observe
that the superbounce is characterised by a Hubble parameter
which changes signature pre- and post-bounce but becomes
singular at the bounce point.

The model can be expressed more simply by a coordinate
time shift, t∗ := t − ts , leading the bounce to occur at t∗ = 0.
By further defining α := 2

c2 , the expressions for the torsion
scalar T and boundary term B are given to be

T = 6α2

t2∗
, B = T

(
3α − 1

α

)
, (33)

while the scale factor is simply expressed in terms of the
torsion scalar as

a(T ) =
(
T0

T

) α
2

. (34)

The resulting solutions for the considered f (T, B) gravita-
tional ansatz together are listed in Table 3. For this particular

cosmology, all ansatz choices generate a simple analytical
solution given by a power-law or logarithmic contribution.
Thus, the asymptotic form of the Lagrangian close to the
bounce remains effectively unchanged.

Furthermore, for the separable additive ansatz, we recover
the g(T ) solution obtained in Refs. [28,81,94–96] and as
reported from Noether symmetry [97–103]. On the other
hand, the h(B) solution is also reported in Refs. [81,104].
Finally, the power-law model ansatz solution also appears
from Noether symmetry [79].

When vacuum solutions are considered, it is observed that
most models trivially satisfy the constraint with the excep-
tion of the Bg(T ) and T + Bg(T ) models which require a
further restriction on the parameter x , as shown in Table 4.
Nonetheless, this shows that f (T, B) gravity serves as a suit-
able gravitational model capable of describing a superbounce
cosmology while retaining vacuum solutions.

3.3 Model III: Oscillatory bouncing cosmology

The next model is given by an oscillatory scale factor in the
form

a(t) = A sin2
(
Ct

t∗

)
, (35)

where A and C are positive constants, and t∗ is some ref-
erence time, which for sake of convenience is chosen to be
t∗ > 0. This model represents the behaviour of a cyclic uni-
verse [29,105], which treats the universe as a continuous
sequence of contractions and expansions [14,19,106,107].
For this particular choice of scale factor, two different bounc-
ing behaviours are encountered.

The first is a singularity which is experienced throughout
each cycle when the scale factor becomes zero while the Hub-
ble parameter becomes singular. This bounce, which occurs
when t = nπ t∗

C for n ∈ Z, corresponds to a Big Crunch/Big
Bang singularity, which could be avoided by constructing a
non-zero scale factor or through other mechanisms [14,19].

The second bounce occurs when the universe reaches its
maximal size at t = (2n+1)π t∗

2C for n ∈ Z leading to a cos-
mological turnaround. This represents the instance when the
universe stops expanding and starts to contract towards the
Big Crunch singularity [108].

For this scale factor, the Hubble parameter is given by

H = 2C

t∗
cot

(
Ct

t∗

)
, (36)

from which, the forms of T and B result into

T = 24C2

t2∗
cot2

(
Ct

t∗

)
, B = 5T

2
− 12C2

t2∗
. (37)
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Table 2 A summary of the
necessary parameter constraints
which need to be satisfied if the
reconstructed symmetric bounce
cosmological f (T, B) models
are to realise the vacuum
constraint. Overall, only the
additive ansatz is able to satisfy
this constraint while also
realising the cosmology

Model I: Symmetric bounce

f (T, B) Vacuum solutions constraints

g(T ) + h(B) T0�0A−3(1+ω) = − 17C1
14π

Tg(B) Not possible

Bg(T ) Not possible

T + Bg(T ) �0 = 0 which implies Lgrav. = 0 and therefore nonphysical

Table 3 A summary of the
reconstructed Lagrangian
solutions for the superbounce
cosmology. Here, x := 3α(1+ω)

2 ,
z := √

3(α − 3)(3α − 1), and
q := 4 + 2x(2x + 3α − 5) have
been defined for simplicity,
while C4,5,6 represent constants
of integration

Model II: Superbounce

f (T, B) Solutions

g(T ) + h(B) x �= 1
2 g(T ) = T + T0�0

1−2x

(
T
T0

)x

x = 1
2 g(T ) = T − �0

√
T0 T

2 ln T

h(B) = C4B
1−3α

2

Tg(B) g(B) = 1 + 2(1−3α)�0
q

(
B
B0

)x−1 + C5B
1−3α−z

4 + C6B
1−3α+z

4

T + Bg(T ) x �= 1 g(T ) = �0
6(1−x)

(
T
T0

)x−1

x = 1 g(T ) = −�0
6 ln T

μ
(

T
T0

)σ (
B
B0

)γ

For �0 �= 0 and σ �= 0, σ + γ = x = 1, μ = T0(1−�0)
σ

Table 4 The summarised
constraints whenever the
reconstructed superbounce
f (T, B) Lagrangian is able to
realise vacuum solutions.
Overall, all models are able to
generate such solutions while
also hosting the superbounce
cosmology

Model II: Superbounce

f (T, B) Vacuum solutions constraints

g(T ) + h(B) Always satisfied

Tg(B) Always satisfied

Bg(T ) 0 < x < 1 �0 = 0

x ≥ 1 Always satisfied

T + Bg(T ) 0 < x < 1�0 = 0 which implies Lgrav. = 0 and therefore nonphysical

x ≥ 1 Always satisfied

μ
(

T
T0

)σ (
B
B0

)γ

Always satisfied

The definition of the scale factor could therefore be expressed
in terms of T as

a(T ) = A

1 + T t2∗
24C2

. (38)

Given the nature of the scale factor as a model to describe
the whole universe’s expansion history, one may consider the
current time t0 > 0 defined through a(t0) = 1 as means to
constraint the parameters. This constraint is given by

1 = A sin2
(
Ct0
t∗

)
, (39)

which, by definition of the sinusoidal function, leads to the
conclusion that 0 < A < 1, which shall be assumed in what

follows. A summary of the obtained Lagrangian solutions is
listed in Table 5 while the asymptotic behaviour of the model
close to the bounce points (i.e. near the Big Crunch/Big Bang
singularity and at the cosmological turnaround) appear in
Table 6.

For the considered model ansatz choices, only the addi-
tive and boundary rescaling models yield an analytical solu-
tion. In particular, the additive g(T ) solution also appears
in Ref. [67]. Furthermore, it is observed that the power-law
ansatz model is unable to describe an oscillatory solution.
In the Tg(B) model ansatz, complex arguments appear in
the hypergeometric function of the homogeneous solution,
which may yield a complex Lagrangian. For the range of
values of −∞ < − z

2y < 0, it was observed that the hyperge-
ometric function is always real. Nonetheless, in the instance
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Table 5 A summary of the Lagrangian solutions for the considered
model ansatz in the case of an oscillatory bouncing cosmology described

by a(t) ∝ sin2
(
Ct
t∗

)
for constants C, t∗ > 0. For sake of simplicity, in

order to simplify the resulting expressions, the parameters x := − T
2y ,

y := 12C2

t2∗
and z := 2

5 (B + y) have been defined. Here C7,8,9 are inte-

gration constants while 2F1[a, b; c; d] represents the hypergeometric
function which is undefined for c = n ∈ Z

− ∪ {0} and β(x; a, b) is
the incomplete beta function. For this cosmology, the Green’s function
G(z, s) which appears in the Tg(B) model as defined in Eq. (B4) has

a(s) = 4s
5

(
y + s

2

)
while f (s) = 1 − T0�0 A−3(1+ω)

s

(
1 + s

2y

)3(1+ω)

Model III: Oscillatory bouncing cosmology

f (T, B) Solutions

g(T ) + h(B) g(T ) = T + T0�0A−3(1+ω)
[

1
5 x

3
2F1

(
5
2 ,−3ω; 7

2 ; x
)

− x2
2F1

(
3
2 ,−3ω; 5

2 ; x
)

+3x 2F1
( 1

2 ,−3ω; 3
2 ; x) + 2F1

(− 1
2 ,−3ω; 1

2 ; x)]

h(B) = C7

[√
B + y

(
3B2 + 288By + 40y2

) − B

80
√

5y
7
2

arctan
(√

B+y
5y

)]

Tg(B) g(z) = C8 2F1

(
5−i

√
15

4 , 5+i
√

15
4 ; 1

2 ; − z
2y

)
+ C9

√
z

2y 2F1

(
7−i

√
15

4 , 7+i
√

15
4 ; 3

2 ; − z
2y

)
+ ∫

G(z, s) f (s) ds

T + Bg(T ) For n ∈ N, g(T ) = − T0�0 A−3(1+ω)

12y ×
⎧
⎪⎪⎨

⎪⎪⎩

−(1 − x)1+3ω
[
1 − (1+3ω)x2−(5+9ω)x

2+9ω(1+ω)

]
− x

2+9ω(1+ω)
+ 3(−1)3ω(1 + ω) β

( 1
x ; −3ω, 1 + 3ω

)
ω �= n

3 ,

(n + 3) ln T +
n+3∑

k=0
k �=1

(n+3
k

) 1
k−1

(
T
2y

)k−1
ω = n

3

μ
(

T
T0

)σ (
B
B0

)γ

No analytical solutions exist

where this is not the case, a simple resolution would be to
take C8,9 = 0.

When asymptotic forms are considered, starting with the
behaviour close to the cosmological turnaround (i.e. H(t) →
0), we obtain the following. In the additive case, the g(T )

leading order behaviour is a rescaling of TEGR with a cos-
mological constant. If higher order terms are introduced, a
power-law series solution is observed. A similar behaviour
is observed in f (R) gravity but for an oscillatory scale fac-
tor a(t) ∝ sin t [109]. Observe that the higher-order tor-
sional contributions have indices p ≥ 2, which is expected as
such models yield a decelerating cosmology corresponding
to the behaviour encountered for a cosmological turnaround
[49,52,61,110–114]. Indeed, investigating the effective EoS,
ωeff, during these times yields diverging, positive values. This
is also true for the remaining model ansatz solutions. On the
other hand, the h(B) lowest order contribution is of order√
B.
Lastly, for the Tg(B) and T +Bg(T ) model, the resulting

limiting behaviours are similar to the ones obtained in the
symmetric bounce cosmology being Lgrav. ∼ T ln B and
Lgrav. ∝ B

T respectively.
When the Big Crunch/Bang singularity is considered,

the following is observed. In the additive case, Lgrav. ∼
T 3(1+ω) + B

5
2 . Clearly, there is no TEGR term making the

model distinguishable from standard power-law models. In
fact, this yields an accelerating cosmology, which differs
from the turnaround bounce Lagrangian. Here, the torsion
scalar index 3(1 + ω) ≥ 3 is positive and due to the absence

of the TEGR contribution, it does not result in a decelerat-
ing behaviour but an accelerating one [97,98,102]. The latter
behaviour is expected for times close to this singularity. Sim-
ilar power-law behaviours are observed for the matter depen-
dent component of the Lagrangian in the remaining ansatz
models.

Moving on to the vacuum constraint, as shown in Table 7,
only the additive and Tg(B) models are able to satisfy the
constraint while still hosting the oscillatory cosmological
behaviour in the presence of matter. This is apparent from the
asymptotic behaviour of the models close to the cosmologi-
cal turnaround as the latter models contain contributions of
T and B with positive indices. In the particular Bg(T ) case,
the model can host vacuum solutions only in the absence of
matter fluids.

3.4 Model IV: Matter bounce

The next model is one which derives from loop quantum
cosmology (LQC) and generates the so called matter bounce
cosmology [115,116]. This type of bouncing cosmology has
been investigated during the early stages of the universe and
has shown the ability to produce a scale-invariant (or nearly
scale-invariant) power spectrum depending on the matter
fluid considered [30,92,116–118]. The scale factor which
describes this type of bouncing cosmology is given by

a(t) = A

(
3

2
ρct

2 + 1

) 1
3

, (40)
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Table 6 A summary of the asymptotic forms of the reconstructed solu-
tions for the oscillatory bouncing cosmology described by a(t) ∝
sin2

(
Ct
t∗

)
for constants C, t∗ > 0. As this cosmology exhibits two

distinct bouncing behaviours, the Big Bang/Crunch singularity and the
cosmological turnaround, the respective asymptotic forms close to each
bounce are obtained. Here, z := 2

5 (B + y)

Model III: Oscillatory bounce

f (T, B) Asymptotic form close to the bounce as H(t) → 0 Asymptotic form close to the bounce as H(t) → ∞

g(T ) + h(B) g(T ) = T + T0�0A−3(1+ω)
[
1 − 3(1+ω)T

2y

]
g(T ) = T + T0�0 A−3(1+ω)

5+6ω

(
T
2y

)3(1+ω)

h(B) =
(

1
400y3 − 245y2

) √
B + y C7 h(B) = 3B

5
2 C7

Tg(B) g(z) = C8

(
1 − 5z

2y

)
+ C9

√
z

2y g(z) = z− 5
4

[
C8 sin

(√
15
4 ln z

)

+1 + 5T0�0 A−3(1+ω)

2y ln z +C9 cos
(√

15
4 ln z

)]
+ 1 − 5�0T0 A−3(1+ω)

2y(18ω2+39ω+23)
z2+3ω

T + Bg(T ) g(T ) = T0�0 A−3(1+ω)

6T g(T ) = − T0�0 A−3(1+ω)

12y
1+3ω

2+9ω+9ω2

(
T
2y

)2+3ω

Table 7 A summary of the
conditions necessary for the
reconstructed oscillatory
cosmology Lagrangians to be
able to recover vacuum
solutions. Only the additive and
Tg(B) models are capable of
satisfying this constraint

Model III: Oscillatory bouncing cosmology

f (T, B) Vacuum solutions constraints

g(T ) + h(B) Holds for T0�0A−3(1+ω) = −40C7y
5
2

Tg(B) Asymptotic form indicates that the condition is always satisfied

Bg(T ) �0 = 0 which leads to Lgrav. = −T + B ln T
6

T + Bg(T ) �0 = 0 which implies Lgrav. = 0 and therefore nonphysical

Table 8 A summary of the reconstructed Lagrangian solutions as well
as their asymptotic forms close to the bounce point for the case of a mat-

ter bounce cosmology. For simplicity, the variables x := 1 −
√

1 − T
ρc

,

y := 12ρc
B and z := B

6ρc
have been defined. Here, C10,11,12 are integra-

tion constants and n ∈ N, while the Green’s function G(z, s) as defined
in Eq. (B4) appearing in the Tg(B) model has a(s) = 2s2(1 − s) while

f (s) = 1 − T0�0 A−3(1+ω)sω

4ρc(1−s)

Model IV: Matter bounce

f (T, B) Solutions Asymptotic form close to the bounce

g(T ) + h(B) g(T ) = T0�0A−3(1+ω)
√

1 − x
2

( x
2 2F1

[ 1
2 , 1

2 − ω, 3
2 ; x

2

]
g(T ) = T0�0A−3(1+ω)

[
1 + (1+ω)

2 x

+ 2F1
[− 1

2 ,− 1
2 − ω; 1

2 ; x
2

]) + T − (1+ω)(4+ω)
24 x2

]
+ T

h(B) = (B−6ρc)
3
2

9
√
Bρc

C10 h(B) = (B−6ρ)3/2

9
√

6ρ3/2 C10

Tg(B) g(z) = C11g+(z) + C12g−(z) + ∫
G(z, s) f (s) where The homogeneous solution takes a

complicated form. Only the asymp-
totic form of the particular solu-
tion is given: gpart.(z) = 1 +
T0�0 A−3(1+ω)

4ρc
[2 + z ln (z − 1)]

g±(z) = z
−1±√

7i
4 2F1

[−1±√
7i

4 , 3±√
7i

4 ; 1 ±
√

7i
2 ; z

]

T + Bg(T ) ω �= ng(T ) = �0T0 A−3(1+ω)

24ρc

(
1 − x

2

)ω ( 2
x − 1

ω
− 1 g(T ) = �0T0A−3(1+ω)

12ρc

1

x

+ (
1 + 1

ω

) (
x

x−2

)ω

2F1
[−ω,−ω; 1 − ω; 2

x

])

ω = 0g(T ) = �0T0
24A3ρc

[ 2
x − ln

( 2
x − 1

)]

ω ≥ 1g(T ) = �0T0 A−3(1+ω)

12

[ 1
x + ln x + 1

2 (1 − ω) (x − ln x)

+
ω−1∑

k=2

(
ω−1
k

) (− x
2

)k (
1

x(1−k) + 1
k

)]

μ
(

T
T0

)σ (
B
B0

)γ

No analytical solution exists
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where A > 0 is a constant and 0 < ρc � 1 is a critical
density which value stems from LQC. Here, H , T and B
take the following forms,

H = 2ρct

3ρct2 + 2
, T = 24ρ2

c t
2

(3ρct2 + 2)2

= 2B

3

(
1 − B

6ρc

)
,

B = 12ρc

3ρct2 + 2
= 3T

1 −
√

1 − T
ρc

, (41)

and one can clearly observe that a non-singular bounce occurs
at t = 0. The scale factor could therefore be expressed in
terms of T as

a(T ) = A

[
2ρc

T

(

1 −
√

1 − T

ρc

)] 1
3

. (42)

Defining once more a time t0 where a(t0) = 1 leads to

t2
0 = 2

3ρc

(
1

A3 − 1

)
, (43)

which, since ρc > 0 imposes the condition A < 1. The
reconstructed Lagrangians as well as their asymptotic forms
close to the bounce (meaning |T | � 1 and |B − 6ρc| � 1)
are summarised in Table 8.

Starting off with the additive models, the g(T ) recon-
structed solution matches with the one obtained in Ref. [119]
and with the dust case solution (ω = 0), which stems from
LQC theory, as found in Ref. [120]. It is also noted that the
h(B) asymptotic result is similar to the one obtained in uni-
modular f (R) gravity [23]. For the Tg(B) model, only the
homogeneous solutions are analytically obtained while the
matter dependent solution can be only expressed in terms
of an integral. However, contrary to the scenario observed
in the oscillatory case, the hypergeometric functions for the
given domain of 0 < z ≤ 1 are indeed complex. To avoid
the presence of a complex Lagrangian, C11,12 are set to be
zero. Next, the T + Bg(T ) solution depends on the value of
the EoS and can take on simple forms if particular values are
considered. Finally, no analytic solutions have been found
for the power-law ansatz.

Close to the bounce, the Lagrangian takes different asymp-
totic forms depending on the model. For the additive case,
the Lagrangian behaves as 
CDM with modifications while
for the Tg(B) model, the Lagrangian behaves as rescaled
TEGR with a logarithmic correction. On the other hand, the
T + Bg(T ) model behaves as Lgrav. ∝ B

1−
√

1− T
ρc

∼ B2

T .

Once the vacuum constraint is considered, only the Tg(B)

and Bg(T ) models satisfy the constraint as the remain-
ing models either diverge or lead to a nonphysical zero

Lagrangian. Starting with the former, the model does not
require any further constraints to satisfy the vacuum con-
straint. In the latter Bg(T ) ansatz model case, however, the
vacuum constraint is only possible when �0 = 0 and thus
only generates the cosmology in the absence of other matter
components if the condition is imposed. As the matter bounce
cosmology is naturally constructed in the presence of dust
matter, the viability of the model is questionable (Table 9).

3.5 Model V: Type I–IV (past/future) singularities and little
rip cosmologies

The final model is an exponential scale factor of the form

a(t) = A exp

[
f0

α + 1
(t − ts)

α+1
]

, (44)

where A > 0 is a dimensionless constant such that a(ts) = A
at the bouncing time ts , α �= −1, 0, 1 is a constant,2 and f0 >

0 is a constant with time dimension [T]−(1+α). For times
t > ts , the bounce point is referred to as a past singularity
while for t < ts , it is referred to as a future singularity.

For simplicity, we shift the bouncing time through a redef-
inition of the time coordinate t∗ = t − ts . Furthermore, it is
assumed that the bounce represents a past singularity which
now occurs at t∗ = 0.3 In this way, the Hubble parameter H ,
the torsion scalar T and the boundary term B are given by

H = f0t∗α, T = 6 f0
2t∗2α, B = 3T + 6α f0

(
T

6 f02

) α−1
2α

.

(45)

Setting t∗ = t0 to be some time when the scale factor is
unity yields the constraint

tα+1
0 = −α + 1

f0
ln A, (46)

which imposes a constraint on the parameter A depending
on the magnitude of α, namely 0 < A < 1 for α > −1 and
A > 1 for α < −1. Ultimately, the scale factor can be solely
expressed in terms of T as

a(T ) = A exp

[
f0t

α+1
0

α + 1

(
T

T0

) α+1
2α

]

. (47)

2 The restrictions correspond to superbounce (α = −1) and symmetric
bounce (α = 1) which have been considered in previous sections. de
Sitter cosmology appears for α = 0 which case is not investigated in
this work as the relevant analysis has been carried out in Refs. [81,104]
for the case of f (T, B) gravity.
3 The analysis can be similarly repeated in the case of a future singu-
larity. This can be achieved by setting α = 2n+1

2m+1 where n, m ∈ Z,
as highlighted in Refs. [2,121–123], which ensures all cosmological
parameters are well-defined.

123



Eur. Phys. J. C (2020) 80 :640 Page 13 of 20 640

Table 9 A summary of the
vacuum solution constraints for
the case of matter bounce
cosmology reconstruction.
Overall, only the Tg(B) and
Bg(T ) model obey the
constraint

Model IV: Matter bounce

f (T, B) Vacuum solutions constraints

g(T ) + h(B) �0 = 0 and C10 = 0 which implies Lgrav. = 0 and therefore nonphysical

Tg(B) According to asymptotic behaviour, it appears to be always satisfied

Bg(T ) �0 − 0 which implies Lgrav. = −T + B ln T
6

T + Bg(T ) �0 = 0 which implies Lgrav. = 0 and therefore nonphysical

Depending on the choice of the parameter α, various types
of bouncing cosmologies can be constructed, which are pri-
marily classified as follows4:

1. α < −1 (Type I/Big Rip Singularities): Characterised
by a diverging scale factor and Hubble parameter at
the singularity (which occurs at a finite time), these
type of singularities describe an accelerated expansion
which causes a dissociation of gravitationally bound
structures [131], which can be avoided through the use
of dynamical fluids [132,133] or due to quantum effects
[125,126,134];

2. α > 0 (Little Rip Cosmologies): Contrary to Type I
singularities, a(t) and H(t) diverge at infinite time.
Nonetheless, these cosmologies still cause a dissociation
of structure [135];

3. 0 < α < 1 (Type II/Sudden Singularities): Characterised
by a diverging pressure (ä(ts) → −∞) [136], such uni-
verses experience a strong deceleration and had been
confronted against cosmological observations [137,138],
and have been investigated in the context of closed uni-
verses [139] and the resulting cosmology post the singu-
larity [137,140];

4. −1 < α < 0 (Type III/Big Freeze Singularity) [141]:
This singularity appears when the first and higher deriva-
tives of the scale factor diverge at the singularity [129,
142], and has been studied in the context for inflation due
its decreasing comoving horizon close to the singularity
[142,143];

5. α > 1 (Type IV) [126]: Here, only the higher order
derivatives of the Hubble parameter diverge i.e. H (n)(ts) →
∞ for some n ≥ 2. For such cases, the universe contin-
ues to evolve smoothly past the singularity, avoiding the
need of quantum corrections [121,123] and allows for a
graceful exit mechanism to inflation [122]. However, it
generates a variant scalar power spectrum which may be
very red tilted (which could be addressed through quan-
tum considerations) [123,130].

4 For a general overview of the discussed singularities, see Refs. [108,
124–130].

Based on the above considerations, the corresponding
reconstructed solutions as well as the corresponding asymp-
totic behaviours close to the bounce are derived and sum-
marised in Table 10. It is remarked that only a few analyti-
cal solutions are obtained in this case. This stems from the
relationship between T and B, Eq. (45), which is generally
not invertible.5 Furthermore, the solutions are not exhaustive
due to the nature of the confluent hypergeometric function
of the first kind. For specific choices of α when the function
becomes undefined, one has to solve the resulting ODE on a
case by case basis, whenever this is possible.

Looking instead at the asymptotic forms of the resulting
Lagrangian behaviour, the form changes according to the
nature of α. It is noted that for α > −1, the Lagrangian
effectively behaves as a power-law model, with Lgrav. ∼

0 +T

α+1
2α , for some constant 
0, and Lgrav. ∼ B

T + BT
1−α
2α

for the additive and T + Bg(T ) models respectively. In par-
ticular, for the additive g(T ) solution, it is observed that
the asymptotic Type III behaviour obtained in Ref. [144]
is obtained, which also matches with the requirement that
the torsion scalar exponent has to be negative [145]. On
the other hand, when α < −1 (i.e. Type I), the mod-

els effectively behave as Lgrav. ∼ T− α+1
2α exp

(
T

α+1
2α

)
and

Lgrav. ∼ BT− 3α+1
2α exp

(
T

α+1
2α

)
.

Lastly, the vacuum constraints are summarised in Table 11.
It is observed that the Type III singularity naturally satisfies
the vacuum constraint. For the additive ansatz in particular,
despite that the analytical homogeneous solutions for h(B)

are unknown, the corresponding integration constants can be
set to zero allowing for the vacuum constraint to be satisfied.
This, however, would reduce the model to f (T ) gravity. For
the remaining cosmologies, only the additive model in the
presence of matter may satisfy the constraint provided that
h(0) �= 0 as otherwise, the Lagrangian becomes identically
null making the model unrealistic.

5 See Appendix A for further details regarding the additive ansatz case.
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Table 10 A summary of the Lagrangian analytical solutions as well
as their corresponding asymptotic forms close to the bounce for the
Hubble parameter H(t) ∝ tα , which describes Type I–IV singularities
as well as Little Rip cosmologies. Here, we have defined the parameter

x := 3 f0t0α+1(1 + ω)
(

T
T0

) α+1
2α

while 1F1[a, b; c] represents the con-

fluent hypergeometric function of the first kind which is undefined for
b ∈ Z

− ∪ {0}

Model V: Type I–IV (past/future) singularities and little rip cosmologies

f (T, B) Solutions Asymptotic form close to the bounce

f (T, B) Solutions Asymptotic form close to the bounce

g(T ) + h(B) g(T ) = T + T0�0A−3(1+ω)
1F1

[
− α

1+α
, 1

1+α
; − x

1+α

]
α > −1g(T ) = T + T0�0A−3(1+ω)

(
1 + α

1+α
x
)

α < −1g(T ) = T + T0�0 A−3(1+ω)

x exp
(
− x

1+α

)

No analytical solution for h(B)

Tg(B) No analytical solution for g(B)

T + Bg(T ) g(T ) = T0�0 A−3(1+ω)

6T 1F1

[
− 2α

1+α
, 1−α

1+α
; − x

1+α

]
α > −1g(T ) = T0�0 A−3(1+ω)

6T

(
1 − 2α

α2−1
x
)

α < −1g(T ) = T0�0 A−3(1+ω)α
3T x exp

(
− x

1+α

)

μ
(

T
T0

)σ (
B
B0

)γ

No analytical solution exists

Table 11 A summary of the Lagrangian vacuum constraints for the dif-
ferent possible α parameter choices for the scale factor Eq. (44), which
yields Type I–IV singularity and Little Rip cosmology scenarios

Model V: Type I–IV singularities

f (T, B) Vacuum solutions constraints

g(T ) + h(B) α > 0, α < −1 T0�0A−3(1+ω) = −h(0)

−1 < α < 0 h(0) = 0

Bg(T ) α > 1, α < −1 �0 = 0

0 < α < 1 Not possible

−1 < α < 0 Always satisfied

T + Bg(T ) α > 0, α < −1 �0 = 0 but Lgrav. = 0

−1 < α < 0 Always satisfied

4 Conclusion

In recent years, bouncing cosmologies have become attrac-
tive alternative to the inflationary paradigm, especially in the
absence of initial conditions in the cosmic evolution of the
Universe, as well as the possible absence of an initial singu-
larity in the Big Bang model of cosmic expansion. Here,
we have investigated the possibility of reproducing some
important bouncing cosmologies within the framework of
TG. In this framework, gravity is expressed as a torsional
rather than curvature manifestation. As a by-product, theo-
ries constructed in this landscape are naturally lower-order
meaning that the dynamical equations of GR are produced
with a lower-order Lagrangian as evidenced by the appear-
ance of a boundary term in Eq. (9).

Modified gravity is an ideal platform on which to produce
new cosmological models in which longstanding cosmologi-
cal problems are alleviated or entirely eliminated. One of the

most popular of these models is f (R̊) gravity which extends
GR with fourth-order contributions. In this work, we have
explored the TG analog of this model, namely f (T, B) grav-
ity, which is a much broader framework to construct cos-
mological models due to the decoupling of the second-order
torsion scalar and fourth-order boundary term. While exten-
sions to GR [41–43] have been heavily studied, their TG ana-
log have not, and reveal interesting phenomenology beyond
standard gravity.

Our approach has been to reconstruct prototype Lagrangians
against well-known bouncing cosmologies in a flat FLRW
background. These models may provide interesting behaviour
to study the early Universe within TG. On the other hand, it is
imperative that these permit Minkowski and Schwarzschild
solutions to be physically viable. This is achieved by demand-
ing that the vacuum limit (vanishing torsion scalar and bound-
ary term) produce vacuum solutions. This vacuum condition
is crucial to constructing physically admissible theories. In
the following, we summarize the core results of this work
and the role that this vacuum conditions plays in restricting
these models.

Firstly, we considered the symmetric bouncing cosmol-
ogy which is free of singularities and where the scale fac-
tor decreases to a (non-zero) minimum totally avoiding a
Big Bang-like singularity. This is produced by a scale factor
that decreases to this minimum and then increases after the
minimum is obtained. This model produces a linear Hub-
ble parameter when viewed as a function of cosmic time.
This is shown in Fig. 1 where the energy density (pressure)
approach the nonzero minimum (maximum) free of singular-
ities. Despite being overly simplified, this represents the idea
of bouncing cosmologies in a concrete way. By taking several
prototype forms of the Lagrangian, the corresponding action
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invariant is formed in terms of the associated torsion scalar
and boundary terms. As shown in Table 1, analytic expres-
sions for the gravitational Lagrangian are difficult to obtain
and only the additive ansatz realises the vacuum constraint.

We also explore the behavior of power-law, superbounce
solutions. However, these solutions contain a singularity at
their Big Bang/Crunch point in which the scale factor van-
ishes only to immediately re-expand, which also produces a
singularity in the Hubble parameter at those points. This may
be alleviated in future models by setting a minimal value for
the scale factor at these times. Nevertheless, analytic solu-
tions for this model are obtained in Table 3 which are simpler
in form and mostly obey the vacuum condition.

Similarly, this occurrence also infiltrates the oscillating
bouncing solutions which can be found in Table 5. Oscil-
lating bouncing solutions are another representative exam-
ple of bouncing cosmologies. Moreover, these solutions are
more intricate in which they occasionally violate the vacuum
condition. Next, we investigate the case of matter bounce
cosmology which is singularity-free. This could be consid-
ered a modified power-law with more complex and realistic
characteristics. Naturally, in this case the solutions are more
complex as evidenced in Table 8 which generally does not
observe the vacuum conditions.

Finally, we explore the case of finite time Type I–IV sin-
gularities and Little Rip cosmologies. Here, solutions are
difficult to obtain and, in the case of Type III singularities,
they mostly observe the vacuum condition. The analytical
forms are shown in Table 10.

This exploration of bouncing solutions within the f (T, B)

gravity framework may open the door to future work on early
Universe cosmology stemming from this scenario of gravity.
In this work, we have investigated the potential model that
may emerge for bouncing solutions at the level of background
cosmology. To further restrict physically relevant models, we
need to study the early Universe perturbations of each of
these models and to investigate their impact on the cosmic
microwave background. This would be interesting and may
illuminate particular features of TG.
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Appendix A: f (T, B) = g(T ) + h(B)

In the case of separable additive models, similar to other
works in reconstruction Refs. [81,104,146], the Friedmann
equation Eq. (18) yields a separable partial differential equa-
tion which can yield solutions provided that there exists in
invertable relation between the coordinate time t , the torsion
scalar T and the boundary term B. This means that either
the matter sector can be described either through T or B,
or that Eq. (18) can be solely expressed in terms of either
variable. The latter case is not considered since this would
result in a complicated expression which is difficult to solve
analytically. Furthermore, this means that we would be inves-
tigating the case where f (T, B) = f (T ) = f (B) which is
not of interest here. Therefore, we only investigate the former
case. Without loss of generality, it shall be assumed that the
matter sector is sourced by the g(T ) function. Notwithstand-
ing, if modifications to TEGR were to be considered, mean-
ing g(T ) = 0, h(B) would act as the source for describing
the resulting cosmological behaviour. Such considerations
have been considered in Refs. [80,81,104] and thus are not
explored in further detail here.

For this ansatz, Eq. (18) gives the following system of
separable equations:

g − 2TgT + T = T0�0a(T )−3(1+ω), (A1)

h − BhB + 6H ḂhBB = 0. (A2)

The solvability of the above system ultimately depends on
whether the scale factor can be expressed in terms of the
torsion scalar and whether the coefficient ofhBB can be solely
expressed in terms of B.

As an illustrative working example, in the case of an oscil-
latory scale factor, the system reduces to

g − 2TgT + T = T0�0A
−3(1+ω)

(
1 + t∗T

24C2

)3(1+ω)

,

(A3)

h − BhB − 2

5
(B + y)(B + 6y)hBB = 0, (A4)

which yields the solutions as summarised in Table 5.
However, in the case of Type I–IV singularities, the h(B)

solution cannot be obtained since the hBB coefficient, which
is given to be

B − 3T

α
[(α − 1)(B − 3T ) + 6T ] , (A5)
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cannot be expressed solely in terms of B. This stems from
the relation between the B and T scalars Eq. (45)

B = 3T + 6α f0

(
T

6 f02

) α−1
2α

, (A6)

which cannot be inverted in general. In principle, one may
able to solve h(B) for certain special cases where the rela-
tion becomes invertable, for example α = − 1

3 . However, no
analytical solution was found for this particular case.

Appendix B: f (T, B) = Tg(B)

For these ansatz models, for most of the bouncing models
which have been investigated, Frobenius method was applied
to obtain the homogeneous solutions of the resulting differ-
ential equation, which is generally expressed in the form

α(z)g′′(z) + β(z)g′(z) + γ (z)g(z) = f (z), (B1)

for some functions α, β, γ, and f (z). Namely, this method
assumes a solution of the form

ghom.(z) =
∞∑

n=0

Dnz
n+r , (B2)

where Dn are coefficients and r is a constant which is deter-
mined from the resulting differential equation. Once the
homogeneous solutions are obtained, the particular solution
could then be derived through the use of the Wronskian and
Green’s function as follows [147]: if g1,2 represent the homo-
geneous solutions, the particular solution is obtained from

gpart.(z) =
∫

G(z, s) f (s) ds, (B3)

where G(z, s) is the Green’s function defined to be

G(z, s) = g2(z)g1(s) − g1(z)g2(s)

α(s)W (s)
(B4)

with W (s) = g′
2g1 − g′

1g2 being the Wronskian.
As an example, we illustrate the procedure for the sym-

metric bouncing model. In this case, the Friedmann equation
reduces to

g(z) + (z − y)g′(z) − 2yzg′′(z)

= 1 − 3T0�0A−3(1+ω)

z
exp

(
− (1 + ω)z

y

)
, (B5)

where z = B − y and y = 12α
t2∗

. Solving using Frobenius’

approach yields two independent solutions for r = 0 and

r = 1
2 , which are

g1(z) = D1

∞∑

n=0

zn

(2n − 1)!! yn

= D1

[
1 +

√
zπ

2y
e

z
2y erf

(√
z

2y

)]
,

g2(z) = D2
√
z

∞∑

n=0

zn

(2n)!! yn = D2
√
ze

z
2y , (B6)

where D1,2 are constants determined by boundary condi-
tions. The particular solution turns out to be

gpart.(z) = 1 +
z∫
G(z, s)h(s) ds, (B7)

with h(s) = − 3T0�0A−3(1+ω)

s exp
(
− (1+ω)s

2y

)
and α(s) =

−2sz, for which, the general integral solution is not obtained
for arbitrary values of ω. Nonetheless, the integral can be
evaluated close to the bounce where |z| � 1, which yields

gpart.(z) = 1 − 2R

y
− R(y + z) ln z

y2 − R(1 + ω)z

2y2 + O(z2)

≈ 1 − R ln z

y
(B8)

where R := 3T0�0A−3(1+ω).

Appendix C: f (T, B) = μ
(

T
T0

)σ (
B
B0

)γ

For these models, as the form of the Lagrangian is already
assumed, only the parameters σ and γ are to be constrained.
In general, the Friedmann equation to solve is

T = T0�0a(T )−3(1+ω) + μ

(
T

T0

)σ (
B

B0

)γ [
2σ + γ − 1

−2γ σ + 6γ σT

B
− 6Hγ (γ − 1)

Ḃ

B2

]
. (C1)

Once a bouncing model is chosen, the Friedmann equation
could then be solely expressed in terms of T and B which
could then be used to determine the parameters. Here, we
illustrate the procedure for the symmetric bouncing cosmol-
ogy as an example, for which the Friedmann equation takes
the form

T = T0�0a(T )−3(1+ω) + μ

(
T

T0

)σ (
B

B0

)γ [
2σ + γ − 1

−2γ σ + 6γ (σ − γ + 1)T

B
+ 18γ (γ − 1)T 2

B2

]
. (C2)
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Observe that when t = 0, a(T ) = A, H = T = 0 and B =
12α
t∗2 . This means that the Lagrangian is non-singular provided
σ > 0. With this in mind, one arrives at the conclusion that

�0A
−3(1+ω) = 0. (C3)

Since A, �0 �= 0, this constraint imposes the condition that
this ansatz model can only describe the symmetric bouncing
cosmology when the universe is devoid of matter content and
is only described by the effective torsional fluid.

Next, the value for μ can be easily computed by evaluating
the resulting Friedmann expression at t = t0, one can obtain
an expression for the constant μ as follows

μ = T0

2σ + γ − 1 − 2γ σ + 6γ (σ−γ+1)T0
B0

+ 18γ (γ−1)T 2
0

B2
0

≡ T0

ν

(C4)

provided that ν �= 0. Indeed, if this were the case, this would
imply that T0 = 0 which contradictions the notion of the
time t = t0.

By applying all the necessary conditions and the definition
of μ, the Friedmann equation simplifies to

ν =
(
T

T0

)σ−1 (
B

B0

)γ [
2σ + γ − 1 − 2γ σ

+6γ (σ − γ + 1)T

B
+ 18γ (γ − 1)T 2

B2

]
. (C5)

Finally, to determine the values of σ and γ , we require the
equation to hold at any time. However, no parameter choice
is able to satisfy the Friedmann equation meaning that this
model cannot host symmetric bouncing cosmologies.
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