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ABSTRACT Many modern computer vision systems include several modules that perform different
processing operations packaged as a single pipeline architecture. This generally introduces a challenge in
the evaluation process since most datasets provide evaluation data for just one of the operations. In this
paper, we present an RGB-D dataset that was designed from first principles to cater for applications that
involve salient object detection, segmentation, inpainting and blending techniques. This addresses a gap in
the evaluation of image inpainting and blending applications that generally rely on subjective evaluation due
to the lack of availability of comparative data. A set of experiments were carried out to demonstrate how the
COTS dataset can be used to evaluate these different applications. This dataset includes a variety of scenes,
where each scene is captured multiple times, each time adding a new object to the previous scene. This
allows for a comparative analysis at pixel level in image inpainting and blending applications. Moreover, all
objects were manually labeled in order to offer the possibility of salient object detection even in scenes that
contain multiple objects. An online test with 1267 participants was also carried out, and this dataset also
includes the click coordinates of users’ selection for every image, introducing a user interaction dimension
in the same RGB-D dataset. This dataset was also validated using state of the art techniques, obtaining an
Fg of 0.957 in salient object detection and a mean (Intersection over Union) IoU of 0.942 in Segmentation.
Results demonstrate that the COTS dataset introduces novel possibilities for the evaluation of computer

vision applications.

INDEX TERMS Dataset, RGB-D, salient object detection, inpainting, blending, segmentation.

I. INTRODUCTION

Modern computer vision applications are composed of a
number of pipelined modules, each carrying out specific
functions. These include image salient object detection, seg-
mentation, inpainting and blending. The evaluation of each
individual module has its own characteristics and require-
ments. A variety of datasets are available for the specific
evaluation of dedicated modules carrying out the operations
mentioned above. However, a single dataset that enables the
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evaluation of a pipelined solution is not easily found and to
the knowledge of the authors, it does not exist.

This paper presents the COTS (Common Objects of a Trav-
eling Scientist) Dataset, a travel-themed dataset containing
120 different instances organized in a selection of scenes as
explained in Section III. The selected objects were configured
in different scenes specifically designed to be useful in a
variety of computer vision applications. These scenes are
organized into two categories. The first category contains
single objects, shot with a green background. The second
category, contains different instances of specific scenes with
multiple objects. Every instance contains an object that was
not present in the previous scene. The 8-bit depth map of the
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TABLE 1. The number of categories in every RGB-D dataset being
considered and their respective number of frames or individual images.

Dataset | Categories | Frames/Images
OBJS 51 250000

BBIR 1 100

SCAN |1 10000

OSEG | 1 111

GLHY | 35 50

SSEG 16 NA

CcoTs 29 120

scene and ground truth binary image of every object for every
scene in both categories is also available in the COTS dataset.

The first category of scenes serves to evaluate algorithms
that measure object saliency since it includes color images
and the object ground truth, similar to common datasets used
in literature, such as the MSRA10K [1]. However, the COTS
dataset differs as it also provides the depth map for every
object. This extra information opens the possibility for the
exploration of a relationship between object saliency and its
depth. Furthermore, this also provides sufficient data for the
evaluation of object detection and extraction algorithms.

The second category of scenes is specifically designed to
address the gap in the evaluation of inpainting applications.
Inpainting or object removal applications are normally eval-
uated using a mean opinion score (MOS) methodology [2].
While this approach serves its purpose and has its relevance
from an image quality perspective, it lacks the objective
rigour that is sometimes expected out of comparative results.
This dataset allows for the evaluation of such techniques by
also providing an actual instance of the scene without the
inpainted object. The sequential nature of the dataset also
allows for the evaluation of blending techniques where a new
object is introduced to the scene.

The COTS dataset includes different novel aspects. It is
a multipurpose RGB-D dataset that is designed for different
computer vision applications. The structured and incremen-
tal approach in which scenes are built provides groundtruth
within the dataset itself for applications such as inpainting
and blending that traditionally lacked this type of dataset for
their evaluation. Moreover, this dataset was constructed in a
structured and controlled environment that is documented in
detail in this paper.

An overview of existing RGB-D datasets that showcases
how they are used to evaluate segmentation, inpainting,
blending and salient object detection techniques is presented
in the next section. The methodology behind the construction
of this dataset is presented in detail in Section III. Due to the
importance of user interaction data, a section is dedicated to
the online test and its methodology. Section V of this paper
presents a set of experiments that demonstrate how the COTS
dataset can be used to evaluate a selection of techniques
ranging from saliency detection to image manipulation tech-
niques. A conclusion follows in Section VI.
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FIGURE 1. A sample from the comparable RGB-D datasets as
reviewed by [3].

Il. BACKGROUND

The importance of accompanying images with the respective
depth information is on the rise. This is mainly due to the
increase in the availability of camera technology that allows
for such image acquisition. Throughout the years, a substan-
tial number of RGB-D datasets were created. Firman [3]
recently analyzed and surveyed these datasets, aggregating
them into different applications. The uses for RGB-D data
range across different applications, from saliency detection
to object detection and classification. Another variation is
the scale and nature of the environment being captured in
the dataset. Some datasets, such as the COTS, are designed
to focus on small objects while other datasets are developed
to capture larger scenes such as a room or, more so, outdoor
environments or in the wild [3]. This section focuses on RGB-
D datasets that center on small objects since these are solely
the ones comparable to the dataset being introduced in this
paper. Moreover, datasets that have been traditionally used
to benchmark saliency detection techniques will be analyzed
due to the specialized application of this dataset. This paper
explores the following list of RGB-D datasets:

OBJS : RGB-D Object Dataset [4]

BBIR : Bigbird Dataset [5]

SCAN: A large dataset for object scans [6]

OSEG: Object Segmentation Dataset [7]

GLHY: Global Hypothesis for Verification for 3D Object
Recognition [8]

SSEG : RGB-D Semantic Segmentation Dataset [9]

A variety of different technologies can be used to capture
RGB-D datasets. Before its discontinuation in October 2017,
the Microsoft Kinect served as a popular tool to gener-
ate an extensive number of datasets [3]. Since its termi-
nation, the need for alternative devices for future RGB-D
datasets ensued. In this context, we use the Intel RealSense
D435 Depth Camera' to develop this dataset. In other datasets
that focused on a more holistic 3D reconstruction of the

IThe full documentation of the Intel RealSense Camera can be found on:
https://realsense.intel.com
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TABLE 2. A summary of the different information and data sources available within each dataset. This includes the availability of object masks, setup
information, semantic segmentation data and point-clouds. This table also lists which datasets were shot within controlled lighting conditions.

Dataset | Masks Setup User Semantic Controlled | Point-cloud/
Information | Interaction | Segmentation | Lighting 3D Mesh

OBJS Yes No No Yes No No

BBIR Yes Yes No No Yes Yes

SCAN No Yes No No No Yes

OSEG Yes No No Yes No Yes

GLHY | No No No Yes Yes Yes

SSEG No No No Yes Yes Yes

CcoTs Yes Yes Yes Yes Yes No

objects being captured, a DSLR camera in conjunction with a
PrimeSense Carmine was used to generate a point-cloud for
the objects [4], [6].

The RGBD Object Dataset (OBJS) [4] was constructed in
an indoor environment. It is claimed that this dataset was
constructed in a controlled environment, however, the detail
in the paper related to the setup is limited. This dataset
consists of single objects and the RGB-D image of the room
in which the objects were placed was captured. Subsequently,
using a mask, the color and depth information of the objects
of interest were extracted. In this approach, attributes such
as shadows and lighting across the dataset might not be
preserved causing variations and inconsistencies. This was
taken into consideration during the construction of the COTS
dataset and defined as a main objective. The detailed process
can be found in Section III.

The Bigbird Dataset (BBIR) [5] was developed following
a very strict and structured process. This process requires
that the objects are placed onto a turntable including also a
calibration check-board. Three pairs of DSLR cameras with
a corresponding Carmine 1.09 sensor were placed in front of
the turntable. By utilizing such approach, 600 RGB-D frames
were captured [5]. The Carmine sensor was also used in the
Large Dataset of Object Scans [6]. The priority of the authors
was the construction of a dataset based upon a large number
of images. This was facilitated by outsourcing the acquisition
process to non-professionals. For each object, video footage
was obtained, and the corresponding point cloud was con-
structed. Consequently, the image attributes and setup across
the dataset were not preserved consistently.

Other datasets [8], [9], [7] use the Kinect v1 to capture a
selection of small objects that were placed on a table. The
setup of these datasets follows the same line of thought of
the dataset being presented in this paper. However, in these,
the setup used to capture the data was not documented,
and the lighting conditions in some cases might vary. This
renders the quality of the dataset suitable for some tasks such
as segmentation; however, the light inconsistencies make the
evaluation of image manipulation methods difficult.

A similarity across all the datasets evaluated is that these
have a single individual instance of static scenes. Differ-
ently, COTS was designed to incrementally include objects in
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a scene while leaving the previous objects in the original place
and the lighting conditions static. This is explained in more
detail through Figure 12.

A. SALIENCY DETECTION DATASETS

Saliency detection focuses on the detection of regions within
an image that stand out more than others [10], [11]. Saliency
detection can be achieved through various approaches
and these vary from the original technique proposed by
Itti et al. [12] based on the visual attention system of primates
to modern deep learning approaches [13]-[16]. While Itti’s
approach is based on the features and visual attributes in a sin-
gle image, the other deep learning approaches require exten-
sive datasets for training. As a consequence, some datasets
used saliency detection benchmarking with a large number of
frames. Different datasets were designed and constructed for
this purpose such as the MSRA 10K [1] and the CAT2000 [17]
dataset. The MSRA10K [1] dataset contains 10,000 images
with their respective masks while the CAT2000 [17] dataset
contains 4,000 images without a mask. Similar datasets
to those mentioned here include the ECSSD dataset [18],
JuddDB dataset [19] and the Pascal-S dataset [20]. These
datasets can be split into two sets: the training set and the
testing set. The former set is used to train the machine learn-
ing models while the latter is used to test the trained models.
A common attribute amongst these datasets is that none of
these contain depth information for its images. The dataset
being proposed in this paper is not designed to train such
machine learning models.

The COTS dataset is rather intended to pave the way
towards the identification and resolution of challenges in
saliency detection. The current available saliency datasets
contain single objects and this becomes evident in vari-
ous benchmarking exercises [10], [11], [21]. Furthermore,
another challenge in saliency detection is the ranking
of saliency in images that consist of more objects than
one [10], [13], [22], [23].

Previous researchers tackled the challenge of saliency
ranking in images at a pixel level [24], [25]. These proposed
techniques attempted to rank saliency in an image based
on the weight of saliency at a pixel level. The shortcoming
of such an approach is when one considers the image at
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object level. An object can be made up of hundreds or thou-
sands of pixels, therefore pertaining to a single pixel is
out of context in such scenario. An alternative approach
to address this problem would be to split the image into
segments or regions and process the weights of the seg-
ments as a whole before sorting the regions by their level of
saliency [26]. Another technique that achieves similar results
involves the use of deep-learning [13], [22].

The current popular saliency detection datasets do not
contain depth information. It could therefore be concluded
that the study of saliency detection algorithms in relation
to RGB-D content is seen as a current challenge for this
particular area [13], [21], [23] and the dataset being proposed
in this paper aims to explore this further.

B. INPAINTING EVALUATION

The most common approaches to evaluate image manipula-
tion techniques are subjective and based on user feedback.
Inpainting techniques [27] can be evaluated by making use
of the Mean Objective Score (MOS) [2] technique. In other
circumstances [28], the outcome and results drawn from the
inpainting techniques are presented without comparison but
with a quantifiable conclusion. The use of full-reference met-
rics such as peak signal-to-noise ratio (PSNR), mean square
error (MSE) or structural similarity index (SSIM) cannot be
applied [29] when inpainting larger regions in an image such
as in the case of inpainting entire objects. An exception to this
would be if there exists an identical image of the same scene
without the inpainted object for comparison. However, this is
not always possible and can be difficult to achieve in certain
scenes. Such an example is in scenes that have continuously
changing elements such as environmental features like the
sea or moving clouds. It is important to guarantee that all
the parameters are consistent within the scene and this can be
achieved through the use of a controlled environment. These
considerations and restrictions were considered constantly
throughout the design of the dataset being proposed in this

paper.

1Il. DATASET CONSTRUCTION

This section provides an overview of the COTS dataset that
is freely available on http://cotsdataset.info or https://github.
com/dylanseychell/COTSDataset. The main motivation
behind the design of this dataset was to evaluate the different
stages of a computer vision application through the use of a
single dataset.

The first part of this section contains images of single
objects placed on a green surface in front of a background of
the same color, while the second part contains themed scenes
incorporating single to multiple objects.

The latter part of the proposed dataset contains 27 scenes
that capture multiple objects, where every scene has multiple
instances such as the example being shown in Figure 12.
Every scene has an average of three instances, excluding
instance 0, since this is common for each scene. There is
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a total of 88 instances organized into two sections which are
explained below.

Throughout this dataset, one can analyze a traveling theme
with the second part of the dataset containing objects that
are organized by traveling aspects. This allows for easier
semantic categorization while at the same time providing
the opportunity to expand the dataset in the future. Careful
consideration was also taken to include occluded objects in
the scenes to be able to evaluate the techniques that are
sensitive to occlusion and therefore be able to evaluate every
aspect of these techniques.

Further considerations were taken to determine the choice
of objects. Elements such as the material and the reflective
property played an important role in the selection of objects.
The chosen objects were made from specific materials such as
transparent glass (shooter glass), polished glass (mug, tagine
and statues of Buddha and Genisha), metal (travel-mug and
Macbook), matt paper (Google Cardboard and most of the
books), plastic (washing containers, headphones) and textile
(Daydream VR headset, headgear and shoes). The selected
objects for this dataset also vary significantly in size ranging
from a small shooter class to a laptop and tagine.

A. DATA COLLECTION

To develop this dataset, a dedicated controlled environment
was used. The setup is presented visually as a plan elevation
in Figure 2. The recordings took place in an indoor environ-
ment without any external natural lighting. The only source
of light used was that of two auxiliary LED lighting with
modifiers that were targeted at the objects. Important consid-
erations were made to ensure that the auxiliary lighting being
used in the scene were not generating infra-red noise that
would possibly affect negatively the quality of the captured
depth map. In addition, a designated region on the surface
was marked so that every object is placed within this region
as this mark falls precisely within the camera’s field of view.
Moreover, the configuration of the scene was measured and
recorded, keeping the setup constant throughout the scene
capturing process.

The Intel RealSense depth camera D435 that makes uses of
active IR stereo technology was used to capture the images
that make up this dataset. The realsense-viewer tool in the
official SDK was first used to calibrate the camera setting and
afterwards it was used for the recording. Static scenes were
recorded as a 6s video sequence and saved as a Robot OS
(ROS) .bag file, containing all the raw data streams. The main
reason behind this was that this gives the ability to preserve
raw data, allowing this data to be exploited for depth/color
alignment, depth measurements as well as providing suitable
data for the hole filling algorithms. Furthermore, this provides
an additional feature for the users making use of this con-
structed dataset as they can perform a more refined selection
of the frame if this is required.

The Intel D435 was identified as the most suitable cam-
era model for this dataset for a various number of reasons.
Firstly, this model offers one of the highest resolutions with
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FIGURE 2. A plan elevation of the studio layout used for the data collection. This diagram is not to scale.

TABLE 3. Intel RealSense Camera Properties.

Image resolution 1280x 720 pixels
Video frequency 30 Hz
Color frame (jpg),

16-bit depth frame (png),
8-bit depth frame (png),
Raw ROS .bag file

Extracted scene files

ppx: 623.328,
. ppy: 361.712,
Intrinsic Parameters fx: 924,744,
fy: 925.107
Depth scale 0.001

(only used for 16-bit images)

high-accuracy depth reading within the recommended range
of 0.2-7m, while being affordable. In addition, stereo cameras
are usually disregarded due to their weak operation in low-
texture scenes making them generally impractical for this
task. However, this camera model is equipped with an active
IR projector that transmits its own pattern. This feature allows
for the information to be gathered even on a low-textured sur-
face. The camera also incorporates a dedicated ASIC chip that
conducts the necessary edge computing for the dense image
registration problem that is required with all stereo technol-
ogy in real-time. Therefore, the whole camera system outputs
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directly the depth information, which allows for the minimal
computation on the host platform. Moreover, the Intel open-
source community is one of the most informative and helpful
on multiple platforms. This makes it easier to retrieve all the
necessary information to get started, as well as be provided
with support throughout the development. The hole-filling
algorithm is introduced in the next section. This algorithm
is built-in the D435 SDK and updated regularly.

1) HOLE-FILLING PROCESS
Throughout the extraction of the aligned depth frames from
the recording, it could be noted that the depth map con-
tained “holes”. These “‘holes” represent missing informa-
tion. There are various reasons for this artefact in a stereo
system as portrayed in [30]:

1) Occlusions — This happens when the left and right
image do not encapsulate the same scene or object due
to shadowing. Generally, the left image is used as a
reference, therefore the occlusion effect is observed on
the left side of objects as well as along the left edge of
that same image;

2) Low-texture - Stereo matching is dependent on the
matching of texture in the left and right images. There-
fore, for texture-less surface like, for example, a flat
white wall, the depth can be challenging to estimate
(this is the reason why the active projector is used to
generate texture);
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FIGURE 3. A photograph of the setup used for the data collection process
of this dataset.

3) Multiple matches - There might be circumstances in
which during the matching process, there exists more
than one block that is found to match equally the
reference one. This occurs commonly when the scene
incorporates a uniform periodic structure;

4) Signal - A lack of signal can occur if the images are
under or overexposed. In this case, there is no informa-
tion retrieved;

5) Out of range - The stereo algorithm search-range can
be exceeded if the object is very close. It is required that
the objects are placed farther away than the minimum
distance, Z, from the camera for it to be seen.

There are some situations in which it might be better
to not deal with holes since the processing might be too
intensive. This is especially true if the applications require
real-time processing. However, it might also be the case
where the depth-enhanced output is desired. In these cases,
it is considered that a ‘““best guess’ is better than no guess
at all [30].

The algorithm used for this task belongs to the spatial fil-
tering technique. This simple algorithm makes use of neigh-
boring pixels (left or right) within a pre-defined radius to be
able to fill in the blank pixel. Different researchers discussed
this simple technique as a baseline for comparing new hole
filling methodologies in their various research studies [31].
For the case of the D435 camera, the left neighboring pixel
is taken since the left camera is the reference. There is a total
of three different methods that are available when it comes to
the Intel SDK:
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Fill with MAX of
green pixels

Fill with MIN of
green pixels

Fill with left pixel

FIGURE 4. Different hole filling methods.

Depth (8-bit)
after Hole-Filling

Color Image Raw Depth (8-bit)

FIGURE 5. A selection of raw depth maps as captured by the camera and
their result following the hole-filling process.

1) Left valid pixel value;

2) The biggest (farthest away) among the valid five upper
left and down pixel values (used for depth map);

3) The smallest among the valid five upper left and down
pixel values (used for disparity map).

IV. ONLINE TEST

The evaluation of saliency detection algorithms and frame-
works is one of the main aims of this paper. For this aim to
be reached, the color images and their corresponding depth
maps and objects masks were required to be accompanied by
data so that it can illustrate better how humans can relate to
the dataset. This was achieved through the use of an online
test that was designed to reach this objective.

This test was deployed through the use of a website as this
was distinguished as the ideal platform given its potential
for applications as well as its scalability. This website was
shared through its URL and it was successfully conducted
by 1268 participants. Its backend was specifically built for
this purpose making it easy and user friendly. The users were
able to efficiently view color images via an HTML page from
the dataset. At the same time, the Javascript was collecting
usage data in the background, making it unnoticeable to the
users and hence increasing the user experience. In addition,
no sensitive user data was collected in this experiment and
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the usage data was stored in a hosted database. To monitor
the usage activity of this online test, Google Analytics was
deployed on the website and processing in the background.

During this experiment, batches of 10 images were dis-
played to the users, with the images shown one by one.
Since the dataset contains 84 images, it provided to be a
challenge to divide the dataset in such a way that would
enable all the images to be presented to some user or another
at a certain given point in time. The first approach con-
sidered was sequential. However, this was quickly deemed
unfeasible due to the fact that this would skew the data
towards the first occurring images in the dataset, since few
users actually go through the entire set of 84 images. The
approach that was taken to tackle this challenge was that of
a tailored load-balancing algorithm that was designed and
implemented in the backend to evenly distribute the images
in the dataset. This algorithm requires two main components.
Firstly, the images from all the dataset were required to be
featured evenly and secondly that subsequent images from
the same scene were not to be shown in sequence. The second
requirement surfaced during the preliminary laboratory test-
ing where it was analyzed that when a user was presented with
incrementing objects of the same scene, for example as shown
in Figure 12, it was likely that the user would click on the new
object rather than take into consideration what is more salient
in the image. Moreover, to reduce the visual bias that might
impact the users performing this test, a further precaution
was considered. This took the form of three carefully selected
separating images that were displayed randomly before every
presented dataset image. These separating images are pre-
sented in Figure 6 and these were chosen mainly because of
their visual inconsistency. This was mainly implemented to
reduce bias from the preceding image. This algorithm per-
formed to its expectations, managing to successfully evenly
spread all the images across the 1268 users. This resulted
in every single image gathering 213 unique clicks for every
image.

FIGURE 6. Separating images used between dataset images being
presented to the users in order to avoid any visual bias from the previous
image.

The main aim behind this experiment was to present the
users with a color image from the dataset and analyze which
region within the image they believe is the most salient. For
each color image what was loaded individually on the screen,
the users were instructed to perform the following task:

Task: Click/Tap on the point that attracts your attention
when you first see the image. The point can be
anywhere and includes persons or other objects.
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The user input through the use of clicks and taps were
stored for every image as coordinates. These coordinates
were utilized to generate a heatmap. Furthermore, these coor-
dinates were stored in a CSV file and are included in the
proposed dataset. Moreover, during the online experiment,
the movement coordinates of the mouse-enabled device were
being collected. These were mainly collected when the exper-
iment was conducted through devices such as laptops or desk-
top computers. Further data collected during the experiment
was that of the time it took for the user to click/tap on the
image after its loading. This gave further insight to the user
behavior as this helped to determine if the decision was more
impulsive. It was concluded that a user that clicked in a
short period of time was more likely acting impulsively and
therefore more likely clicking on what they considered to be
more salient at first glance.

A. ONLINE TEST ARCHITECTURE

This section presents the architecture of the online data col-
lection platform. Figure 7 presents the Data-Flow diagram of
the system displaying the main modules of this architecture.
There are two main data collection components; image selec-
tion (Module 1.0) and user handling (Module 1.1).

The Image Selection module (1.0) is responsible for the
selection of images presented to the user as explained in
Section IV. Module 1.0.1 carefully chooses the images from
the COTS dataset (1.0.3) and compiles a set of images (1.0.2).
This selection is then presented to the user through the HTML
web page.

The User Handler module (1.1) is responsible for the pre-
sentation of the selected set of images to the user (1.1.0) and
the subsequent collection of data (1.1.1). The user handling
module is also responsible for storing any information about
the user interaction with the images such as the cursor move-
ments when these are available and the click coordinates.
In addition, it also stores other general but related information
such as the type of device being used during the experiment
as well as the time of the interaction.

This rigorous architecture allowed for scalable dissemina-
tion of the online test and the successful completion of the
test by the users.

B. STATISTICAL ANALYSIS
This section provides a deep evaluation and analysis of the
interaction between the user and the dataset during the online
experimentation. It was deduced that out of the 1268 partic-
ipants that took part in this study, 77% used a smartphone
while 6% made use of a tablet. The remaining participants
which constitute 17% of the participants made use of a
desktop or laptop computer. Therefore, since 83% of the
participants were tapping the images, this would imply that
no cursor movements were collected in these circumstances.
A total number of 1690 persons visited the website with
1268 participating in this study by completing this test. This
implies that there was a bounce rate of only 25%.
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FIGURE 7. A data-flow diagram of the components in the online test.

FIGURE 8. An average annotation map of all the combined clicks or taps
collected from the online test.

Figure 8 illustrates the average annotation map of all the
clicks and taps collected from the test. From this figure,
it could be concluded that there was a very smooth overall
distribution of interaction along the entire area where objects
were present. In addition, it shows minimal center-bias.

It is a challenge to identify whether there were sufficient
users that participated in this experiment that would enable
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further evaluation possible. In the research area of com-
puter vision especially when dealing with traditional statis-
tical techniques that calculate a minimum threshold for a
population are inconsistent in such a case. This is because,
throughout this experiment, we are not collecting or mea-
suring opinion. Our evaluation focuses mainly on statistical
validity which is being achieved by dividing the total number
of mouse clicks into two groups with a ratio of 3:7 and
then compare the distribution of x and y values between the
two groups. Figure 9-a describes some of the results that
were generated from the conduction of this study. Visually,
the heatmap already gives sufficient information to formulate
an idea about the expected result due to the clusters that focus
on specific points within the image. In addition, the simi-
larity of the x and y distribution curves across both groups
emphasizes our methodology as can be seen in Figure 9-b.
To further consolidate the results, we also performed a t-test
that compares the x and y distribution of clicks across the two
groups. Our hypothesis is defined as follows:

HypothesisHy:

The distribution of the clicks (x and y dimension) on
the smaller sample size is similar to the distribution
of the clicks on the larger sample size.

A t-test was conducted for each image evaluated through
the online test and it resulted that the p-value was higher than
0.5. Therefore, the null hypothesis cannot be rejected. This
implies that there was no considerable difference between
the two distribution, concluding that the click/tap coordinates
settled to specific regions.

C. ANNOTATION PROCESS

The evaluation of various computer vision techniques also
requires a single-channel binary image mask that also serves
as ground truth. These masks are black and white images to
represent the object of interest, with the white pixels repre-
senting the object. These masks also play an important role in
the evaluation of other techniques that generate a mask from
depth information [27].

To generate the masks, the LabelMe tool 2 was used.
The masks to annotate the dataset were generated by three
volunteers. A mask was created for every object for every
single scene. The third party annotators were not related to
the project and therefore were not expected to make imme-
diate use of the dataset. Moreover, to add a further level of
independence, the annotation workshops were facilitated by
a team member that was not responsible for the use of the
annotated masks. A total of three masks for every object were
collected, one for every annotator.

The subsequent step in the process was the inter-annotation
agreement between the three masks. There are different tech-
niques to choosing the final mask varying from choosing
the smallest mask or the larger masks or also an average
mask. After consideration, it was deduced that making use of
such an approach might introduce a certain bias. In addition,

2http://labelme.csail.mit.edu
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FIGURE 9. A sample of heatmaps generated from the user interaction through the online test. These are also accompanied by distribution testing

of the x and y coordinates.

from experimentation, it was concluded that they were also
introducing scattered white pixels in the output mask which
was undesired. Therefore, it was deduced that a more conser-
vative approach might be ideal. This approach made use of
the outputs of a white pixel on the final mask only if there
is a white pixel in all the three masks in the corresponding
position.

1) ACCURACY OF GROUND TRUTH

The benchmarking exercise carried out in Section V demon-
strates how the dataset can be used in different computer
vision applications. This exercise in itself demonstrates the
accuracy of the ground truth of the COTS dataset that was
generated as discussed in Section IV-C.

The application of COTS in Visual Saliency presented in
Section V-A. In this section it is demonstrated that the state of
the art and other recently benchmarked visual saliency tech-
niques perform as well on COTS as other saliency datasets.

Section V-B demonstrates how the COTS dataset with
its groundtruth benchmarked the state of the art on the
segmented output with an average of different Mean IoUs
of 0.850.

The COTS dataset and its groudtruth can also be used for
Inpainting and Blending as demonstrated in Sections V-C
and V-D respectively. In both cases, we show how the MSE
for each of these applications returns a very low result and
therefore a higher quality result.

VOLUME 9, 2021

V. USAGE OF DATASET

This section demonstrates the general usage of the COTS
dataset and is organized into five sub-sections. The first one
explains how this dataset can be used in saliency detection
modules and it is followed by three other sub-section showing
how the dataset can be used in Segmentation, Inpainting and
Blending applications. This section concludes by discussing
how the COTS dataset can be used to evaluate different
modules of a pipelined solution.

A. VISUAL SALIENCY
The process of analyzing images using visual saliency has
intrigued a number of researchers and today we have a wide
selection of techniques using different approaches that gener-
ate saliency maps for given images. These techniques range
from eye-fixation approaches and information theory based
approaches to deep-learning approaches were used to emulate
human visual attention [10], [11]. Saliency techniques can be
organized into two categories namely Salient Object Detec-
tion and Fixation Prediction. The process of salient object
detection starts by detecting the salient objects in a scene
and subsequently segmenting objects [11]. On the other hand,
other models predict human fixation on a given image.

The proposed dataset can be used for the study of saliency
together with the evaluation of saliency-based techniques.
The first part of the dataset primarily contains images of
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TABLE 4. The results of a variety of saliency models on the COTS dataset together with the MSRA10K and ECSSD benchmarking datasets, extending the
work of Borji et al. [11]. The current state of the art technique, the Pyramid Feature Attention Network (PFAN) [42] was also evaluated on the COTS

dataset with comparative results presented in the last row.

COTS ECSSD PASCAL-S DUT-OMRON MSRA10K
Fixed \ IDAT | Fixed \ IDAT | Fixed \ IDAT | Fixed \ IDAT | Fixed \ IDAT
Results from [11]
FES [38] 0.812 | 0.692 | 0.655 | 0.645 | 0.619 | 0.605 | 0.520 | 0.555 | 0.717 | 0.753
SR [34] 0.676 | 0.507 | 0.385 | 0.381 | 0.447 | 0.442 | 0.298 | 0.363 0.473 | 0.569
SIM [35] 0.699 | 0.625 | 0.391 | 0.433 | 0.434 | 0.407 | 0.358 | 0.402 | 0.689 | 0.705
SWD[39] | 0.785 | 0.702 | 0.624 | 0.549 | 0.577 | 0.523 | 0.478 | 0.506 | 0.498 | 0.585
CA [40] 0.766 | 0.587 | 0.515 | 0.494 | 0.489 | 0.472 | 0.435 | 0.458 | 0.621 | 0.679
COV [36] 0.628 | 0.541 | 0.641 | 0.677 | 0.589 | 0.604 | 0.486 | 0.579 | 0.667 | 0.755
SEG [41] 0.951 | 0.941 | 0.568 | 0.408 | 0.534 | 0.344 | 0.516 | 0.450 | 0.697 | 0.585
SeR [37] 0.722 | 0.488 | 0.419 | 0.391 | 0.433 | 0.406 | 0.385 | 0.411 0.542 | 0.607
Results from [42]
] PFAN [42] \ 0.957 \ 0.842 | 0.931 \ N/A \ 0.892 \ N/A \ 0.856 \ N/A N/A \ N/A ‘

FIGURE 10. The average annotation map of the MSRA10K [1] dataset
shows that the salient objects in this dataset are biased towards its
center. This bias was also considered in the design of the COTS dataset
and as demonstrated in Figure 8, this was mitigated accordingly by
spreading salient objects further within the scene.

single objects together with the respective ground truth
binary-image, similar to the MSRA10K [1] and ECSSD [18]
datasets. Furthermore, the first instance of the second part
of the dataset can also be used for this purpose since it also
includes a single object together with the ground truth image,
hence extending the number of images containing a single
object within the dataset.

The COTS dataset also includes 8-bit and 16-bit depth
maps for each of the objects and scenes and therefore allows
for the study of the relationship between saliency and depth
information such as [32]. Other prominent datasets such as
the Pascal-S [20], MSRA10K [1], ECSSD [18], JuddDB [19]
and DUT-OMRON [33] that are commonly used in the bench-
marking and evaluation of saliency techniques do not contain
any depth information for their images. The COTS dataset
can therefore provide this additional value to research in this
field.

1) BENCHMARKING SALIENCY

The COTS dataset was also benchmarked with other saliency
models based on the methodology and source code provided
by Borji et al. [11] where 41 saliency models were bench-
marked extensively. This experiment shows that the COTS
dataset can also be used to benchmark saliency models.
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For our experiment that extends the original study [11],
7 models were selected based on the availability of the source-
code within the work of Borji et al. [11]. This selection
included a mix of Fixation Prediction (SR [34] SIM [35]
COV [36] SeR [37]) and Salient Object Detection models
(FES [38] SWD [39] CA [40] SEG [41]). The COTS dataset
was also benchmarked against other datasets using the state
of the art technique Pyramid Feature Attention Network
(PFAN) [42]. The PFAN technique scored an Fg of 0.957 on
the COTS dataset as presented in Table 4 and a reported
0.931 on the ECSSD dataset [42].

The MATLAB source-code was used to carry out the com-
parative analysis of these 7 models on COTS together with
the MSRA10K [1] and ECSSD [18] datasets. The first part
of the experiment reproduced the results obtained by these
7 models on the MSRA10K [1] and ECSSD [18] datasets
as found in the original study and reported in Table 4. The
comparison focused on the Fg statistic based on both Fixed
and Adaptive Threshold (AdpT) thresholds. The same B
value of 0.3 was used to give a priority to precision over
recall.

(l + ,32) - Precision - Recall
B2 - Precision + Recall

Fp = ey

Once that the performance of the models was confirmed
in the first part of the experiment, the second part of the
experiment introduced the COTS dataset. The same 7 models
were evaluated on the COTS datasest. Once again, both
fixed and image-dependent adaptive threshold techniques
were used, however this time a larger set of algorithms was
tested. The Fg statistic for FES [38], SR [34], SIM [35],
SWD [39], CA [40], COV [36], SEG [41] and SeR [37]
was calculated. The results presented in Table 4 demonstrate
that the COTS dataset can be used for the benchmarking of
saliency models in the same way as other datasets. Moreover,
this provides further prospects for research since the COTS
dataset also includes a corresponding depth map for every
image.
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FIGURE 11. An example of how the COTS dataset can be used to evaluate saliency ranking techniques. The first column
presents a visual illustration of the heatmaps collected through the online test. The second column shows how the clicks can
be represented in a grid layout so that they can be compared to a saliency ranking technique [26]. The last column shows the
same frame from the dataset being processed with Itti’s saliency detection technique [12].

2) SALIENCY AND MULTIPLE OBJECTS

An important feature of this dataset is the information related
to the user interaction in relation to every image as collected
through the online test described in Section I'V. The procedure
outlined in [26] is followed and the segments are organized
ina9 x 9 grid and the following approach is used to convert
the click coordinates to the desired grid segment that makes
comparison possible. Every click coordinate (x, y) had to be
mapped with a grid segment with index (i, j). However, each
image has its own width w and height % pixels so the area
covered by each grid varies according to the image size. This
follows that x falls in the range x = [0, w) and y in the range
y = [0, h) [26]. The segment S(i, j) follows Equation (2)
where D is the Segment Dimension, that gives the index of the
respective cell as presented in Equation (3). This data allows
the COTS dataset to be used in the evaluation of fixation
prediction and saliency ranking techniques as demonstrated
in Figure 11. Saliency ranking is in itself an emerging topic
in computer vision and this dataset can be used to enable such
benchmarking as demonstrated in these sections.

p<x<(@(+Dp,

JE<y<(+D5h

_ || ._ |
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B. SEGMENTATION
The COTS dataset can also be used to evaluate segmentation
techniques that make use of color and depth information such
as the work presented in [43].

Segmentation is a computer vision task that extracts seg-
ments from an image that contain meaning. There are two

S, j) = @
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type of segmentation tasks, semantic and instance. In seman-
tic segmentation objects of the same type are extracted as
a group of pixels. This is a useful feature that is applied in
various fields [44], [45]. On the other hand, instance segmen-
tation is thought of as a harder task and is divided into two
parts. Initially an object detection process identifies individ-
ual objects in a scene/image. This process is then followed
by a precise extraction of the instance of the object. There-
fore, unlike semantic segmentation, in instance segmentation
each object is extracted separately. Instance segmentation is
also used in a number of different fields and applications
[46]-[48], typically tasks that require further a distinction
between objects of the same class. Recently, there has been
a lot of different advances in the field of instance segmen-
tation and one of the most popular approaches makes use
of Mask R-CNN. Mask R-CNN [49] is an extension of the
Faster R-CNN [50], Fast R-CNN [51] and R-CNN [52]. It is
a two-stage detector, where it first extracts the Regions of
Interest (ROI) by scanning an image and generating image
proposals. These proposals/ROI are areas of the image that
will most probably contain an object. In the second stage,
the model evaluates each proposal and generates the label.
The proposals are amalgamated and the bounding boxes and
masks are generated.

The COTS dataset provides an alternative testing set to
measure the effectiveness of the evaluators instance segmen-
tation model. Through the masks provided with COTS the
evaluator can run the segmentation model on the COTS data-
set and then use evaluation metrics such as mean Intersection
Over Union (IoU) or mean Average Precision (mAP).

|A N B

J(A, B) = AUB

“
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where A is the ground truth and B is the prediction. The Mean
IoU across the range of classes N is therefore given by:

N
1
MeanloU = N Xl:J(A, B) 5)

This section outlines the procedure used in order to con-
firm the validity of using the COTS dataset as an alternative
evaluation data-set for segmentation tasks. The Mask R-CNN
instance segmentation model was chosen as it has been used
extensively in the area of instance segmentation and it is
considered as a baseline model for any instance segmentation
task. Furthermore, an instance segmentation approach rather
than a semantic approach was chosen based upon the masks
available with the COTS data-set. A semantic segmentation
exercise can also be computed by simply applying a morpho-
logical AND operation on the masks. Given the availability
of a mask for each object it made more sense to go for the
more complex approach. In terms of evaluation, the mean
IoU, given in Equation 5, was used. Also known as Jaccard’s
Index, the IoU presented in Equation 4, is a widely used
metric in instance segmentation tasks [53] where the IoU for
each object is initially calculated and then the mean for each
detected class is computed to output the mean IoU value. The
model was pre-trained on the COCO [54] dataset, the COCO
dataset contains a number of labels in common with COTS.

A number of images that had object labels in common with
the COCO data-set where initially chosen. A Mask-RCNN
that is trained on the COCO data-set using a ResNet-50 back-
bone was then used to process the pre-chosen images. These
included scenes with mugs, cups and shooter glasses, food
items such as vases and bowls, footwear and books. Table 5
illustrates the results obtained. For each image, the mask gen-
erated by the segmentation model was extracted. This mask
was then used to generate the IoU vis-a-vis the ground-truth
mask. This score value was then computed for each object
present in the image. Finally, the mean IoU was calculated
through the scores for each class. This task showcases how
the COTS data-set can be used as an external verification
tool for segmentation tasks. Similarly, other segmentation
techniques can be used and trained on a variety of labels
present in the COTS dataset but not available in other more
known datasets. The image labels used include, technological
items, hats, beanies, washing items and statues.

C. INPAINTING
Inpainting, or object removal, is the process of modify-
ing an image such that the editing is not perceived, or its
visual impact is minimized, by filling the region of interest
with texture that is known from another location within the
image [55]. Inpainting is achieved by either employing tradi-
tional techniques [56] or more recently by using Generative
Adversarial Networks (GANSs) [57].

Inpainting applications removing large objects are gener-
ally evaluated using a Mean Objective Score (MOS) such as
the one specified by the ITU-T BT.500 [2]. While objective
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TABLE 5. Performance of the Mask R-CNN on the COTS dataset.

Number IoU
of Classes | per Class
0.867
0.554
0.940
0.920
0.707
0.945
0.833
0.929
0.954
0.896
0.952
0.907
0.842
0.861
0918
0.955
0.928
0.944
0.866
0.939
0.000
0.906
0.929

Image

Name Mean IoU

mugs_oc 3 0.787

mugs_oc2 3 0.857

mugs_no 3 0.905

food_no 3 0.918

food_oc 3 0.874

ip_book_no 3 0.942

ip_book_oc 3 0.602

footwear_no_2 2 0.918

Instance GB Depth GT New Object

NA

| -

FIGURE 12. Sample of a single incremental scene for inpainting
applications. The rows represent different instances of the same scene
with a single object being included in every scene. For every instance, one
finds the RGB image together with its respective 8-bit depth image and
the ground truth binary image for the new object being included.

scores are helpful in the evaluation of user perception, they
do not provide a quantitative measure of the efficacy of the
inpainting technique employed.

The COTS dataset addresses this limitation by design as
we demonstrated in [58]. Figure 12 provides a sample of
how each of the 23 instance in the second part of the dataset
is split into multiple instances. For every instance, there is

VOLUME 9, 2021



D. Seychell et al.: COTS: A Multipurpose RGB-D Dataset for Saliency and Image Manipulation Applications

IEEE Access

Scene S2 Mask

Statues

Shooter
Glasses

Academic
Books

Footwear
S —
- .

Tech

Ours + Ours +
Telea NS

Deep
Learning

FIGURE 13. A visual representation of the comparative result of the objective evaluation
inpainting techniques. S2 is the original scene upon which the inpainting is carried out using the
mask presented in the second column. S1 in the third column is the actual scene without the
object represented by the mask, hence acting as ground truth of the inpainting. The last three
columns are the results of different inpainting techniques. These are namely our technique with
Teala’s [59] and Bertalmio et al. [60] and the NVIDIA deep learning method of [61] in the last

column.

a progression in the way images are structured where an
instance has an object that was not present in the one before
it. Every new instance has only one new object included with
nothing else in the image being modified. Such consistent
progression provides the desired environment for the evalua-
tion of inpainting techniques. Since such techniques remove
an object from a specific instance (n), the instance before it
(n — 1) can be therefore used as ground truth as it will be
missing the inpainting object, by design.

In an effort to assist the evaluation of inpainting algo-
rithms, the ground truth in the form of a binary image is
provided for every instance with the methodology outlined
in Section I'V-C. Evaluators can use this binary mask to guide
the inpainting algorithm under evaluation without the need of
generating their own mask through segmentation techniques
that might make comparison more challenging. The use of the
COTS dataset in such an experimental setup is demonstrated
using the framework presented in [27]. The experiment is
presented in Figure 14. In this example, the target object for
inpainting is the red deodorant in Scene 2 marked as S2. The
object was inpainted using the Telea approach [59] within
the [27] framework. Scene 1 (S1) is the same as S2 less the
red deodorant. Therefore, S1 can be used as ground truth for
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TABLE 6. The MSE metric result for each scene where the inpainting
result was compared to S1. The maximum error signifies the MSE reading
when S2 was compared to S1, therefore comparing the scene without the
object with the scene including the target object.

Mean Squared Error (MSE)
Occlusion Ours + | Ours + | Deep Max
Telea NS Learning | Error
Statues Yes 369.10 | 452.39 | 455.79 1139.27
Shooters | Yes 57.20 68.17 72.11 83.09
Academic | Yes 384.76 | 488.48 | 484.78 1990.00
Footwear | No 58.64 69.12 124.73 1617.40
Mugs No 79.31 101.61 | 108.91 407.76
Tech No 112.46 | 15391 | 142.79 570.52

S2 less the target object. The inpainting result is compared to
S1 using a full-reference metric. In this case, the MSE was
used for the comparison.

1) INPAINTING EXPERIMENT

The COTS dataset is ideal for comparing different inpaint-
ing techniques. This is demonstrated through the experiment
presented in this section that was designed to objectively
compare different inpainting techniques. A selection of six
scenes with different target objects were used and the results
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FIGURE 14. Usage of the COTS dataset and the proposed approached to
evaluate an inpainting technique presented in [27].

are presented in Table 6. These scenes were split into two
groups. One group contains occluded objects while the other
does not. The set with occluded objects contains the following
scenes: shooter glasses, statues, and academic books. The
other group contains the mugs, tech and footwear scenes and
none of these had any occlusion [58].

The inpainting evaluation method discussed above was
followed for each of the six scenes. The scenes marked as
S2 contain an object that is represented by a binary mask.
S1 is an actual instance of the scene without the object and
this instance was a specific feature of the COTS dataset.
This framework was used to demonstrate how the COTS
dataset can be used to evaluate three inpainting approaches.
Two inpainting techniques used in this experiment are the
ones presented in [27] first with Teala’s [59] method and
then with Bertalmio et al. [60] method. The COTS dataset
was also used to evaluate a generative deep learning inpaint-
ing approach. For this part of the experiment, NVIDIA’s
approach by Liu ef al. [61] was used accordingly.

The visual quality of the result in the situation where
objects were placed in front of a plain background was very
interesting. The nature of the plain green background of the
COTS dataset exposes different strengths and weaknesses
of the inpainting techniques under evaluation. Traditional
dispersion based methods returned results that were blurry
and this matched what was already reported in previous
work [27]. On the other hand, the deep learning approach
gave a more crisp result when objects were occluded even
though the quality of inpainting would still not score high
marks in the subjective context. Moreover, the quality of
inpainting when the target object has a plain background had
a visual quality comparable to the result of the traditional
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techniques [58].
1 N
MSE = 2;(51,- —IR))? (6)
i

This experiment used the MSE, presented in Equation 6,
as a full-reference metric to evaluate the quality of the
inpainted result IR for each of the three chosen methods in
relation to S1 that served as ground truth. A maximum error
was computed for comparative results and this occurs when
S1 is compared with S2. The comparison of the two true
scenes with and without the target object returns the worst
case scenario and puts the comparative results for each of
the other approaches into context. The inpainted results are
compared to S1 so their error should be as far as possible from
the maximum error, hence closer to S1. In general, the Telea
inpainting method performs the best when compared to the
other techniques [58].

Object Extractor

Scene 2 (S2)

Target Object Mask

Object Blender

T
Blending Result (BR)

Scene 1 (S1)

Y

Evaluation
Metric

Error (S1 vs BR)

FIGURE 15. An example of how the COTS dataset can be used to evaluate
blending techniques. An object is extracted from S2 and is added to S1.
The blended result can then be empirically compared to S2.

D. CONTENT BLENDING

The COTS dataset can also be used to evaluate content
blending or addition techniques in a similar manner to
inpainting techniques. A similarly styled process is presented
in Figure 15. The technique starts by identifying the target
object by means of a binary image mask from S2. This time,
the target object will be included into S1. The object can
be identified using depth information [27] and further pro-
cessing for an enhanced blending approach [62] can be used
prior to blending the object into S1. The blending result is
therefore S1 together with the new object extracted from S2.
The position of the blended object on S1 has to be the same
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as the original position of the object in S2. The result of the
blending technique can also be evaluated objectively by using
the MSE in a similar way to Equation 6. In this case, S2 would
be used as ground truth against the Blending Result BR. Since
the COTS dataset also includes shadows, one can see that
while the object is blended, the shadows were not considered.
Future techniques that attempt to recreate shadows can there-
fore also be evaluated using this same proposed dataset.

Ground
Truth S2

Blending

Mask Output

Scene S1

.

FIGURE 16. A visual representation of the evaluation of blending
techniques. In this case, the additional object is taken from S2 and
blended onto S1 resulting in the blending output. The ground truth in this
case is S2.

Statues

F

Shooter Glasses

Academic Books

Footwear

Mugs

Tech

An instance of this experiment using the same sample
of COTS scenes as the inpainting evaluation presented in
Section V-C was set up. This selection of scenes includes a
set that included occluded items and another set that does
not. Figure 16 presents the visual results of this experiment.
The first column shows instances of S1 from different scenes
that also act as the target scene where the new object will
be blended. The second column presents the mask of the
object that will be extracted from S2 of the same scene and
blended onto S1. S2 is therefore the ground truth following
the blending. The last column shows the results of the blend-
ing process. The MSE comparing the blending result to S2 is
also presented in Table 7, demonstrating how COTS can be
effectively used in the evaluation of blending techniques.

E. COMBINED USAGE

The sections above show how the COTS dataset can serve
different types of vision applications. It nonetheless follows
that the dataset can be used to evaluate different instances of
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TABLE 7. The results from the computation of the MSE of the blending
technique when the blending result (BR) is compared to S2 in relation to
maximum error returned when the S2 is compared to S1.

Mean Squared Error (MSE)
Occlusion Error Max Error

(BRvs S2) | (S1vsS2)
Statues Yes 135.25 2664.17
Shooters Yes 26.19 272.51
Academic Yes 141.87 2177.99
Footwear No 63.96 344417
Mugs No 72.72 461.99
Tech No 94.54 163.98

pipelined solutions that use different techniques to achieve
their objective. For example, the work in [27] first carries
out segmentation using depth information and subsequently
inpaints the segmented object. The COTS dataset can be used
first to evaluate the quality of segmentation against the ground
truth and then the quality of inpainting by using another
instance of the same scene as explained in Section V-C.

VI. CONCLUSION

This paper presented the COTS multipurpose dataset, con-
taining 120 sets of images with their respective depth maps
and ground truth. Every instance is also accompanied by a
CSV file containing the click coordinates resulting from the
online test in which we had an encouraging 1267 participants.
This dataset can be used to evaluate a variety of computer
vision applications ranging from saliency to segmentation,
inpainting and blending. This offers the possibility of eval-
uating pipelined computer vision applications by making use
of a single dataset.

This dataset also provides a number of opportunities in
evaluating modern computer vision techniques and architec-
tures. COTS is being made available for free for everyone
to use as an open-source project. This current version of the
COTS dataset is focused on a plain green background. This
was originally intended to allow for chroma-key background
replacement and therefore increase the variety and complex-
ity of the data. Future iterations of this dataset can potentially
include a set of scenes with more a more complex natural
background that would increase the evaluation possibilities
upon it.

ACKNOWLEDGMENT

The authors would like to thank Mr. Ryan Azzopardi, the pro-
fessional photographer who assisted the team in the setting
up of the studio and with the provision of lighting equip-
ment for this setup. They also thankful to all the anonymous
1267 participants of the online test who dedicated time to go
through the process and provide such precious feedback and
information.

REFERENCES

[1] M.-M. Cheng, N.J. Mitra, X. Huang, P. H. S. Torr, and S.-M. Hu, “Global
contrast based salient region detection,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 37, no. 3, pp. 569-582, Mar. 2015.

21495



IEEE Access

D. Seychell et al.: COTS: A Multipurpose RGB-D Dataset for Saliency and Image Manipulation Applications

[2]
[3]

[4]

[51

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Methodology for the Subjective Assessment of the Quality of Television
Pictures, Standard ITU-T BT.500, Aug. 2012.

M. Firman, “RGBD datasets: Past, present and future,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2016,
pp. 661-673.

K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-view
RGB-D object dataset,” in Proc. IEEE Int. Conf. Robot. Autom., May 2011,
pp. 1817-1824.

A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel, “BigBIRD:
A large-scale 3D database of object instances,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2014, pp. 509-516.

S. Choi, Q.-Y. Zhou, S. Miller, and V. Koltun, “A large dataset of
object scans,” 2016, arXiv:1602.02481. [Online]. Available: http://arxiv.
org/abs/1602.02481

A. Richtsfeld, T. Morwald, J. Prankl, M. Zillich, and M. Vincze, “Segmen-
tation of unknown objects in indoor environments,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., Oct. 2012, pp. 4791-4796.

A. Aldoma, F. Tombari, L. D. Stefano, and M. Vincze, “A global hypothe-
ses verification method for 3d object recognition,” in Computer Vision—
ECCV 2012, A.Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid,
Eds. Berlin, Germany: Springer, 2012, pp. 511-524.

F. Tombari, L. Di Stefano, and S. Giardino, “Online learning for automatic
segmentation of 3D data,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Sep. 2011, pp. 4857-4864.

A. Borji, “What is a salient object? A dataset and a baseline model for
salient object detection,” [EEE Trans. Image Process., vol. 24, no. 2,
pp. 742-756, Feb. 2015.

A. Borji, M.-M. Cheng, H. Jiang, and J. Li, “Salient object detection:
A benchmark,” IEEE Trans. Image Process., vol. 24, mno. 12,
pp. 5706-5722, Dec. 2015.

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention
for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20,
no. 11, pp. 1254-1259, Nov. 1998.

A. Siris, J. Jiao, G. K. L. Tam, X. Xie, and R. W. H. Lau, “Infer-
ring attention shift ranks of objects for image saliency,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 12133-12143.

P. Zhang, D. Wang, H. Lu, H. Wang, and X. Ruan, “Amulet: Aggregating
multi-level convolutional features for salient object detection,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 202-211.

L. Qu, S. He, J. Zhang, J. Tian, Y. Tang, and Q. Yang, “RGBD salient
object detection via deep fusion,” IEEE Trans. Image Process., vol. 26,
no. 5, pp. 2274-2285, May 2017.

G. Lee, Y.-W. Tai, and J. Kim, “ELD-Net: An efficient deep learning
architecture for accurate saliency detection,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 7, pp. 1599-1610, Jul. 2018.

A. Borji and L. Itti, “Cat2000: A large scale fixation dataset for boost-
ing saliency research,” in Proc. CVPR Workshop Future Datasets, 2015.
[Online]. Available: http:/saliency.mit.edu/cat2000_visualization.html

J. Shi, Q. Yan, L. Xu, and J. Jia, ““Hierarchical image saliency detection on
extended CSSD,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 4,
pp. 717-729, Apr. 2016, doi: 10.1109/TPAMI.2015.2465960.

T. Judd, K. Ehinger, F. Durand, and A. Torralba, “Learning to predict where
humans look,” in Proc. IEEE 12th Int. Conf. Comput. Vis., Sep. 2009,
pp. 2106-2113.

Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille, “The secrets of salient
object segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2014, pp. 280-287.

R. Cong, J. Lei, H. Fu, M. Cheng, W. Lin, and Q. Huang, ‘“Review of visual
saliency detection with comprehensive information,” IEEE Trans. Circuits
Syst. Video Technol., vol. 29, no. 10, pp. 2941-2959, Oct. 2019.

M. A. Islam, M. Kalash, and N. D. B. Bruce, “Revisiting salient object
detection: Simultaneous detection, ranking, and subitizing of multiple
salient objects,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 7142-7150.

J. Zhang, F. Malmberg, and S. Sclaroff, Visual Saliency: From Pixel-Level
to Object-Level Analysis. Cham, Switzerland: Springer, 2019. [Online].
Available: https://www.springer.com/gp/book/9783030048303

L. Zhang, C. Yang, H. Lu, R. Xiang, and M.-H. Yang, ‘‘Ranking saliency,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 9, pp. 1892-1904,
Sep. 2017.

K. Rahul and A. K. Tiwari, “Saliency enabled compression in JPEG
framework,” IET Image Process., vol. 12, no. 7, pp. 1142-1149, Jul. 2018.
D. Seychell and C. J. Debono, “Ranking regions of visual saliency in
RGB-D content,” in Proc. Int. Conf. 3D Immersion (IC3D), Dec. 2018,

pp. 1-8.

21496

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

(41]

(42]

[43]

[44]

(45]

[46]

(47]

(48]

[49]

[50]

(51]

D. Seychell and C. J. Debono, “Monoscopic inpainting approach using
depth information,” in Proc. 18th Medit. Electrotech. Conf. (MELECON),
Apr. 2016, pp. 1-5.

M. K. Nanduri and K. S. Venkatesh, “Segmentation directed inpainting,”
in Proc. 27th Irish Signals Syst. Conf. (ISSC), Jun. 2016, pp. 1-6.

T. T. Dang, A. Beghdadi, and M. C. Larabi, “Inpainted image quality
assessment,” in Proc. Eur. Workshop Vis. Inf. Process. (EUVIP), Jun. 2013,
pp. 76-81.

G. Anders and D. Tong. Depth Post-Processing for Intel Realsense D400
Depth Cameras. Accessed: Apr. 20, 2019. [Online]. Available: https://
www.mouser.com/pdfdocs/Intel-RealSense-Depth-PostProcess.pdf

A. Atapour-Abarghouei and T. P. Breckon, “A comparative review of
plausible hole filling strategies in the context of scene depth image com-
pletion,” Comput. Graph., vol. 72, pp. 39-58, May 2018.

Y. Cheng, H. Fu, X. Wei, J. Xiao, and X. Cao, “Depth enhanced saliency
detection method,” in Proc. Int. Conf. Internet Multimedia Comput. Ser-
vice (ICIMCS). New York, NY, USA: ACM, 2014, pp. 23:23-23:27,
doi: 10.1145/2632856.2632866.

C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang, “Saliency detection
via graph-based manifold ranking,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2013, pp. 3166-3173.

X. Hou and L. Zhang, “Saliency detection: A spectral residual approach,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2007, pp. 1-8.
N. Murray, M. Vanrell, X. Otazu, and C. A. Parraga, ‘‘Saliency estimation
using a non-parametric low-level vision model,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2011, pp. 433-440.

E. Erdem and A. Erdem, ‘“Visual saliency estimation by nonlinearly inte-
grating features using region covariances,” J. Vis., vol. 13, no. 4, p. 11,
Mar. 2013.

H. J. Seo and P. Milanfar, ““Static and space-time visual saliency detection
by self-resemblance,” J. Vis., vol. 9, no. 12, p. 15, 2009.

H. R. Tavakoli, E. Rahtu, and J. Heikkild, “Fast and efficient saliency
detection using sparse sampling and kernel density estimation,” in Image
Analysis, A. Heyden and F. Kahl, Eds. Berlin, Germany: Springer, 2011,
pp. 666-675.

L. Duan, C. Wu, J. Miao, L. Qing, and Y. Fu, “Visual saliency detection by
spatially weighted dissimilarity,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2011, pp. 473-480.

S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency detec-
tion,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
Jun. 2010, pp. 2376-2383.

E. Rahtu, J. Kannala, M. Salo, and J. Heikkild, “Segmenting salient
objects from images and videos,” in Proc. Eur. Conf. Comput. Vis.
(ECCV), K. Daniilidis, P. Maragos, and N. Paragios, Eds. Berlin, Germany:
Springer, 2010, pp. 366-379.

T. Zhao and X. Wu, “Pyramid feature attention network for saliency detec-
tion,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 3080-3089.

D. Seychell and C. J. Debono, “Efficient object selection using depth
and texture information,” in Proc. Vis. Commun. Image Process. (VCIP),
Nov. 2016, pp. 1-4.

J. Jiao, Y. Wei, Z. Jie, H. Shi, R. Lau, and T. S. Huang, “Geometry-aware
distillation for indoor semantic segmentation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2869-2878.

T. He, C. Shen, Z. Tian, D. Gong, C. Sun, and Y. Yan, “Knowledge
adaptation for efficient semantic segmentation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 578-587.

T.-A. Yen, H.-C. Hsu, P. Pati, M. Gabrani, A. Foncubierta-Rodriguez,
and P.-C. Chung, “NINEPINS: Nuclei instance segmentation with point
annotations,” 2020, arXiv:2006.13556. [Online]. Available: http://arxiv.
org/abs/2006.13556

A. Grenier, “Visual scene understanding for self-driving cars using
deep learning and stereovision,” Cranfield Univ., Cranfield, U.K.,
Tech. Rep., 2019. [Online]. Available: https://cord.cranfield.ac.uk/articles/
poster/Visual_Scene_Understanding_for_Self-Driving_Cars_Using_
Deep_Learning_and_Stereovision/7370174/1

F. Zhang, C. Guan, J. Fang, S. Bai, R. Yang, P. H. S. Torr, and V. Prisacariu,
“Instance segmentation of lidar point clouds,” in Proc. IEEE Int. Conf.
Robot. Automat. (ICRA), May/Aug. 2020, vol. 4, no. 1, pp. 9448-9455.
K. He, G. Gkioxari, P. Dollar, and R. Girshick, ‘“Mask R-CNN,” in Proc.
1EEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2961-2969.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 91-99.

R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440-1448.

VOLUME 9, 2021


http://dx.doi.org/10.1109/TPAMI.2015.2465960
http://dx.doi.org/10.1145/2632856.2632866

D. Seychell et al.: COTS: A Multipurpose RGB-D Dataset for Saliency and Image Manipulation Applications

IEEE Access

[52] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “‘Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580-587.

[53] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and
D. Terzopoulos, “Image segmentation using deep learning: A survey,”
2020, arXiv:2001.05566. [Online]. Available: http://arxiv.org/abs/2001.
05566

[54] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar,
and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Proc.
Eur. Conf. Comput. Vis., D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars,
Eds. Cham, Switzerland: Springer, 2014, pp. 740-755.

[55] L. Wang, H. Jin, R. Yang, and M. Gong, ‘““Stereoscopic inpainting: Joint
color and depth completion from stereo images,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2008, pp. 1-8.

[56] A. Criminisi, P. Perez, and K. Toyama, “Region filling and object
removal by exemplar-based image inpainting,” IEEE Trans. Image Pro-
cess., vol. 13, no. 9, pp. 1200-1212, Sep. 2004.

[57] X. Wu, K. Xu, and P. Hall, “A survey of image synthesis and editing with
generative adversarial networks,” Tsinghua Sci. Technol., vol. 22, no. 6,
pp. 660-674, Dec. 2017.

[58] D. Seychell and C. J. Debono, “An approach for objective quality assess-
ment of image inpainting results,” in Proc. IEEE 20th Medit. Electrotech.
Conf. ( MELECON), Jun. 2020, pp. 226-231.

[59] A. Telea, “An image inpainting technique based on the fast marching
method,” J. Graph. Tools, vol. 9, no. 1, pp. 23-34, Jan. 2004.

[60] M. Bertalmio, A. L. Bertozzi, and G. Sapiro, “Navier-Stokes, fluid dynam-
ics, and image and video inpainting,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. (CVPR), Dec. 2001, pp. 355-362.

[61] G.Liu,F. A. Reda, K. J. Shih, T. Wang, A. Tao, and B. Catanzaro, “Image
inpainting for irregular holes using partial convolutions,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 85-100.

[62] D. Seychell and C. J. Debono, “Intra-object segmentation using depth
information,” in Proc. 19th IEEE Medit. Electrotech. Conf. (MELECON),
May 2018, pp. 30-34.

DYLAN SEYCHELL (Senior Member, IEEE)
received the B.Sc.IT degree (Hons.) in computer
science and artificial intelligence and the M.Sc.
degree in artificial intelligence from the University
of Malta, Malta, in 2010 and 2011, respectively,
where he is currently pursuing the Ph.D. degree in
computer vision with the Department of Commu-
nications and Computer Engineering.

From 2011 to 2017, he was a Resident Aca-
demic with the Saint Martin’s Institute of Higher
Education, where he served as the Head of the Computing Department for
five years. In 2017, he joined the Department of Artificial Intelligence,
University of Malta, as an Assistant Lecturer. His research interests include
visual attention, saliency, image manipulation, machine learning, and user
experience design. He was awarded a number of international awards for his
work, such as the Gold Seal for e-Excellence at CeBit in 2011, the First Prize
by the European Satellite Navigation Competition (Living Labs), in 2010,
and runner up, in 2017. In 2015, he was selected to lead the Malta’s Google
Developers Group. He also served as a member of the Malta Neuroscience
Network and the Malta National Al Taskforce that was responsible for the
development of the national Al strategy. He is involved in startups related
to technology applied to heritage and tourism. He serves as a Technology
Adpvisor and a Coordinator on a number of high-profile heritage projects.

CARL JAMES DEBONO (Senior Member, IEEE)
received the B.Eng. degree (Hons.) in electri-
cal engineering from the University of Malta,
Malta, in 1997, and the Ph.D. degree in electronics
and computer engineering from the University of
Pavia, Italy, in 2000.

From 1997 to 2001, he was a Research Engi-
neer in the area of Integrated Circuit Design with
the Department of Microelectronics, University of
Malta. In 2000, he was also a Research Associate
with Texas A&M University, College Station, TX, USA. In 2001, he was

VOLUME 9, 2021

an Appointed Lecturer with the Department of Communications and Com-
puter Engineering, University of Malta, where he is currently a Professor.
He is also the Head of the Department of Communications and Computer
Engineering and the Dean of the Faculty of Information and Communication
Technology, University of Malta. His research interests include multiview
video coding, resilient multimedia transmission, and wireless systems design
and applications. He was a member of the management committee of the
COST Action IC1105—3-D Content Creation, Coding, and Transmission
Over Future Media Networks (3-DConTourNet), where he chaired the 3-D
Media Coding Working Group. He is also an Editor of the IEEE Multimedia
Communications Technical Committee Communications—Review.

MARK BUGEJA (Graduate Student Member,
IEEE) received the B.S. degree in creative com-
puting from the University of London, London,
UK, in 2012, and the M.S. degree in artificial
intelligence from the University of Malta, Msida,
Malta, in 2017, where he is currently pursuing the
Ph.D. degree in artificial intelligence.

From 2013 to 2017, he worked as a Resident
Academic with the Saint Martin’s Institute of
Higher Education, Malta. From 2017 to 2020, he
was also a Research Assistant with the Department of Artificial Intelligence
and the Institute of Climate Change and Sustainable Development. Since late
2020, he has been working with the Institute of Tourism Studies, Malta, and
a Visiting Lecturer with the Department of Artificial Intelligence, University
of Malta. His research interests include work in the area of Computer vision,
reinforcement learning, and intelligent transport systems. He has a number
of publications on the subjects. During this period, his research work focused
on emerging technologies and Artificial Intelligence. His experience also
includes various projects attributed to commercial and research interest in
the area of emerging technology, such as virtual reality, augmented reality,
and games.

JEREMY BORG (Graduate Student Member,
IEEE) received the B.S. degree in creative comput-
ing from the University of London, in 2014, and
the M.Sc. degree in artificial intelligence from the
University of Malta, in 2018.

From 2014 to 2017, he worked as a Soft-
ware Developer with Ixaris Systems Ltd. During
this time, he specialized in quality assurance and
%\\ related software development duties. Since 2017,

&5 he has been working as a Data Scientist with
Global Gaming, where he is currently responsible for exploring different
strategies in the commercial applications of data science. In 2018, he was
selected as a Visiting-Lecturer with the St. Martin’s Institute of Higher
Education, Hamrun, where he also lectures Creative Computing. He also
collaborates on research projects with the Department of Al, University of
Malta.

MATTHEW SACCO (Graduate Student Member,
IEEE) received the bachelor’s degree in computer
engineering and the M.Sc. degree in computer
vision from the University of Malta in 2016 and
2020, respectively.

After his degree, he entered the software devel-
opment industry with a local startup venturing in
blockchain applications related to property man-
agement. His current research interest includes the
use of RGB-D camera technology for Ambient
Intelligence primarily on understanding human behavior. He aims at inte-
grating his research into real applications varying from sport, entertainment,
and assistive living.

21497



