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Ultrafast Shape Recognition (USR), along with its derivatives, are Ligand-Based Virtual
Screening (LBVS) methods that condense 3-dimensional information about molecular
shape, as well as other properties, into a small set of numeric descriptors. These can be
used to efficiently compute a measure of similarity between pairs of molecules using a
simple inverse Manhattan Distance metric. In this study we explore the use of suitable
Machine Learning techniques that can be trained using USR descriptors, so as to improve
the similarity detection of potential new leads. We use molecules from the Directory for
Useful Decoys-Enhanced to construct machine learning models based on three different
algorithms: Gaussian Mixture Models (GMMs), Isolation Forests and Artificial Neural
Networks (ANNs). We train models based on full molecule conformer models, as well
as the Lowest Energy Conformations (LECs) only. We also investigate the performance of
our models when trained on smaller datasets so as to model virtual screening scenarios
when only a small number of actives are known a priori. Our results indicate significant
performance gains over a state of the art USR-derived method, ElectroShape 5D, with
GMMs obtaining a mean performance up to 430% better than that of ElectroShape 5D in
terms of Enrichment Factor with a maximum improvement of up to 940%. Additionally, we
demonstrate that our models are capable of maintaining their performance, in terms of
enrichment factor, within 10% of the mean as the size of the training dataset is
successively reduced. Furthermore, we also demonstrate that running times for
retrospective screening using the machine learning models we selected are faster than
standard USR, on average by a factor of 10, including the time required for training. Our
results show that machine learning techniques can significantly improve the virtual
screening performance and efficiency of the USR family of methods.

Keywords: virtual screening, machine learning, ultrafast shape recognition, ligand based virtual screening, ligand
similarity, ElectroShape
Abbreviations: ANN, artificial neutral Nework; AUC, area under curve; CSR, chiral shape recognition; DG, distance geometry;
DUD, directory of useful decoys; DUD-E, directory of useful decoys-enchanced; EF, enrichment factor; ETKDG,
experimental-torsion knowledge distance geometry; GMM, gaussian mixture model; HTS, high throughput screening;
LBVS, ligand-based virtual screening; LEC, lowest energy conformation; ROC, receiver operator characteristic; SBVS,
structure-based virtual screening; SMILES, simplified molecular input line entry specification; USR, ultrafast shape
recognition; USRCAT, ultrafast shape recognition with CREDO atom types; VS, virtual screening.
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INTRODUCTION

The discovery and development of a new drug is a time-
consuming process that can take 14 years to complete
successfully, incurring a cost of about 2.5 billion US dollars
(DiMasi et al., 2016). Virtual Screening (VS) is a search approach
that leverages electronic databases of chemical compounds and
modern computing resources to streamline this process. The aim
of this process is to computationally pre-screen molecules to find
those that are most likely to exhibit affinity for binding to a given
target protein. In this way, laboratory time and resources
associated with High Throughput Screening (HTS) can be
drastically reduced by preferentially testing only the
compounds that are more likely to become successful leads
(Leach and Gillet, 2007). Advances in processing power and
high-capacity storage as well as development of Big-Data
techniques has made this process of molecular screening
feasible, resulting in significant savings of time and cost and
significantly streamlining the drug discovery cycle (Leach and
Gillet, 2007; Lavecchia and Giovanni, 2013).

Ligand-Based Virtual Screening (LBVS) is underpinned by
the concept of similarity as defined in the Similarity Property
Principle, which simply states that similar molecules tend to
exhibit similar properties (Johnson and Maggiora, 1990). Many
LBVS methods exist, but in essence they all require two steps.
First, is the generation of a descriptor which represents a
molecule. Second, is the search for a quantitative distance
function which given two descriptors pertaining to different
molecules computes the similarity between these. Descriptors
for a library of molecules are compared to a query molecule's
descriptor, which typically exhibits bioactivity. The result is a
similarity ranking of all the molecules in the library. The top
molecules from this list, i.e. the most similar to the bioactive one,
are moved forward for physical testing.

There are many different types of LBVS methods such as
fingerprints, pharmacophore modelling, Quantitative Structure-
Activity Relationship modelling (QSAR), Ultrafast Shape
Recogn i t ion (USR) , e t c . LBVS methods may use
physicochemical properties, 2D topology, 3D molecular shape,
and other dimensions such as electrostatics, lipophilicity, etc. in
their descriptor generation stage. Some methods use a
combination of these features (e.g. SHAFTS uses both
pharmacophores and 3D structure information (Liu et al.,
2011). In the case of LBVS methods that use shape
information, these may be broadly divided into alignment and
alignment-free methods. Alignment methods build a 3D model
of the query and target molecules which are then superimposed.
A common metric is to calculate volume overlap between the
aligned (superpositioned) models. Alignment-free methods do
not require an alignment for the descriptor comparison and are
generally more efficient. For a review of shape-based similarity
methods please refer to Finn and Morris (2013).

Ultrafast Shape Recognition (USR) is an alignment-free LBVS
technique (Ballester and Richards, 2007a; Ballester and Richards,
2007b) that distils molecular shape into a rotation-invariant
descriptor vector made up of 12 real numbers. These
Frontiers in Pharmacology | www.frontiersin.org 2
descriptors are then compared directly using a modified
Manhattan Distance metric in order to obtain a measure
of similarity.

The greatest advantage of this method is the exceedingly
concise way in which the shape of a molecule is condensed into a
small 12-element descriptor. The comparison of such small
descriptors is fast to compute and efficient to store. This
significant feature of USR made it orders of magnitude faster
than any other shape-based similarity method that existed at the
time (Ballester and Richards, 2007a).

This method was developed in 2007, however, extensions to
this algorithm have since been proposed that extend the purely
shape-based descriptors of USR with other physicochemical
properties of the molecule, examples of which are ElectroShape
4D (Armstrong et al., 2010), ElectroShape 5D (Armstrong et al.,
2011) and USRCAT (Schreyer and Blundell, 2012), which
respectively add atomic partial charges, lipophilicity, and
atomic types to pure USR descriptors, obtaisning better virtual
screening scores than the original USR algorithm.

Even though extensive research has been carried out in the
application of machine learning techniques to structure-based as
well as ligand-based virtual screening, to the best of our
knowledge there has not been a study systematically applying
machine learning to USR and USR-based descriptors. The aim is
to improve virtual screening performance with respect to the
standard USR method.

In this study, we use the datasets provided in Directory of
Useful Decoys-Enhanced (DUD-E) to train machine learning
models based on Gaussian Mixture Models, Isolation Forests,
and Artificial Neural Networks using USR and ElectroShape 5D
descriptors in order to explore the performance improvement
achievable by abandoning the standard USR similarity metric
based on the inverse Manhattan Distance function in favour of a
full machine learning approach.

GMMs and Isolation Forests were chosen because they are
unsupervised, one-class learning methods that can be trained
only on positive examples, in a sense, mimicking the standard
USR method of using actives as search templates. GMMs and
Isolation Forests take different approaches to this one-class
learning problem. The former is a generative model, aiming to
learn the probability distribution governing the training
examples, whilst the latter is an outlier detection model, which
rather than find clusters in the training data, detects outlying
points. Further to these two algorithms, we chose to explore the
use of ANNs in this study. This is a supervised method in wide
use that gives excellent performance in a varied range of
domains. We chose this algorithm because it enabled us to
compare the performances of the two unsupervised methods
with a supervised model. One-class learning methods are
interesting in virtual screening since DUD-E contains real
active molecules but only putative inactives (hence
termed decoys).

Ballester et al. (2009) determined that using the LECs as active
search templates provides a good performance-speed balance
when evaluating compound databases using USR. We, therefore
train alternative models using full active molecule conformers as
February 2020 | Volume 10 | Article 1675
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training data as well as using only the active LECs in order to
determine the performance differences between the
two approaches.

Additionally, we also train similar models based on
successively smaller fractions of the available training dataset
so as to gauge the performance degradation of our models with
respect to training dataset size. A good performance achieved
even with a small number of active training examples is desirable
because often, only a small number of actives are known a priori
at the commencement of a prospective virtual screening exercise.

Through this study we demonstrate the potential of these
techniques in significantly improving their retrospective
screening performance. Our models obtain performance
improvements over the state-ofthe-art ElectroShape 5D
algorithm of a similar magnitude to those obtained by
ElectroShape 5D itself over the original USR method, which
were on the order of a maximum improvement of 738% and
mean improvement of 253% for full conformers and a maximum
of 755% and mean of 283% for LECs.

Ultrafast Shape Recognition
The USR technique was ideated by Ballester and Richards
( 2007a ; 2 007b ) whe r e i n th ey p ropo s ed a nove l
nonsuperpositional shape-based virtual screening technique
meant to preserve the virtual screening performance of
superpositional algorithms while obtaining the speed benefits
of non-superpositional methods.

Ballester et al. point out that the 3D shape of a molecule can
be encoded by taking the Euclidean distance of each atom to a
predetermined number of centroids located within the space
occupied by the molecule. The number and position of the
Frontiers in Pharmacology | www.frontiersin.org 3
centroids can be arbitrary, however, while pointing out that
their selection had not been validated to be the optimal one, the
authors chose four well-defined centroids as follows:

1. The molecular centroid (ctd)
2. The closest atom to ctd (cst)
3. The furthest atom from ctd (fct)
4. The furthest atom to fct (ftf).

Centroids computed for an example molecule are shown in
Figure 1. Computing the Euclidean distances of all the atoms in
the conformer to each of these four centroids yields four separate
distance distributions of size proportional to the number of
atoms making up the molecule.

As Ballester et al. indicate, however, there are several reasons
these distributions are problematic to work with for the purposes
of similarity searching. Most importantly, making use of these
distributions as-is, it would not be possible to compare molecules
having differing numbers of atoms because the distributions
yielded by molecules of different sizes would also be of
different sizes. In addition to this, distributions are normally
represented as histograms, however this would still leave open
the question of finding an optimal bin size given distributions of
wildly differing sizes and characteristics generated from a
database of molecules, not to mention the storage volume and
processing power required for their processing.

They solve these problems by pointing out that a distribution
is completely determined by its statistical moments (Hall, 1983),
and condensing the four distributions into their respective first
three moments, corresponding to the mean, the variance and the
skewness of the distribution (Ballester and Richards, 2007a). This
FIGURE 1 | Illustration of USR centroids computed for a sample conformer of the Zidovoudine molecule. Centroids are indicated with yellow spheres. Lines
between every centroid and the molecular centre are displayed for clarity. Four different rotations of the molecule are illustrated. Legend: ctd, molecular centroid; cst,
closest atom to ctd; fct, furthest atom to ctd; ftf, furthest atom from fct.
February 2020 | Volume 10 | Article 1675
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results in a vector of 12 decimal values making up a descriptor
encapsulating shape information for a given conformer. The
authors propose using this vector as a stand-in for the molecule's
3D structure in similarity comparisons. Ballester et al. (2009)
modify this process by taking the square root and cube root of
the second and third moments respectively, thus normalising
them to a scale comparable to that of the first moment and
resulting in better similarity matching performance.

The resulting descriptors could, in theory, be compared to
each other using any similarity measure, however Ballester et al.
chose to use a metric based on the Manhattan distance according
to Equation 1.

Sqi = (1 +
1
12o

12

l=1

jMq
l −Mi

l j)−1 (1)

where Sqi gives a similarity value between the query conformer q
and the conformer i being screened and ~Mq and ~Mi are the
descriptor vectors for the query conformer and the conformer
being screened, respectively. Here the sum is normalised by
dividing it by the number of elements in the USR descriptor.

Ballester et al. (2009) formally evaluated the USR method
comparing it to ESshape3D in terms of Enrichment Factor (EF)
finding it to offer, on average, significantly better ranking
performance. They furthermore pointed out that the ideal
active conformers to use as search templates are those
experimentally observed in their bound state via X-ray
crystallography or MRI. When this is not available, however,
they show that using the LECs is a good, but obviously not
perfect, approximation. When using LECs they obtained
retrospective virtual screening performance that is only slightly
worse than the maximum possible enrichment.

As they point out, the method can be easily extended by
incorporating into the descriptors other, nonspatial, atomic-
centred information (Ballester et al., 2009). This was achieved
by Armstrong et al. in a series of three papers—Armstrong et al.
(2009); Armstrong et al. (2010) and Armstrong et al. (2011).

Armstrong's first effort at extending USR (Armstrong et al.,
2009) was in the development of the Chiral Shape Recognition
(CSR) method, aimed at overcoming the shortcoming of USR
that enantiomers, i.e. molecules that are mirror images of each
other, generate identical descriptors, however do not necessarily
bind equally to a protein, causing false positives. Armstrong et al.
modified the USR method to account for chirality in the
descriptor calculation, thus eliminating this source of error and
obtaining enrichment factor improvements of 121%, 113%, and
106% at 0.25%, 0.5%, and 1% EF respectively.

Subsequently, Armstrong et al. (2010) again modified CSR by
incorporating atomic partial charges into its descriptors,
resulting in a new method they called ElectroShape. They did
this by adding an extra dimension to the descriptors, consisting
of the partial charge pertaining to each atom scaled by a constant
quantity Q so as to give them a magnitude comparable to the
other spatial dimensions. This method resulted in a near
doubling in performance over USR.

Armstrong et al. further extended their ElectroShape method
in 2011 by adding lipophilicity in the form of ALogP to the
Frontiers in Pharmacology | www.frontiersin.org 4
ElectroShape descriptors in a similar manner as they had done
for electrostatics, obtaining a further mean performance
improvement of 110% over ElectroShape (Armstrong et al.,
2011). This method shall hereafter by referred to as
ElectroShape 5D.

Ultrafast Shape Recognition with CREDO Atom Types
(USRCAT) is a further method that extends USR. Proposed by
Schreyer and Blundell (2012), this method incorporates the atom
types maintained in the CREDO Structural Interatomics
Database (Schreyer and Blundell, 2009), these being
hydrophobic, aromatic, hydrogen bond donor and hydrogen
bond acceptor. It does this by computing separate distributions
for each atom type, joining the resulting distribution moments
into a single descriptor vector with 60 elements. USRCAT, on
average, obtained a slightly higher average performance score
than ElectroShape in retrospective screening on the DUD-E
database with an EF0.25% of 15.64 as opposed to 8.84 for USR
and 14.48 for ElectroShape, however the exact performance
depended on the target under consideration, with some targets
scoring better than ElectroShape and others worse.

Other extensions to USR have also been proposed with a
variety of modifications, ranging from the combination of USR
descriptors with 2D fingerprints, incorporating atomic types and
applying graph theory to the USR centroid concept (Cannon
et al., 2008; Shave et al., 2015).

Machine Learning Methods
Machine learning techniques have been applied extensively to
virtual screening; both in Structure-Based Virtual Screening
(SBVS) (Betzi et al., 2006; Ain et al., 2015; Wojcikowski et al.,
2017) as well as LBVS where 2D fingerprints are naturally suited
to be used as training data for machine learning algorithms
(Stahura and Bajorath, 2004; Hert et al., 2006; Chen et al., 2007;
Geppert et al., 2010; Kurczab et al., 2011; Lavecchia, 2015). This
has, however, not been the case with USR, where to our
knowledge, only Cannon et al. (2008) have applied machine
learning to USR descriptors, and even then, in combination with
2D fingerprints.

In the work presented in this paper, we make an initial effort
to fill this lacuna in current research related to USR, obtaining
significant performance improvements over one of the highest
performing USR-derived methods, ElectroShape 5D, by training
severa l machine learning models on ElectroShape
5D descriptors.

LBVS can be considered as a ranking problem, where the
objective is to sort molecules by similarity to one or more ligands
that are used as search templates. We have chosen three machine
learning algorithms to explore in this study, that are well suited
to model this problem—GMMs, Isolation Forests, and ANNs.

A Gaussian Mixture Model (Reynolds, 2015) is a generative
machine-learning model that models a distribution of data
points using a combination of weighted Gaussian distributions.
It can be considered to be a clustering algorithm similar to k-
means (Hartigan and Wong, 1979); however, in a GMM, cluster
membership of a data point is not absolute but instead is
influenced probabilistically by several centroids. A GMM is
described mathematically by Equation 2 below:
February 2020 | Volume 10 | Article 1675

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Bonanno and Ebejer Applying ML to USR in LBVS
f (xjm,S) = o
M

k=1

ck
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2p Skj jp exp½ x − mk)
TS−1

k x − mkð Þ� �
(2)

where M is the number of Gaussians, also known as
components, making up the GMM; µk is the mean for
component k; Sk is the covariance matrix for component k,
giving the co-variance between every pair of dimensions; and ck
is the weight for component k. These number of components is a
hyperparameter of the algorithm as is usually tuned through an
iterative cross-validation process. The GMM is trained using the
Expectation Maximization algorithm (Dempster et al., 1977).

GMMs have wide-ranging applications in machine learning.
They have been used in speech recognition (Stuttle, 2003), audio
speech classification (Siegler et al., 1997), for language and
speaker identification (Reynolds, 1995; Reynolds and Rose,
1995), as well as in visual object tracking (Santosh et al., 2013)
and image enhancement applications (Celik and Tjahjadi, 2011).
They have also been used in virtual screening and, in particular,
protein-ligand docking (Grant and Pickup, 1995; Grant et al.,
1996; Jahn et al., 2010; Jahn et al., 2011).

Isolation forests (Liu et al., 2008) are a class of machine
learning models known as ensemble models. Ensemble models
make use of a collection of simpler models to improve their
predictions over those that would have been obtained by any
single one model. Isolation Forests are similar to the Random
Forest algorithm (Ho, 1995) in that they create a number of
Decision Trees (Breiman, 2017) based on the training data and
averages the predictions from each decision tree to arrive at a
final result. While Random Forests are a supervised algorithm
used to perform classification tasks, Isolation Forests are
unsupervised and are meant to be used to perform anomaly
detection in a set of observations.

Contrary to other clustering algorithms which attempt to
identify similar samples within the input dataset, Isolation
Forests explicitly identify anomalies in the data. They do so by
exploiting the fact that, averaged over a number of Decision
Trees, the path length that will be needed to generate a prediction
for an outlier will be, on average, significantly shorter than that
required for an inlier observation.

The rationale for using Isolation Forests as an algorithm for ranking
USR descriptors is by extension of the formal evaluation of the USR
method by Ballester et al. (2009). Herein it was shown that upon
clustering the conformers of the active molecules for a given protein,
several cluster centroids emerge, corresponding to shapes matching the
one or more binding modes presented by the target protein.

By definition, a large number of actives will fall on, or close to a
given centroid, since most active molecules will have at least one
conformer that matches a binding mode of the target protein. This
means that, taking all the active conformers as a set, high-density
zones should be apparent and centred around the cluster centroids.
Non-binding conformers, on the other hand, will fall outside these
high-density zones, making them into outliers or anomalies.
Training an Isolation Forest using the descriptors for the active
molecules and ranking these points by their anomaly score should
yield results with good predictive power.

The thirdmachine learning algorithm that we explored along the
course of this study is the Artificial Neural Network (ANN). ANNs
Frontiers in Pharmacology | www.frontiersin.org 5
are models loosely inspired by the structure of the brain, beingmade
up of several successive layers of nodes (neurons), each output of
one layer of nodes feeding in to the inputs of the next.

The neural net is usually set up with an input layer having the
same number of nodes as the number of features in the input
data. The output of the input layer is then routed through one or
more hidden layers and into an output layer which gives the
result predicted by the network.

A single node j in layer i of a neural network consists of a
vector of weights Wi,j equal in length to the number of nodes in
layer i − 1 and an activation function, which computes an output
value for the neuron ai,j by taking into account the outputs of the
previous layer ai−i and the corresponding weights Wi.

There are a variety of activation functions that may be used in
a neural network layer and it is possible to use different activation
functions in different layers of a single network. Common ones
include linear, sigmoid, and Rectified Linear Unit (RelU).

ANNs can be used for both classification as well as regression
problems. For regression tasks, the output layer normally
consists of one node with a linear activation function giving a
real-valued output. For a classification network, the output layer
is normally set up with one node for each class. The Softmax
function, also called the Normalised Exponential Function, is
applied to the outputs resulting a set of probabilities over the
output classes.

In the context of molecule similarity ranking, regression
networks are clearly the type of neural network that are the
most suitable and the type of network used in this study. In our
experiments, we used RelU activation for our hidden layer and
linear activation on the output layer. The RelU activation is
simple and is described by Equation 3 below:

f xð Þ =
0, if x ≤ 0

x, if x ≥ 0

(
(3)

The linear activation function is also simple: f(x) = x.
Our intention in the selection of these three particular

machine learning algorithms for our study was primarily to
explore one-class learning models. Additionally, the “traditional”
virtual screening process only involves using the known actives
as “templates” against which to compare candidate molecules
and not any decoys. Translating this into the machine-learning
domain, this could be compared to one-class learning methods
that, unlike supervised binary classifiers, do not make use of
negative examples, but only positive ones. For these reason, we
focussed most of our resources on exploring one-class learning
algorithms, as we believed they would be better suited to the
LBVS problem. However, we selected ANN as a general-purpose,
widely-used supervised algorithm against which to compare the
performance of the other one-class learning algorithms.
METHODS

Most of the previous literature involving USR has been evaluated
on the Directory of Useful Decoys (DUD) database of
compounds (Huang et al., 2006), however shortcomings have
February 2020 | Volume 10 | Article 1675
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since been identified in DUD (Mysinger et al., 2012). Actives in
the dataset were not diverse enough to ensure unbiased results
from virtual screening algorithms. Decoy selection was also not
optimal as significant imbalance existed between the net charges
of actives and decoys with 42% of the actives having a net charge
versus only 15% of the decoys. In 2012, Mysinger et al. released a
new and updated database named DUD-E which tackled these
shortcomings (Mysinger et al., 2012). DUD-E provides active
and decoy datasets for 102 protein targets with an average active/
decoy ratio of 1:50. To our knowledge, only the USRCAT
method has been evaluated on DUD-E. We, therefore, made
the choice of using the DUD-E the purposes of training and
evaluating our models.

As previous work was evaluated on the DUD database, for
ease of comparison, we selected the DUD38 subset of targets
provided by DUD-E which consists of 38 of the 40 targets in
Frontiers in Pharmacology | www.frontiersin.org 6
DUD. The protein targets we considered together with the
respective number of actives, decoys and resulting conformers
are shown in Table 1. We have also provided the dataset sizes on
disk for the 3D conformers that we generated from the SMILES
representations of the molecule datasets as well as the sizes of the
descriptors generated from said conformer data. These can be
seen in Table S2 in the Supplementary Material.

As with many virtual screening methods that depend on
molecular 3D shape, a sufficient number of conformers have to
be generated to adequately sample the molecules' conformational
space in order to produce effective results in USR. We generated
conformers from the Simplified Molecular Input Line Entry
Specification (SMILES) strings provided in DUD-E using the
RDKit open-source cheminformatics library (Landrum and
Others, 2013) following the protocol devised by Ebejer
et al. (2012).
TABLE 1 | The list of 38 protein targets that we considered in this study along with the number of active and decoy molecules that were available for each protein
target, and the respective number of active and decoy conformers we generated. These targets correspond to the “Dud38” subset in DUD-E.

Target Description Active
Mols.

Decoy
Mols.

Active
Confs.

Decoy
Confs.

Confs./mol
(Actives)

Confs./mol
(Decoys)

ACE Angiotensin-converting enzyme 282 16,900 31,947 1,266,730 113 74
ACES Acetylcholinesterase 453 26,250 55,549 2,153,887 122 82
ADA Adenosine deaminase 93 5,450 7,786 332,177 83 60
ALDR Aldose reductase 159 9,000 4,797 375,355 30 41
AMPC Beta-lactamase 48 2,850 1,351 99,431 28 34
ANDR Androgen Receptor 269 14,350 12,068 543,761 44 37
CDK2 Cyclin-dependent kinase 2 474 27,850 21,273 1,371,687 44 49
COMT Catechol O-methyltransferase 41 3,850 1,262 147,125 30 38
DYR Dihydrofolate reductase 231 17,200 16,679 873,009 72 50
EGFR Epidermal growth factor receptor erbB1 542 35,050 41,580 2,405,525 76 68
ESR1 Estrogen receptor alpha 383 20,685 21,024 1,212,349 54 58
FA10 Coagulation factor X 537 28,325 38,757 2,087,845 72 73
FGFR1 Fibroblast growth factor receptor 1 139 8,700 9,232 535,529 66 61
GCR Glucocorticoid receptor 258 15,000 12,111 652,595 46 43
HIVPR Human immunodeficiency virus type 1 protease 536 35,750 67,552 3,436,686 126 96
HIVRT Human immunodeficiency virus type 1 reverse transcriptase 338 18,891 16,576 836,334 49 44
HMDH HMG-CoA reductase 170 8,750 22,037 827,459 129 94
HS90A Heat shock protein HSP 90-alpha 88 4,850 4,918 235,367 55 48
INHA Enoyl-[acyl-carrier-protein] reductase 43 2,300 3,900 118,362 90 51
KITH Thymidine kinase 57 2,850 3,168 150,295 55 52
MCR Mineralocorticoid receptor 94 5,150 3,960 215,697 42 41
MK14 MAP kinase p38 alpha 578 35,850 34,310 2,096,198 59 58
NRAM Neuraminidase 98 6,200 6,030 325,337 61 52
PARP1 Poly [ADP-ribose] polymerase-1 508 30,050 18,925 1,242,760 37 41
PDE5A Phosphodiesterase 5A 398 27,550 32,657 1,876,746 82 68
PGH1 Cyclooxygenase-1 195 10,800 8,123 410,263 41 37
PGH2 Cyclooxygenase-2 435 23,150 19,598 960,837 45 41
PNPH Purine nucleoside phosphorylase 103 6,950 3,277 284,801 31 40
PPARG Peroxisome proliferator-activated receptor gamma 484 25,300 71,166 2,527,881 147 99
PRGR Progesterone receptor 293 15,650 13,041 578,492 44 36
PUR2 GAR transformylase 50 2,700 7,931 195,987 158 72
PYGM Muscle glycogen phosphorylase 77 3,950 3,300 212,652 42 53
RXRA Retinoid X receptor alpha 131 6,950 8,008 316,919 61 45
SAHH Adenosylhomocysteinase 63 3,450 1,883 118,691 29 34
SRC Tyrosine-protein kinase SRC 524 34,500 39,561 2,313,655 75 67
THRB Thrombin 461 27,004 57,028 2,131,048 123 78
TRY1 Trypsin I 449 25,980 47,961 1,933,063 106 74
VGFR2 Vascular endothelial growth factor receptor 2 409 24,950 25,349 1,518,622 61 60
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Conformer generation is performed using open-source code
by Steven Kearnes

1

which follows the protocol laid out by (Ebejer
et al., 2012). We modified this code in two ways:

• Use of ETKDG. We modified the code to use Experimental
Torsion Knowledge Distance Geometry (ETKDG) as the
conformer generation algorithm (Riniker and Landrum,
2015). ETKDG is a stochastic conformer generation method
which builds upon the existing Distance Geometry (DG)
algorithm (Blaney and Dixon, 1994) by using experimental
knowledge about preferential torsional-angles. The major
advantage in using ETKDG as opposed to DG is that the
output of DG is not optimal and the resulting conformers
may be in a distorted state (e.g., aromatic rings which are not
planar). In order to remedy this, a second energy
minimisation step is usually performed on these conformers
in which inter-atomic force-field calculations are used to relax
the molecule into a stable, energy-minimized state. This
computationally expensive step is avoided by Experimental-
Torsion Knowledge Distance Geometry (ETKDG) as the
embedded knowledge in the algorithm produces conformers
that are already energy minimized.

• Maximum energy cutoff. We removed all conformers which
had a total energy higher than that of the LEC by 5 kcal/mol
or more. This ensures that conformers with high energy
(typically unsound structures) are discarded.

Prior to conformer generation, we validated and standardized
the molecules using the MolVS tool

2

. This tool has been now
integrated into RDKit.

Once we had generated a sufficient number of conformers for
the compounds pertaining to our chosen protein targets, we
calculated USR descriptors as well as descriptors for CSR,
ElectroShape, and ElectroShape 5D for all the generated
conformers. Note, however, that for reasons of time and
resource availability, we chose to perform our machine
learning experiments exclusively on the descriptors for USR
and those for ElectroShape 5D. ElectroShape 5D was chosen
because it is the highest performing USR-like method among
those we evaluated.

The processes of conformer and descriptor generation
resulted in excess of 300 GB of data. In order to generate and
process this in a feasible amount of time, we used a Python 3.6/
Spark 2.3.0 cluster on Amazon Web Services consisting of 3
compute-optimised c5.2xlarge instances having 8 cores and 16
GB of memory each. Cheminformatics analysis was performed
using RDKit (version 2018.09.1). We also used the machine
learning algorithms supplied with version 0.20.2 of the Scikit-
learn library as well as Keras v.2.2.4/Tensorflow v.1.14.

Experiments
The first experiments that we conducted were retrospective
virtual screening using both USR and ElectroShape 5D over all
the DUD38 protein targets in DUD-E. This gave us a baseline
1https://github.com/pandegroup/vs-utils [Last Accessed 4 May 2019]
2https://github.com/mcs07/MolVS [Last Accessed: 5 August 2019]
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performance level against which to compare the results of the
machine learning experiments.

For both USR as well as ElectroShape 5D, two versions of the
experiments were performed.

The first used the full molecule conformer models of the
actives as search templates for the similarity matching,
comparing each conformer of each unknown molecule to each
conformer of the template, taking the maximum similarity as the
similarity score between the two molecules.

The second used only the LEC for each active as the search
templates rather than all the active conformers in order to
replicate the results of Ballester et al. (2009).

Having obtained baseline performance measures for the
standard Manhattan distance-based USR and ElectroShape 5D
screening processes, we proceeded to train the three types of
machine learning models described previously.

Our training protocol was similar for all three algorithms and
is described as follows:

1. Partition the training set into test set T (20%) and training set
L (80%).

2. Partition L set into 5 folds, L1…L5.
3. For every choice of hyperparameter (grid search), perform 5-

fold cross validation on L, i.e. perform training and testing
over j = 1…5 iterations, each time taking Lj = x as a test set and
the 4 folds Lj ≠ x together as training set.

4. Select highest scoring grid search hyperparameter value
combination averaged over the 5 iterations.

5. Train model using highest performing hyperparameter
combination using L as the training set and T as the test
set to evaluate final model. This ensures that the final test set
is completely disjoint from the training data and avoids bias
in the final results.

This process was repeated for every protein target at
successively smaller portions of the entire dataset available in
DUD-E equivalent to 100%, 80%, 60%, 50%, 30%, 10%, 5%, and
10 molecules, selected at random. All this is furthermore
repeated for models trained using full molecule conformer
models and for LECs models, running the training/testing
cycle for a total of 16 times per protein target.

Evaluation
For every model trained, we evaluated the performance using
two criteria—the Receiver Operator Characteristic (ROC) Area
Under Curve (AUC) and the EF. EF is a measure used specifically
in retrospective virtual screening studies. EF at a given
percentage of a dataset is defined as the ratio of the fraction of
actives correctly found within the first x% of the ranked dataset
to the fraction of actives that would be found by chance. This is
defined formally in Equation 4.

EFx% =
ax%=cx%

a100%=c100%

where EFx% is the enrichment factor at x%, ax% is the number
of actives found in the top x% of the sorted dataset and cx% is the
total number of compounds in x% of the dataset. This measure,
however, depends on the ratio of decoys to actives that are
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present in the dataset, and therefore is problematic to use when
comparing results across different studies. For this reason, we
also evaluate our models based on the ROC AUC.

The disadvantage to using ROC AUC performance metric, in
the context of retrospective virtual screening, is that they give a
picture of the performance of the method across the entire
dataset, however in virtual screening only the top-ranked
molecules are of interest. This is because in a prospective
screening scenario, it is not possible to physically test all the
compounds in the dataset and the available resources for testing
in the laboratory would be invested only on the best-
ranked compounds.

Unlike the EF, the ROC AUC does not depend on the
structure of the dataset, making it more suitable and robust
when used for comparison across studies using different
benchmark datasets.
RESULTS

The first stage in our experiments was to implement and evaluate
the standard USR and ElectroShape 5D methods. Evaluation of
our results with those of Ballester et al. (2009) and Armstrong
et al. (2011) show them to be comparable albeit with differences,
since they are evaluated on different datasets with a different
decoy selection. Our results are shown in Figures 2 and 3. As can
be seen, ElectroShape 5D obtains better performance than
Frontiers in Pharmacology | www.frontiersin.org 8
standard USR in all the protein targets being considered. The
corresponding ROC AUC measures can be seen in the
Supplementary Material.

We observed that, in general, our results show a similar trend
to those presented by Armstrong et al. (2011) (reproduced in
Figure 4), i.e., most targets that show a high enrichment in our
results also show a high enrichment in Armstrong's results and
vice versa , but there are differences. The Pearson
productmoment correlation coefficient for the two sets of data
is 0.35, indicating a mild positive correlation. Given the
differences in decoy selection in DUD-E in comparison with
DUD (Mysinger et al., 2012), it is not surprising that our results
differ from those obtained by Armstrong. This relatively low,
albeit positive, correlation coefficient, indicates that differences in
dataset selection can have a significant impact on virtual
screening results.

Once we generated results for our baseline methods, we
trained and evaluated our machine learning models as
described in the section Experiments. The results obtained
from our machine learning experiments are visualised as
follows. For each machine learning model, we have graphed
the EF1% as well as the ROC AUC achieved by the model along
with the corresponding evaluation result achieved by
ElectroShape 5D. Along with these we graph the improvement
ratio between the performance of the model and the performance
of ElectroShape 5D so as to indicate immediately the advantage
in performance afforded by the use of the machine learning
FIGURE 2 | Comparison of Enrichment Factor at 1% (EF1%) obtained by USR with that obtained by ElectroShape 5D using full conformer models. Also plotted is
the percentage ratio of the Enrichment Factor score of ElectroShape 5D compared to Ultrafast Shape Recognition (USR). Mean ratio = 253% ± 122%, max = 738%,
min = 104%.
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FIGURE 3 | Comparison of Enrichment Factor at 1% obtained by USR with that obtained by ElectroShape 5D using Lowest Energy Conformers. Also plotted is the
percentage ratio of the Enrichment Factor score of ElectroShape 5D compared to Ultrafast Shape Recognition (USR). Mean ratio = 283% ± 125%, max = 755%,
min = 124%.
FIGURE 4 | ElectroShape 5D EF1% calculated on the DUD dataset as reported in Armstrong et al. (2011). Legend: 5D(x,y,z,q = MMFF94x,aLogP)—ElectroShape
5D with partial charge and lipophilicity as the 4th and 5th dimensions, 4D(x,y,z,q = MMFF94x)—ElectroShape 4D using partial charge as the 4th dimension, 4D(x,y,z,
q = aLogP)—ElectroShape 4D using lipophilicity as the 4th dimension. Reproduced from Armstrong et al., 2011.
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method over ElectroShape 5D for every protein target. We do
this for models trained on full conformer models as well as for
those trained on LECs. Due to space constraints, we only present
the EF1% results. These can be seen in Figures 5–11. A complete
set of visualisations is made available in the Supplementary
Material (Figures S1–S15).

All the results obtained by the machine learning models we
trained are presented in tabular form in Table 2.

Note that when training the ANNs, we expected to see a
performance drop in the LEC model with respect to the full
conformer-trained model, as for the other models, however,
training both using a hidden layer size of 100 nodes, this did
not materialise and the performance obtained for the LEC-
trained model, in terms of mean EF1% improvement ratio over
ElectroShape 5D, was virtually the same for the same hidden
layer size (255% ± 106% vs. 256% ± 129%). Upon increasing the
hidden layer size to 500 nodes, this situation did not change
(333% ± 128% vs. 327% ± 148%). It is also interesting that the
ANN performance did not surpass that of the full-conformer
GMM. Based on these results, the ANN model does not perform
as well as GMMs.

It is also important to note that the imbalance in the training
datasets, i.e., the ∼1:50 active/decoy ratio, can cause some
supervised machine learning models such as ANNs to give
misleading test results by adapting their response to the
distribution of labels in the training data rather than to the
structure of the data itself. We verified the effect of the DUD-E
unbalanced datasets on our ANN models by training alternative
Frontiers in Pharmacology | www.frontiersin.org 10
models using oversampling of the active conformers to balance
the active/decoy ratio. Through these experiments we saw that
the results obtained by balancing the datasets were comparable to
those obtained from the unbalanced ones (mean unbalanced
ROC AUC = 0.937 ± 0.037 vs. balanced ROC AUC = 0.955 ±
0.33, mean unbalanced EF1% = 38.2 ± 11.7 vs. mean balanced
EF1% = 37.3 ± 14.7). Balancing the datasets in this way, however
results in almost twice the training data for each model that is
trained, and therefore a correspondingly longer training time.
Given the marginal differences in results obtained through these
experiments, therefore, we stuck to using the original unbalanced
data to train our ANNs. Note that dataset balance is not an issue
with either GMMs or Isolation Forests since decoys are not used
when training these models.

Varying the Size of the Training Dataset
We have repeated our experiments for every machine learning
algorithm multiple times using successively smaller portions of
the available dataset so as to explore the manner in which the
performance given by each model degrades with dataset size and
to understand how the performance of machine learning models
degrades with a reduced dataset.

Figures 12 and 13 contain plots illustrating the performance
variation with number of known actives of our GMM models,
the best performing models in our tests. The complete set of
figures illustrating the performance change with dataset size for
all our trained models can be found in the Supplementary
Material (Figures S1–S15).
FIGURE 5 | Comparison of Enrichment Factor at 1% obtained by Gaussian Mixture Models with that obtained by ElectroShape 5D using full conformer model. Also
plotted is the percentage ratio of the Enrichment Factor score of Gaussian Mixture Model (GMM) compared to ElectroShape 5D. Mean ratio = 430% ± 223%,
max = 941%, min = 107%.
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FIGURE 6 | Comparison of Enrichment Factor at 1% obtained by Gaussian Mixture Model with that obtained by ElectroShape 5D using Lowest Energy Conformers.
Also plotted is the percentage ratio of the Enrichment Factor score of Gaussian Mixture Model (GMM) compared to ElectroShape 5D. Mean ratio = 291% ± 162%,
max = 829%, min = 0%.
FIGURE 7 | Comparison of Enrichment Factor at 1% obtained by Isolation Forest with that obtained by ElectroShape 5D using full conformer model. Also plotted is
the percentage ratio of the Enrichment Factor score of Isolation Forest compared to ElectroShape 5D. Mean ratio = 211% ± 90%, max = 941%, min = 107%.
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FIGURE 8 | Comparison of Enrichment Factor at 1% obtained by Isolation Forest with that obtained by ElectroShape 5D using Lowest Energy Conformers. Also plotted is
the percentage ratio of the Enrichment Factor score of Isolation Forest compared to ElectroShape 5D. Mean ratio = 190% ± 84%, max = 460%, min = 0%.
FIGURE 9 | Comparison of Enrichment Factor at 1% obtained by Artifical Neural Networks with 500-node hidden layer with that obtained by ElectroShape 5D using
full conformer models. Also plotted is the percentage ratio of the Enrichment Factor score of Artificial Neural Network (ANN) compared to ElectroShape 5D. Mean
ratio = 328% ± 149%, max = 636%, min = 30%.
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FIGURE 10 | Comparison of Enrichment Factor at 1% obtained by Artificial Neural Networks with 100-node hidden layer with that obtained by ElectroShape 5D
using full conformer models. Also plotted is the percentage ratio of the Enrichment Factor score of Artificial Neural Network (ANN) compared to ElectroShape 5D.
Mean ratio = 256% ± 129%, max = 565%, min = 82%.
FIGURE 11 | Comparison of Enrichment Factor at 1% obtained by Artifical Neural Networks with 100-node hidden layer with that obtained by ElectroShape 5D
using Lowest Energy Conformers. Also plotted is the percentage ratio of the Enrichment Factor score of Artificial Neural Network (ANN) compared to ElectroShape
5D. Mean ratio = 256% ± 107%, max = 491%, min = 57%.
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The statistical significance annotations were computed using
the Wilcoxon rank-sum test (Mann and Whitney, 1947). This is
a non-parametric test and therefore does not assume normality
in the data. We have visually checked the distribution for each
bin using histograms and found that they were not normal. It
also assumed that the groups being compared are independent
and not paired, which is the case with our box plots. The
Wilcocon rank-sum test tests the null hypothesis that for any
two observations a and b drawn from group A and group B
respectively, the probability of a being greater that b is the same
as that for b being greater that a. This test is used to investigate
whether two sampling distributions are the same.
Frontiers in Pharmacology | www.frontiersin.org 14
It is apparent from these figures that performance is
better maintained for low number of actives by using full
conformer models than by LECs. This is most pronounced
for Neural Networks as well as GMMs, however it is also
apparent for Isolation Forests, albeit more weakly.
Nevertheless, even for small active training sets for which
the mean performance is low, outliers are apparent with high
enrichment factors. This shows that the performance of the
methods we have explored is highly dependent on the
protein target that is being considered and it is difficult to
know a-priori, how well a method will perform given the
number of available actives.
FIGURE 12 | Performance variation of full-conformer model Gaussian Mixture Models with number of actives. Scatter plot indicates one point per template within
the given range. The number of templates captured within the range is indicated in the axis labels. Note that multiple points belonging to the same target could fall
within a single range due to the binning thresholds used.
TABLE 2 | Summary of machine learning results expressed as percentage ratios over ElectroShape 5D. A value of 100% indicates that the same performance as
ElectroShape 5D was obtained.

LEC GMM Isolation Forest ANN ANN
(Hidden layer = 100) (Hidden layer = 500)

Mean EF1%( ± std) 291%( ± 162%) 191%( ± 084%) 256%( ± 107%) 333%( ± 130%)
Max EF1% 829% 450% 491% 618%
Min EF1% 0% 0% 57% 121%
Mean AUC( ± std) 133%( ± 17%) 126%( ± 15%) 139%( ± 17%) 144%( ± 21%)
Max AUC 171% 155% 175% 179%
Min AUC 104% 99% 104% 105%

Full Conformers
Mean EF1%( ± std) 430%( ± 223%) 211%( ± 90%) 256%( ± 129%) 328%( ± 149%)
Max EF1% 941% 403% 565% 636%
Min EF1% 107% 0% 82% 30%
Mean AUC( ± std) 137%( ± 19%) 124%( ± 14%) 136%( ± 20%) 143%( ± 20%)
Max AUC 173% 153% 173% 177%
Min AUC 105% 99% 103% 104%
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For LEC models a performance peak is apparent at around
25–49 actives, beyond which performance degrades again. We
observed this effect on GMMs and Isolation Forest models, but
not on Neural Networks. It is possible that implementing a more
comprehensive parameter sweep during the tuning of these
models could eliminate or reduce this effect. For example, in
the case of GMMs, allowing a larger number of Gaussian
components would probably resolve the active clusters better
and improve performance for larger numbers of actives.

A general observation in our results is that, across the
machine learning models that we trained, those trained on
full conformers preserve good performance when trained with
as little as 5–9 actives, while with those trained on LECs, the
cutoff is in the 10–24 actives range. These results indicate that
for small datasets, models should be trained using full
conformer models.

Running Times
In order to understand how the time required to train and
perform a retrospective virtual screening run varies with dataset
size, we plotted the time taken to perform our experiments
against the corresponding dataset portion used as training set
using box plots, with separate boxes representing the run-time
for each machine learning algorithm. The timings include the
time taken to train the final, tuned model and evaluate the
molecules under test. This does not include the time required to
generate the conformers and the USR and ElectroShape 5D
descriptors. These plots can be found in the Supplementary
Frontiers in Pharmacology | www.frontiersin.org 15
Material (Figures S16–S19). Additionally we have also presented
running-time statistics in Table S1.

Note that, if used in a prospective screening scenario, a machine
learning model would have been pre-trained from the available
training data, therefore the time required for training would not be
a factor when measuring the running time for such a study. In this
case, however, since a retrospective experiment was being carried
out we considered the total time required for training as well as
testing/evaluation to be an important consideration.

It is apparent from the plots supplied in the Supplementary
Material that GMMs were the quickest models overall for LEC
models (8s ± 11s mean time) and the second quickest for the full
conformer models (787s ± 868s mean time). For full conformer-
trained models, GMMs were quicker for dataset fractions up to
60% of the full dataset, however, were slower than Isolation
Forest for dataset fractions larger than 60%. At the 30% fraction
the GMM running time increased. This could have been caused
by transient resource contention on the machine on which the
experiments were being run.

Isolation Forest speed performance compared favourably to
GMMs for large datasetswhenusing full conformermodels (397s ±
373s mean time for isolation forest vs. 787s for GMMs), however,
for smaller datasets using LECs it was considerably slower than the
other algorithms, including ANNs (453s ± 423s for Isolation Forest
vs. 131s ± 89s forANNs). This is quite surprising and is likely due to
the fact that no matter the size of the training data, an ensemble of
decision trees of comparable size need to be created by the
algorithm. Tweaking the hyperparameters to use smaller
FIGURE 13 | Performance variation of Lowest Energy Conformation (LEC) model Gaussian Mixture Model with number of actives. Scatter plot indicates one point
per template within the given range. The number of templates captured within the range is indicated in the axis labels. Note that multiple points belonging to the
same target could fall within a single range due to the binning thresholds used.
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ensembles for LECs would probably make this model faster,
however, this was not attempted in this study.

Neural Networks appear to be themost consistent with respect to
speed performance. In general, it is the slowest algorithm (1855s ±
1659s mean time for full conformers and 131s ± 89s mean time for
LECs), except for Isolation Forest in the LEC scenario.

It is worthnoting that, notwithstanding the necessity to train the
machine learning models before running the virtual screening
procedure, the total time required to perform our retrospective
screening on each target took, on average, a much shorter time to
complete than the standardUSRalgorithmswhich took, on average
10 timesmore time to complete. Part of this discrepancy is likely the
efficiency of our Python implementation of USR, which must
necessarily be slower than the C-based implementations of the
algorithms in the scikit-learn library. The magnitude of the
difference, however, makes it unlikely for this to be the entire
explanation.A largepart of thediscrepancy also comes fromthe fact
that, in USR, all the conformers in the test set of molecules must be
compared to every conformer of every active template. Over the
course of an entire retrospective screening cycle, this adds up to a
large amount of computation.

With machine learning algorithms, however, this is not
necessary. The bulk of the running-time when using machine
learning methods is the training of the model, however this, in
general, does not require the repeated comparison of all the data
points with all the active data points in a Cartesian product
fashion. Additionally, once a model is trained, classifying new
data points is generally a fast process because it does not involve
comparing the new point with the training data directly, but only
requires that the new data be evaluated according to the model
built during training. All this, clearly depending on which
particular machine learning algorithm is being used, implies a
much smaller amount of computation than the “brute force”
approach inherent in standard USR.
DISCUSSION

Throughout this study we sought to answer two research
questions, namely:

• Can machine learning techniques replace the naïve
Manhattan distance in USR and USR-like methods to
improve Virtual Screening performance?

• What is the minimal amount of data required to adequately
train USR and USR-like machine learning models?

In pursuit of the first question, we used the datasets provided
in DUD-E to generate a suitable number of conformers to
adequately sample the conformational space of the molecules
from which we generated corresponding USR and ElectroShape
5D descriptors.

We then selected three suitable machine learning algorithms,
namely Gaussian Mixture Models, Isolation Forests, and Artificial
Neural Networks and we trained and evaluated these models using
the descriptors we had previously generated. In doing so, we
obtained results that significantly outperformed USR as well as
ElectroShape 5Dwhen using both the full conformer models of the
Frontiers in Pharmacology | www.frontiersin.org 16
active molecules as training data, as well as when using only the
LowestEnergyConformations (LECs).Concretely, in termsofEF1%
the bestmean improvement overElectroShape 5Dwas that of 430%
obtained usingGMMs trained on full conformers, the samemodels
having obtained a maximum improvement of 941% over
ElectroShape 5D. This was followed by a mean improvement of
328% with a maximum of 636%, obtained by ANNs, again trained
on full conformer models. When using LECs as training data,
GMMs obtained amean performance improvement of 291% and a
maximum of 829%, outperforming ANNs with a hidden layer size
of 100, which obtained a mean improvement of 256% with a
maximum of 613%. It is clear, however, that some targets are
more responsive to screening by USR descriptors, there being a
relatively large variance in the mean performance figures. This is
also reflected in the literature (Armstrong et al., 2009; Ballester et al.,
2009; Armstrong et al., 2010; Armstrong et al., 2011) and is,
therefore, expected.

These improvements over ElectroShape 5D are of a similar
magnitude to the performance increase afforded by ElectroShape
5D itself over USR and are, therefore, highly significant. Machine
learning algorithms assimilate the features of all the active
molecules into a single model, in contrast to the naïve USR-
based algorithms which can only consider one molecule at a time
as a search query. This feature of machine-learning algorithms
appears to make a large difference to the similarity matching
performance in the LBVS context when compared with the
standard algorithm for the USR family of methods.

In order to explore our second research question, we trained
the machine learning models on progressively smaller fractions
of the selected DUD-E targets so as to explore the manner in
which the performance of the models varied whilst decreasing
training dataset size. Our results demonstrate that when using
full conformers to train the models, better performance is
obtained when the number of actives is low. In general a
performance peak is observed when training with 25–49
actives. With the LEC models, this peak is more pronounced,
indicating that for small active training sets it is more
advantageous to train with full conformers than LECs.

We also observed that performance of ourmodelswas preserved
when only 5–9 actives are used for training when using full
conformer models while, for the LEC-trained models, the
performance remained acceptable down to the 10–24 actives level.

Taking into account all the results obtained, in terms of VS
performance as well as running times, and we come to the
conclusion that GMMs were, overall, the most efficient models
that we tested, achieving excellent performance in the shortest
time (except for the largest datasets; see Figures S16 and S17 in
Supplementary Information) and while also exhibiting good
stability with decreasing dataset size.
CONCLUSION

To the best of our knowledge, this research project constitutes
the first study to explore the viability of several machine learning
algorithms in their application to LBVS using USR and USR-
like descriptors.
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We have demonstrated the utility of applying machine
learning methods to the LBVS scenario when using USR-like
descriptors, managing to obtain significant performance
improvements over both the USR and the ElectroShape 5D
algorithms using the Gaussian Mixture Model (GMM),
Isolation Forest and Artificial Neural Network (ANN)
algorithms. The GMM models were found to achieve the best
performance improvement over ElectroShape 5D in terms of
enrichment factor, giving an improvement of 291% for LEC-
trained models and 430% for full conformer trained models with
maximum improvements of 829% and 940%, respectively. These
results clearly represent non-trivial improvements over the
classical, non-machine learning, USR family of methods.

Furthermore we demonstrated that these trained models
maintain stable performance when trained with drastically
smaller quantities of training data, especially when full
conformer molecule models are used, maintaining statistically
similar performance from full dataset down to the 5–9 active
range for full conformer models.

We also demonstrated the significant advantages in terms of
running times, where retrospective screening took, on average 10
times less time to complete using our machine learning models
than for USR and ElectroShape 5D.

Due to the sheer magnitude of the options available when it
comes to machine learning methods, this work must be considered
as a starting point for further research into the topic of machine
learning on USR, however, we believe that it makes a valid
contribution to the field, as it demonstrates significant
performance improvements over current state-of-the-art methods
that do not use machine learning.
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