
Received October 25, 2021, accepted December 11, 2021, date of publication December 21, 2021,
date of current version December 30, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3137360

PoPL: Proof-of-Presence and Locality,
or How to Secure Financial Transactions
on Your Smartphone.
YONAS LEGUESSE 1, CHRISTIAN COLOMBO1, MARK VELLA 1, (Member, IEEE),
AND JULIO HERNANDEZ-CASTRO2
1Department of Computer Science, University of Malta, 2080 Msida, Malta
2School of Computing, Cornwallis South, University of Kent, Canterbury CT2 7NZ, U.K.

Corresponding author: Yonas Leguesse (yonas.leguesse.05@um.edu.mt)

This work was supported by the Lawful evidence cOllecting and Continuity plAtfoRm Development (LOCARD) Project under Grant
H2020-SU-SEC-2018-832735.

ABSTRACT The security of financial apps on smartphones is threatened by a class of advanced and
persistent malware that can bypass all existing security measures. Strong cryptography and trusted on-chip
hardware modules are powerless against sophisticated attacks that supplant device owners through device
input record/replay functionality, effectively hijacking their credentials, privileges, and actions. In this
paper, we introduce Proof-of-Presence and Locality (PoPL), a new security measure that tackles this
threat by leveraging sensors to prove the physical presence of device owners and therefore discriminate
between malware-initiated transaction requests and legitimate ones. Moreover, PoPL neither imposes the
expense of additional hardware nor compromises app usability. In order to demonstrate PoPL’s practicality,
we developed PoPLar, a challenge puzzle implementation of the PoPL concept that ensures usability even
on limited screen sizes by the use of a dendrogram. We have made it available as an open-source library
ready to be integrated with minimal effort with existing apps. We demonstrate PoPLar’s effectiveness and
ease of integration through case studies involving apps from the three top cryptocurrency exchanges and an
open-source crypto wallet.

INDEX TERMS Cryptocurrency exchange app security, mobile malware, puzzle-based authentication,
usable security.

I. INTRODUCTION
Smartphones are becoming an increasingly convenient
way to process and exchange sensitive information with
online services, and security-sensitive financial transac-
tions are no exception. Mobile device vendors are well
aware of this and try to offer secured mobile plat-
forms based on the usage of trusted hardware compo-
nents and strong cryptography [1]. Yet, these measures
are not stopping cyberattacks from threatening the security
of smartphone-based financial transactions, with cryptocur-
rency exchange apps being a particularly notable case in
point [2].

Recently, the additional threat of performing these attacks
with a significantly reduced forensic footprint was demon-
strated [3]. The implication is that malware can hijack

The associate editor coordinating the review of this manuscript and

approving it for publication was Feng Lin .

valuable accounts without being found out, at least not before
it is too late, with the possibilities of recovering funds and
accurate criminal attribution being severely reduced. In this
context, a particularly worrying attack vector is Android
accessibility, posing a long-term threat. No obvious mitiga-
tion exists unless one is ready to discard it, which comes with
its own set of consequences and concerns all customers with
special needs. Ultimately, all smartphone users can benefit
from accessibility services on occasion, such as while driving
a car or multitasking through one’s schedule [4]. Accessi-
bility trojans can hijack an app’s UI-user channel, effec-
tively taking over access to all credentials and privileges [5],
even on secured mobile platforms, without the need of root-
ing/jailbreaking the device. Notorious examples of malware
exploiting this attack vector include theGustuff, Cerberus and
DEFENSOR ID mass malware [6], [7]. While Android may
be a prime target due to its market share, accessibility threats
for iOS and other platforms are a ticking time bomb [8].

168600 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-7997-0063
https://orcid.org/0000-0002-6483-9054
https://orcid.org/0000-0001-5240-5200

Y. Leguesse et al.: PoPL: PoPL, or How to Secure Financial Transactions on Your Smartphone

Financial apps offer various security measures, for exam-
ple, the use of two-factor authentication (2FA) or the tem-
porary disabling of fund transfer functionality [9]. 2FAs and
many types of multi-factor authentication [10] commonly
involve the sending of a verification code through a channel
other than the one used for user/transaction authentication.
The premise is that security is increased when malware can-
not thwart the additional channel(s). Yet, this approach can
only be effective against device input record/replay threats
if we can count on having a separate hardware token. If a
compromised device offers an attacker the ability to record
and replay device inputs, for example touch inputs, then it
could also provide the ability to replicate an entire authen-
tication sequence that makes use of the same input. Tools
such as accessibility services, or ADB shell’s getevent, sende-
vent, and input debugging tools, can be abused to facilitate
record/replay device input attacks.

The replayed device input steps can also cover the retrieval
and input of 2FA verification codes, defeating any form of
freshness-based mitigation. For example, soft tokens, such
as the ones sent via SMS or email and even the ones gen-
erated locally by applications such as Google Authenticator,
despite being convenient, can still be easily read by accessi-
bility trojans through UI channel subversion. Ultimately, the
use of secure hardware offers the ideal solution, with even
single-factor authentication being secure enough for most
scenarios, e.g. Yubico Key with FIDO2 [11]. However, this
incurs a non-negligible expense and becomes a hindrance to
app usability, possibly scaring away potential customers.

In this work, we propose Proof-of-Presence and Local-
ity (PoPL), a new security mechanism to defend against
device input record/replay threats targeting financial apps.
Our proposal works by proving the physical presence and
locality of a smartphone’s user to the remote exchange service
provider through the solution of a challenge that cannot be
recorded/replayed or automated (see Figure 1) nor solved by a
remote attacker. PoPL works by leveraging the accelerometer
sensor (though other sensors can be used as well). A success-
ful challenge solution allows us to verify the presence of a
legitimate local user as opposed to a remote attacker, even
if the attacker has compromised the device and has remote
control over it.

We chose the accelerometer sensor since it is themost com-
monmotion sensor found on smartphones, and is protected by
default through the Android sensor security model that does
not allow write access to the sensor [12].

As a reference implementation, we developed PoPLar
that combines the malware-resilience of accelerometer sen-
sors and a dendrogram-centric challenge that is perfectly
suitable for a smartphone’s limited screen size. Moreover,
our proposal does not burden users with an overly lengthy
or annoying activity. PoPLar can secure financial transac-
tions in smartphones without incurring any additional eco-
nomic costs. Experimentation with the Android apps of the
main cryptocurrency exchanges, namely Binance, Coinbase
and Huobi, demonstrate the futility of their current security

measures in withstanding accessibility attacks. In a case study
over the open-source Bitcoin Wallet app, we also show how
integrating PoPLar into an existing app only requires minimal
effort.

Overall, we make the following contributions:-

• PoPL: a Proof-of-Presence and locality countermeasure
against device input record/replay threats on mobile
apps.

• We demonstrate PoPL’s effectiveness to mitigate acces-
sibility attacks on three popular Android crypto
exchange apps, without the need for additional hard-
ware tokens, while ensuring usability. This was demon-
stated through PoPLar, a PoPL implementation based
on mobile device sensors and a dendrogram-centric
challenge.

• We made PoPLar publicly available as an Android
library, and we demonstrate its ease of integration using
the case study of a popular open-source crypto wallet.

II. BACKGROUND
Nowadays, smartphones are one of the most convenient
media from which to initiate financial transactions. While
users have generally accepted that fund transfers requiremore
robust authentication methods than an app login, developers
must also ensure usability or face a customer exodus. The
threat of accessibility trojans is a long-term one precisely
because it exploits this usability-security tension, in turn, also
requiring a long-term solution.

A. FINANCIAL APPS
The convenience of performing financial transactions from
a smartphone has popularised financial apps so much that
nowadays one finds mobile-exclusive banking services [13],
e.g. Revolut, and several virtual asset management services,
that push their mobile app as their primary customer inter-
face [14]. Besides being ubiquitous and easily connected to
online services, smartphones offer simple app deployment.
In addition, near-field-communication (NFC) and Bluetooth
interfaces can connect them to point-of-sale terminals and
other smartphones, offering further fund transfer options.

This is also the case with crypto exchanges, with their apps
allowing users to buy/sell cryptocurrency. In general, users
of financial apps are presented with security challenges prior
to any substantial transfer of funds. Our PoPLar could be an
example of such a challenge.

B. MULTI-FACTOR AUTHENTICATION AND SECURE
HARDWARE TOKENS
2FA or even multi-factor authentication methods [15] typi-
cally cater to the need for additional authentication as ameans
of extra protection for sizeable fund transfers in financial
apps. 2FA aims to blend the something you know, are or have
authentication factors. The premise is that an attacker needs
to work harder to bypass an aggregate of these components.

VOLUME 9, 2021 168601

Y. Leguesse et al.: PoPL: PoPL, or How to Secure Financial Transactions on Your Smartphone

FIGURE 1. Successful accessibility trojan attack on crypto app (left) and an unsuccessful run blocked by PoPLar (right).

Online banking services have long used verification codes
generated by hardware tokens.

In this case, the PIN-enabling token access provides the
know factor, while the token itself is the have factor. Biomet-
rics present the ideal something you are factor, but until prac-
ticality/privacy challenges are sorted out, CAPTCHAs [16]
provide the next-best option by being able to discriminate
between humans and computer programs (or bots). This kind
of classification is, therefore, somewhat useful for PoPL.

With the onset of mobile phones, these devices started
to be used as a replacement for physical 2FA tokens [17],
[18], which is sub-optimal when the same smartphones are
used for performing financial transactions. In order not to
compromise the convenience of employing the smartphone as
a token, soft 2FA tokens in the form of authentication apps,
e.g. Google Authenticator, can be used. However, this option
severely impacts security since any malware that takes over
both the financial and the authenticator app effectively annuls
any added security. A more secure alternative could be the
adoption of secure hardware-based authentication solutions,
e.g. FIDO2 [11], where verification codes can be provided
by external hardware devices, e.g. Yubico Security Key. This
way, a simpler authentication is offered, but at the loss of the
single device convenience which is not to be underestimated
in terms of customer retention [19], especially when consid-
ering the additional costs it incurs. PoPL attempts to strike a
balance between not giving up on the single device approach
while at the same time offering an extra layer of security at
no additional cost.

C. USABLE SECURITY AND SMARTPHONE SENSORS
Usable security relates to the psychological acceptance of
various security mechanisms. This concept has been stud-
ied mainly in the context of graphical passwords [20] and
CAPTCHAs [16], [21]. Interestingly enough, smartphones

are also revolutionising the world of usable security through
their sensors, mainly the accelerometer and the gyroscope.
In fact, sensor-based CAPTCHAs compare favourably in
multiple studies [22], [23] to their classical counterparts.
While puzzle-based CAPTCHAs tend to come across as
a nuisance, sensor-based ones are generally considered as
enjoyable due to being game-like.

Other works have also focused on accessible authentication
schemes, for example, rhythm-based ones [24] intended for
visually impaired users. Additional studies went to the extent
of providing indirect biometrics based on user interactions
with location and environment sensors, as well as the phone’s
touchscreen, in what is being called Be(havioral)CAPTCHAs
[25], [26]. With PoPL, the concept of a sensor-based chal-
lenge is taken to a level where it can also withstand accessi-
bility attacks.

D. PROGRAMMATIC DEVICE INPUT INTERACTION
Modern smartphones have built-in sensors that measure
motion, orientation, and various environmental conditions.
The device’s screen is also equipped with sensors that allow
the user to interact directly with what is displayed on the
screen through touch. The operating system is responsible
for receiving and interpreting the raw data received from the
sensors as they sense physical environmental interactions.

There exist instances where the operating system also
allows for programmatic device input interaction, allow-
ing software to simulate operations that are otherwise trig-
gered through sensor interactions. For example, using the
Accessibility services, apps can read touch interactions using
the onAccessibilityEvent event, as well as interact
with the UI elements displayed on the screen using the
performAction(). In so doing, they enable the develop-
ment of assistive apps, e.g., voice-controlled apps, that inter-
face with users in an alternative manner other than via GUI.

168602 VOLUME 9, 2021

Y. Leguesse et al.: PoPL: PoPL, or How to Secure Financial Transactions on Your Smartphone

Besides accessibility, Android also offers debugging tools,
namely ADB’s input, getevent, and sendevent that
also provide programmatic access to device input interaction.
These tools are often used for debugging, testing, and automa-
tion. The input command-line tool can simulate a number
of input events, such as touch interaction using the adb
shell input tap x y command. Thegetevent tool
provides information about input devices and a live dump of
kernel input events, while sendevent is able to simulate
event operations on the input devices.

The ability to interact with device inputs can have sig-
nificant consequences on the security of the device. It can
effectively replace users in their interaction with smart-
phone apps, inheriting all of their credentials and privileges
while defeating security measures without even requiring
rooting/jail-breaking [5], [12]. Given their sensitive nature,
both accessibility services and ADB debugging are protected
by special user-granted permissions. Yet, social engineering
has been shown to be able to defeat the former [27] approach,
while ADB shell privilege abuse has been shown to defeat the
latter [12].

The getevent/sendevent tools are written in C,1 and form
part of toolbox utility. They interact directly with the
/dev/input directory of the Linux input subsystem.While
most Android devices offer these debugging tools, their
functionality depends on the OEM specific hardware and
firmware implementation, as well as the Android version.
For example, some OEM implementations may not expose
the accelerometer input device to get/sendevent, while more
recent Android versions deny write access to input devices
through sendevent on unrooted devices. This is implemented
within the adbd process2 when it drops its capabilities to
those associated with the AID_SHELL group id.
On the other hand, input3 operates at the Java

layer of the Android framework and is based on the
android.hardware.input.InputManager class.
Therefore, all requests are mediated by Android’s system
server Linux user-space process and, unlike the case of
get/sendevent, is accessible by adbd even on unrooted
devices.

Notwithstanding this, programmatic device input interac-
tion can pose a significant threat, possibly one that can defeat
existing authentication security measures short of introduc-
ing additional hardware-based tokens. This is where a new
mechanism like PoPL can contribute to improving security at
no extra cost and with minimal additional burden.

III. PROOF-OF-PRESENCE AND LOCALITY (POPL)
We refer to Proof-of-Presence and Locality (PoPL) as a gen-
eral security measure to distinguish between actions taken by
users physically interacting with an application, as opposed
to malware interacting with a device through programmatic

1toolbox/getevent.c
2adb/daemon/main.cpp, private/android_filesystem_config.h
3cmds/input/src/com/android/commands/input/Input.java

device input. This can also be seen as a way to distinguish
a local bot or malware from a legitimate user. Alternatively,
PoPL can also be employed to tell apart a legitimate local user
from a remote attacker, even if the attacker has compromised
the device and has remote control over it.

At the same time, in our target scenario, it is fundamental
not to incur additional hardware costs while ensuring usabil-
ity. PoPL is not intended as a sole solution for the threat but
rather as an additional layer aimed at reinforcing existing
countermeasures. In the remainder of this work, we specif-
ically discuss PoPLar as one such concrete realisation and a
reference implementation of this concept.

A. THREAT MODEL
1) DEVICE INPUT RECORD/REPLAY ATTACK
In this work, we focus on the device input record/replay
class of attacks. These attacks have the ability to record
input data during device interaction, and later replay the input
data, thus mimicking the device interactions programmati-
cally. The threat considers device input record/replay attack
vectors made possible through the aforementioned program-
matic device input interaction, specifically ones that make
use of accessibility or the ADB debugging tools, namely
get/sendevent and input.

2) THREAT VECTOR AND ASSUMPTIONS
The assumption is that the attack targets a non-rooted4

Android device. With locality-based security mechanisms in
place, the attacker is restricted to performing all of the attack
steps from the victim’s device. A trojan that evades App-
Store scanning [28] and is able to record and replay device
input interactions, is subsequently downloaded and granted
permission by the victim through social engineering [27].
Device input record and replay functionality allow trojans
to programmatically replicate recorded sequences of input
interaction according to the chosen attack vector.

Once the trojan is on the device, it starts interactingwith the
phone’s financial apps in a concealed manner, either through
overlays [29] or via sheer speed of operation, while the user
is not taking notice or cannot interrupt it. The attack is carried
out entirely on the victim’s device by a trojan that acts as
a proxy for a remote attacker. The attacks within scope can
also defeat 2FA, whose second factor leverages apps on the
compromised smartphone. Given that the phone is non-rooted
we assume that the attacker does not have the ability to take
screenshots belonging to PoPLar, which are protected by
Android’s LayoutParams.FLAG_SECURE feature. This
feature is commonly used in banking [30] apps, to protect
sensitive UI elements.

B. SMARTPHONE SENSOR SURVEY
Table 1 shows the results of a survey carried out to deter-
mine sensor availability on smartphones, using data from the

4If the phone is rooted, the attacker would be able to bypass any controls
in place.

VOLUME 9, 2021 168603

Y. Leguesse et al.: PoPL: PoPL, or How to Secure Financial Transactions on Your Smartphone

PHONEDB website,5 which maintains the world’s largest
and most detailed mobile device database. The device specs
search was used to filter the entire Android smartphone list,
totalling 12,691 on 23/01/2021, according to sensor avail-
ability. While there is no source providing the exact number
of devices in circulation using each sensor, these figures
indicate the trend among OEMs when it comes to includ-
ing the additional sensors. We primarily focus on Android
devices due to its largest market share. iOS devices, with the
second-largest market share, have a more restricted device
range and therefore are significantly more homogeneous.

The first two columns of Table 1 show the sensors sorted
according to availability, while the last two show the min-
imum required API levels and permissions. It is desirable
that the proposed PoPL mechanism has the widest support
possible, so the top four sensors all lend themselves well for
this purpose. Specifically, the accelerometer sensor can be
used to detect device tilting, upon which one can construct
a rolling-ball puzzle with acceleration forces along the x-y-z
axes.

C. POPLAR
The following is a way of summarising and bringing together
all the requirements that our proposal needs to take into
consideration:

1) SECURE IN THE THREAT MODEL CONTEXT
Given the threats associated with device input record/replay
attacks, the approach needs to ensure that a trojan is not able
to both read the content of the challenge and interact with
the challenge. For example, by limiting the challenge input to
the accelerometer sensor, PoPL can ensure that accessibility
trojans are unable to interact with the challenge. Moreover,
the trojan should not be able to lure the user into solving the
PoPL challenge through a combination of overlays and social
engineering.

2) USABILITY AND ACCESSIBILITY
PoPL needs to be easy to use, ideally with a gamification
element that users find fun. Furthermore, given that the main
attack vector we want to hinder is enabled through accessi-
bility, we also wish our approach to be accessibility-friendly.
This is logical since if accessibility were not a requirement,
then the best protection would be to simply turn off the
accessibility capabilities of the app.

3) WIDESPREAD AVAILABILITY OF TECHNOLOGY
As highlighted, technology already exists to solve this prob-
lem in the form of dedicated secure hardware. However,
we wanted our proposal to be based on widely available
technology which users already carry around.

4) EASY TO DEPLOY ON A LARGE SCALE
Generating PoPL challenges which satisfy the above condi-
tions should not require human intervention to design new
puzzles or challenges.

5https://phonedb.net

TABLE 1. Smartphone sensor availability, according to PHONEDB.

The approach adopted by SenCAPTCHA [22] is cur-
rently the closest that satisfies the listed requirements. This
approach makes use of the gyroscope sensor to push a ball
towards a puzzle keypoint - an animal’s eye. The puzzle
expects a trajectory close to optimal to fend off brute-force
attempts, while image mutation has been shown to render
senCaptcha resilient to multiple machine learning attacks.
The use of the gyroscope sensor renders fake sensor inputs
out of reach of the record/replay attacks considered by our
threat model (see Section IV-A2). For the same reason, image
mutation to counter ML attacks is not required either. There-
fore, the manual work necessary to seed senCaptcha puzzles,
while not compromising practicality, could be eliminated
altogether. Additionally, it is also desirable that PoPL’s puz-
zle design will support alternative sensor interactions in the
long run while not compromising the level of security. The
addition of sensors is envisaged in future development with
the aim of making PoPL itself more accessible. On the other
hand, SenCAPTCHA’s puzzle was designed with only the
gyroscope sensor in mind.

Our proposal — PoPLar — entails users physically tilting
the phone to direct a ball through a unique path, towards
a green area on the screen. The maze is in the shape of
a dendrogram, with each juncture branching into two, for
simplicity. Should a wrong path be taken, the user can tilt
the phone backwards to correct the situation. Once the green
path is encountered, the user can continue downwards as
before, until the final level is successfully completed and
the initiated transaction is executed. Figure 2 provides an
illustrated walk-through of the challenge as it appears on the
screen. Each level displays three left-right choices, i.e., eight
possible final outcomes per screen, with only one correct
path. The number of screens (referred to as levels) is set by
the app provider depending on the desired security level.6

PoPLar ticks all the requirements identified above by:
(i) Presenting an easy puzzle/challenge in the form of a game
that is also amenable to accessibility; we have catered for
colour blindness by showing the path of the ball using a

6We expect five levels to provide an adequate security margin for most
scenarios, with (23)5 = 32, 768 combinations, but these can easily be pushed
up to 10 or higher.

168604 VOLUME 9, 2021

Y. Leguesse et al.: PoPL: PoPL, or How to Secure Financial Transactions on Your Smartphone

FIGURE 2. PoPLar challenge: Roll the ball down the path leading to a green zone, by physically tilting the smartphone.

lighter colour, and audio cues can easily be provided for
users with visual impairment. Furthermore, we kept the inter-
face as clean as possible by limiting the number of choices
to three per screen/level. (ii) By using the accelerometer,
as opposed to other sensors (e.g. fingerprint), our approach
is readily usable by over 99% of smartphone users (see
Section III-B). (iii) Given that our threat model assumes the
presence of a device input record/replay trojan, which can
be attempting transfers in the background when the user is
not aware, several precautions are taken to protect against
this scenario: First, the puzzle is generated randomly, using
a cryptographically strong random number generator,7 with
a significant number of combinations to avoid the possi-
bility of a random combination of movements from a user
unknowingly matching the solution pattern (using 10 levels
translates to 1,073,741,824 combinations). Second, PoPLar
is triggered only once the very last app UI widget has been
interacted with, i.e., not giving the trojan any further oppor-
tunity to interfere with the UI flow from the time the user
proves presence to the time of the intended action. Third,
to protect against elaborate social engineering attacks tricking
the user into solving the puzzle in a different context (e.g.,
by presenting it as a game during a trojan-initiated transfer
unbeknown to the user), we write the details of the transfer
on the path which the ball needs to follow, in the form of

7https://developer.android.com/reference/java/security/SecureRandom

a watermark. In this way, overlays would prove futile as
they would also hide the ball. Finally, given that the attacker
does not have programmatic access to both the puzzle and
the accelerometer, record/replay and AI-aided attacks are not
an issue. (iv) PoPLar does not require any human input to
generate different puzzles, making it easily scalable. It also
brings no additional cost to the app provider and is easy to
integrate within an existing application, as demonstrated in
the next section.

Moreover, PoPL’s simple yet effective dendrogram design
provides the advantage of possible support for additional
sensors. For example, by using the camera sensor with facial
detection tools, the puzzle’s solution could involve control-
ling the ball movement through facial gestures or head tilting.

We made our proof of concept (POC) PoPLar implemen-
tation for Android available for download.8 PoPLar is also
available as a Jitpack library, allowing app developers to
easily integrate it into their app.9

IV. EVALUATION
We evaluate PoPLar’s effectiveness to protect financial apps
from accessibility trojans by first demonstrating success-
ful attacks on three popular crypto exchange apps without

8https://github.com/PoPDroid/AndroidPoP/tree/main/app/release
9https://github.com/PoPDroid/AndroidPoP

VOLUME 9, 2021 168605

Y. Leguesse et al.: PoPL: PoPL, or How to Secure Financial Transactions on Your Smartphone

this countermeasure. We then show how PoPLar foils these
attacks on an unrooted Android phone.

We also demonstrate that simply disabling accessibility on
specific UI elements, a mitigation measure put in place by
a crypto exchange following our report, is still vulnerable to
device input record/replay attacks. We then demonstrate how
PoPLar itself is not vulnerable to existing accelerometer sen-
sor manipulation driven device input record/replay attacks.

We finally demonstrate usability by measuring authenti-
cation times for varying security levels, and also show the
ease by which PoPLar can be integrated into an existing app
without requiring an overhaul of its source code.

A. ATTACK RESILIENCE
1) EXPERIMENT SETUP
In order to demonstrate PoPLar’s effectiveness in secur-
ing financial apps, we chose the Android ones for the top
three cryptocurrency exchanges10: Binance (v1.21), Coin-
base (v6.55.0) and Huobi (v6.1.1). Between them, these apps
have registered 16M+ installs on Google Play. Fortunately,
setting up accounts on cryptocurrency exchanges with a small
amount of funds is relatively easy, especially when compared
to more traditional banking apps. This allowed us to set
up accounts across different exchanges, and therefore test
against different apps. The key steps of all attacks launched
are summarised in Table 2. In all cases, we focus on the details
for the replay aspect of the attacks. The record aspect was
approached as a preparatory phase of the attacks, where a
device/app-specific profiling exercise resulted in an attack
phase/step sequence to be replayed.

At first, attacks were attempted using the accessibility
attack vectors against all three apps. This vector has the
least prerequisites and is widely used in the wild today. The
first three attack phases are preparatory steps that bypass
security measures. The Unlock phase gets the accessibility
trojan past the unlock screen (e.g. unlock PIN or Pattern).
The Address White-list phase makes sure that the attacker’s
deposit address is white-listed, and therefore the withdrawal
component can’t transfer the funds. The Get 2FA code com-
ponent targets the soft-token 2FA app in question, i.e. SMS,
email, or Google Authenticator. The attack culminates in the
Withdrawal phase to steal funds while dealing with all the
aforementioned security measures. To attain further stealth,
the accessibility trojan may also opt to include an Overlay
phase to hide all attack activity away from the user.

The key steps of the accessibility attacks make use
of Android accessibility service APIs.11 These APIs are
callable from any app that registers an accessibility service
component that extends AccessibilityService and
is granted the BIND_ACCESSIBILITY_SERVICE per-
mission. onAccessibilityEvent(Accessibility
Event event) is the core event handler, where all infor-

10As ranked by coinmarketcap.com on 24/01/2021
11https://developer.android.com/reference/android/view/accessibility/

package-summary

mation about an UI event can be retrieved from event,
including all window UI widgets represented as a tree of
AccessibilityWindowInfo and Accessibility
NodeInfo objects. In turn, these widgets can be inter-
acted with using the latter’s performAction() method.
In the steps of Table 2 we assume the availability of
the getWidget(root, id) function, that given a win-
dow’s root node and its identifier, returns the cor-
responding UI widget. It is noteworthy that all app
UI navigation steps are app UI layout-specific, neces-
sitating steps specific to different versions of the same
app. Optionally, attacks can also hide underneath window
overlays. The downside of this approach is that it addi-
tionally requires the SYSTEM_ALERT_WINDOW permis-
sion. Finally, Intents are core Android object enabling
apps to interact with Android system services and other
apps as well. In the case of these attacks, the core
Android services are: AccessibilityManager (needed
for all accessibility steps), ActivityManager (handles
all calls to startActivity()), ClipboardManager
(for copy/pasting the stolen 2FA verification codes), and
WindowManager (for displaying overlays). All attacks
were executed on a Samsung Galaxy S8 and a Google Nexus
5x running Android Pie and Oreo, respectively.

There may be cases where a widget cannot be interacted
with using accessibility’s performAction(), namely
when the developer disables accessibility access to the wid-
get by setting the isImportantForAccessibility
flag to false. In such cases, an attacker can resort to the
adb shell input attack vector. As shown in Table 2 the
attack requires an initial installation phase, where the app
and native service components are installed over adb fol-
lowing the setup described in SMAShedD [12]. The replayed
steps interact with the victim app’s UI widgets using adb
shell input tap x y, where x and y represent the
screen position of the disabled widget. This attack was
protoyped using a bash script over an adb session and
was tested on Binance (v1.42.5) since Binance disabled the
isImportantForAccessibility flag on the with-
drawal button following our report. The attack was successful
on an unrooted Samsung Galaxy A30s running Android 10.

To demonstrate the resiliency of PoPLar against a device
input record/replay attack, we attempted to record the
accelerometer readings of a successful puzzle solution, and
replay the recorded readings in an attempt to solve a sec-
ond puzzle. The recording of sensor movements was done
using getevent, whereas the replay was done using the
sendevent. This approach is similar to the one used by
RERAN [31] and SMASheD [12], and once again assumes
the installation phase described in the latter. This attack was
prototyped with AndroidViewClient12 and tested on a Nexus
5x (Android 8), Samsung A30s (Android 10), and Samsung
J3x (Android 5.1.1), all of which were not rooted. We were
unable to perform the attack on the Samsung A30s and Nexus

12https://github.com/dtmilano/AndroidViewClient

168606 VOLUME 9, 2021

Y. Leguesse et al.: PoPL: PoPL, or How to Secure Financial Transactions on Your Smartphone

TABLE 2. Device input record/replay attacks & key phases and steps.

5x because sendevent was write protected on the former,
and the accelerometer device was not visible on the latter.
We, therefore, performed the experiment on the Samsung J3x
running Android 5.1.1.

2) RESULTS
Table 3 shows the attack outcomes on all three crypto
exchange apps and on the PoPLar challenge itself. In all
cases, the first column shows the target of the attack, while
the second column shows the type of record/replay attack
used. In the case of Binance (v1.42.5), the accessibility attack
was supplemented with the use of ADB shell’s input to
bypass the mitigation measure implemented by the exchange.
The next four columns show the additional support attacks
required in order to circumvent security measures or else
to gain additional stealth. The included attacks depended
on those measures supported by the individual apps. As for
the Overlay-based stealth, in the case of Huobi we opted
out of using it to demonstrate the alternative of executing
the attacks at lightning-speed, basically making any human
reaction to stop them implausible. Ultimately, in all attacks on
crypto exchanges, the attacks succeeded in performing illicit
withdrawals despite all the security measures in place.

For each case, the same attacks steps were attempted
on PoPLar as a standalone app.13 The inability of the
record/replay attack to bypass the PoPL challenge would
result in a failed attack, as depicted in Figure 1.

The underlying functionality of the dendrogram library
only allows for sensor-based input to control the UI elements.
The only input that is able to control the puzzle movement
is the accelerometer. Therefore, the only way to solve the
challenge is through physical sensor manipulation.

To further test PoPLar’s resiliency, we attempted to per-
form a record/replay attack against PoPLar, specifically tar-
geting the accelerometer. The aim was to record a successful
PoPLar challenge, and try to replay the solution to solve
the next solution. The dendrogram approach already protects
against a record/replay attack by design since the random
puzzle generation ensures that an attacker cannot predict the
next puzzle solution. Notwithstanding this, we decided to test
an attack with the assumption that the subsequent puzzle is
equal to the previous one.

While newer Android versions protect the sensors through
the sensor security model, which in itself protects PoPLar,

13https://github.com/PoPDroid/AndroidPoP/tree/main/app/release

VOLUME 9, 2021 168607

Y. Leguesse et al.: PoPL: PoPL, or How to Secure Financial Transactions on Your Smartphone

we were able to read from and write to the accelerometer
sensor by using getevent and sendevent on an older
non-rooted Samsung J3x, running Android 5.1.1. However,
even in this limited case, the record/replay attack on the
accelerometer, as performed by SMASheD, failed due to the
continuous nature of the sensor. While we were able to record
the accelerometer raw data during a successful PoPLar puzzle
solution, replaying the recorded data does not result in the
same movement since the replayed data is mingled with the
actual sensor data, that is being received during the replay.
In our test, we received circa 90 accelerometer events per
second. Replaying the recorded 90 events results in the device
receiving the recorded 90 events plus the additional 90 events
received within that second. The above resulted in a failed
attack. This further strengthens the argument in favour of the
accelerometer, or any other motion, sensor for controlling the
PoPL puzzle. An attack would fail even in exceptional cases
where an attacker has the ability to inject their own data in
order to simulate a user. This is not the case with other inputs
such as simple screen taps.

Videos for the accessibility attacks against crypto
exchanges are available14 for download. Screenshots from
the Huobi Withdrawal attack are shown in Figure 3. In this
particular attack, the exchange was configured to protect
withdrawals with SMS, Google authenticator and email ver-
ification security mechanisms. The accessibility trojan starts
by launching the victim exchange app and makes its way
to the withdrawal page. It then populates the withdrawal
information, specifically the attacker’s wallet address and the
withdrawal amount (All funds). At this point, the exchange
prompts the 2FA verification challenges, and the trojan then
opens the SMS, Google Authenticator, and Gmail apps in
sequence, stealing all of the verification codes in the process.
Finally, the trojan returns to the exchange app and populates
all three verification codes before confirming the transaction.

3) RESPONSIBLE DISCLOSURE
Wehave responsibly disclosed our findings (i.e. accessibility-
based withdrawal attacks) to the three cryptocurrency
exchange apps. Binance acknowledged our attack within a
day. Within a month, they took mitigation measures specifi-
cally aimed against this attack. Their solution was to release a
patch disabling accessibility features for critical UI elements.
They also awarded us a $500 bounty for the report. However,
this approach still leaves the app vulnerable to other device
input record/replay attacks.

Coinbase responded, acknowledging our report after a
week. They surprisingly lowered the level of the report to low
due to the ‘difficulty of the exploit’. However, they awarded
us a $200 bounty for the responsible disclosure. They have
since released a significantly different version of their app.
Strangely enough, their new software does not implement any
direct mitigation measures against this attack. Consequently,
this can still be carried out. We reported the issue to Huobi in

14https://github.com/PoPDroid/AccAttacks

early February 2021, but at the time of writing, they have not
yet acknowledged our report.

B. USABILITY
1) EXPERIMENT SETUP
We also conducted a usability study to get a feel of the
average time required to complete a PoPLar authentication,
as well as the user’s overall impression of the usability of the
PoPLar dendrogram-centric challenge. The usability study
was performed using Amazon Mechanical Turk, which was
approved by our institution’s research ethics and data protec-
tion committee, and in total, 102 participants completed the
survey assignment. The participants were given a maximum
of 40 minutes to complete their task, and they were paid
$4 (USD) for their participation. The average time spent per
assignment was 22 minutes and 36 seconds. The assignment
consisted of three main steps:

a: PoPLar CHALLENGE TIMING
First, they were asked to install and run a test PoPLar app
that was published to the Android Playstore specifically for
the purpose of this study. The test app would guide the
participants in performing the dendrogram-centric challenge
with different levels of depth (from 3-10). The users were
asked to perform each depth level three times, and the results
were saved to the device’s clipboard, allowing the participants
to paste their results into the survey.

b: USABILITY OF EXISTING MECHANISMS
Second, the participants were asked to assign a score from
1-10 indicating the usability of various popular authentica-
tion mechanisms, namely: Google Authenticator, SMS 2FA,
email 2FA, hardware token 2FA, hardware authentication
device (e.g. Yubikey), Google’s reCAPTCHA, and finger-
print authentication. The user was asked to rate the usability
based on factors such as the time to authenticate, convenience,
and ease of use, where a score of 1 represents ‘‘Horrible -
(Slow and complicated)’’, and 10 represents ‘‘Great - (Fast,
convenient, and easy to use)’’.

c: USABILITY OF PoPLar
Finally, the participants were asked to rate the usability of
the PoPLar dendrogram-centric challenge, when compared to
popular and already accepted authentication mechanisms.

2) RESULTS
Table 4 shows the mean, median, and standard deviation
survey usability scores of each authentication mechanism in
the survey, including PoPLar. The results show that PoPLar’s
dendrogram puzzle approach was well received by the end-
users, even in comparison with existing and widely used
authentication mechanisms.

Figure 4 shows the mean duration for passing different
PoPLar levels in the 3-10 range. Each participant performed
the PoPLar challenge three times per level, meaning that in

168608 VOLUME 9, 2021

Y. Leguesse et al.: PoPL: PoPL, or How to Secure Financial Transactions on Your Smartphone

TABLE 3. Attack outcomes for illicit withdrawal, before and after our proposed solution.

FIGURE 3. Walk-through of the attack on one of the apps, while all security measures were enabled.

total, every level was tested 303 times. The mean duration
times fall in the 13131-36209 millisecond range for levels
ranging from 3-10. It is important to consider that users will
likely not be performing financial transactions in substan-
tially large batches, particularly from a smartphone, so these
times are, in our opinion, practical enough and compare
favourably with those required by other mechanisms such as
SMS, email or soft token verification. It is also worth noting
that increasing PoPLar’s depth-level results in a linear time
increase. However, the increase in puzzle complexity, and
therefore security, increases exponentially.

C. APP INTEGRATION CASE STUDY
One of the main design goals of our approach was ease of
deployment. In this subsection, we outline the steps required
for integrating PoPLar into a prototypical app that serves us
as a case study, concretely, a popular Bitcoin Wallet.

1) ADDING DEPENDENCIES
Add the jitpack repository to the root build.gradle in
the repositories list:
maven url ‘https://jitpack.io’
and add the dependency:

TABLE 4. Usability scores.

implementation ‘com.github.AndrPoP:0.2’
under dependencies.

2) EVENT HANDLING
In the source code, identify the event handler which will trig-
ger the PoPLar challenge (e.g. onClick). Define an identi-
fier for the return code (e.g.LAUNCH_SECOND_ACTIVITY)
Replace code (e.g. doButtonStuff()) in the event han-
dler with the PoPLar challenge code. Refer to Listing 1 (top).

3) RESULT HANDLING
Handle the onActivityResult event and look for
the PoPLar identifier return code: LAUNCH_SECOND_
ACTIVITY. Ensure the result code is successful (i.e.,

VOLUME 9, 2021 168609

Y. Leguesse et al.: PoPL: PoPL, or How to Secure Financial Transactions on Your Smartphone

FIGURE 4. Mean authentication times for different PoPLar levels.

as returned by PoPL activity). Check that the PoPLar chal-
lenge was successful through intent data PoPLPuzzle
and if so, execute the original event handler code
(doButtonStuff()). Refer to Listing 1 (bottom).

D. DISCUSSION
While fingerprint authentication performed better than
PoPLar in terms of usability, as stated in section III-C, the
ideal solution also requires widespread availability of the
underlying technology and must be secure in the context of
the defined threat model. Our device survey 1 clearly shows
that across Android devices, the accelerometer sensor is
more widely available than the fingerprint sensor. Moreover,
PoPLar was designed in such a way that a trojan would not
be able to lure the user into solving the PoPLar challenge
through a combination of overlays and social engineering.
This is not true for biometric authentication, however, since
a trojan could convince the user to perform a quick bio-
metric authentication during an attack. For example, through
Fingerprint-Jacking [32], or face ID spoofing [33], none of
which require device rooting. Moreover, fingerprint authen-
tication is also susceptible to replay and spoofing attacks,
which is even made possible by simply obtaining the finger-
print image through a photo [34].

E. RELATED WORK
1) COMPARISON TO SENSOR-BASED CAPTCHAs
SenCAPTCHA [22] represents the most mature work
concerning sensor-based CAPTCHAs. Considering that
accessibility trojans can be seen as a form of (local) bots,
sensor-based CAPTCHAs are the closest in concept to
PoPLar and could also protect users from our proposed threat
model. Yet, the main difference between mitigating bots and
defending against malware is the need for practical security.
SenCAPTCHA, through its picture puzzle-based approach,
fails to satisfy this requirement by depending on the tag-
ging of large volumes of images before it can be deemed
sufficiently secure. Given that image tagging is a manual
process and, at the same time, as their authors argue, difficult
to automate for the task at hand, creating a repository of
a sufficient size to offer a reasonable security level looks
impractical.

Listing 1. Event handling (top) and result handling code (bottom).

In contrast, PoPLar’s security can be easily controlled
via the setting of a certain dendrogram level depth, with-
out requiring any additional manual work. In terms of tim-
ing, a low-level depth PoPLar challenge took an average
of 13.1 seconds to complete, which is comparable to Sen-
Captcha’s 4.1 - 11.5 seconds duration range. On the other
hand, the results show that an increase in PoPLAr’s depth-
level results in a linear time increase with an exponential
security increase. Our usability study, which tested PoPL for
depths ranging from three to ten, confirmed that the partic-
ipants were comfortable with PoPL’s usability and timing.
Also, contrary to SenCaptcha, PoPLar is production-ready
and can generate as many distinct challenges as needed, and
we believe this characteristic far outweighs the lengthier time
requirements.

2) MACHINE LEARNING ATTACKS
Machine learning poses only a minimal threat to PoPLar,
becoming significantly less of an issue than for other
CAPTCHAs [35]. While image recognition can possibly
recognise the next steps needed to solve the puzzle, effecting
them requires programmatic access to the accelerometer sen-
sor. In our threat model, this is not possible since the accessi-
bility attack vector does not provide such access. On the other
hand, this would have been possible had themalware included
a rooting exploit [36] or if it was installed on an already rooted
device. In this case the malware would be capable of injecting
a mock sensor provider class inside the victim application or
else write to its device file in /dev/input/. We do not see
these threats as too concerning, especially considering that
malware has free reign anyway on a rooted smartphone.

3) FINANCIAL FRAUD PREVENTION
Be it through Accessibility attacks or more traditional attacks
such as phishing and social engineering, passwords and

168610 VOLUME 9, 2021

Y. Leguesse et al.: PoPL: PoPL, or How to Secure Financial Transactions on Your Smartphone

common 2FA security measures are constantly under attack,
and a successful compromise can easily lead to financial
fraud. Researchers are always looking for innovative and
secure alternatives or enhancements to existing authentica-
tion processes. One such example is Hacksaw [37], an authen-
tication system using a wearable device that authenticates the
user continually by correlating the input events with the user’s
corresponding hand movements captured via the device’s
motion sensors. While opting for a different approach,
Hacksaw recognises that motion sensors can be used to
determine the presence of the legitimate user. Similarly,
other work investigates the use of alternative sources such
as cellular infrastructure [38], location [39], and vibration
[40], [41] data. An interesting authenticationmechanism even
proposes authenticating users based on their cognitive skills
[42], in combination with sensor and touch interaction data
collected while challenging the user to solve small games.

4) SYSTEM-LEVEL MITIGATION
While our work proposes a mitigation measure that can
be implemented by non-system apps on non-rooted devices
without the need for additional OS enhancements, an alter-
native approach could be to implement mitigation measures
at system level. When presenting Cloak and Dagger [5],
Fratantonio proposed a defense mechanism, implemented as
an extension to the current Android API, which would protect
Android apps from accessibility attacks. Similarly, one could
take advantage of Android’s TEE to protect against such
attacks [43], [44].

V. CONCLUSION AND FUTURE WORKS
In this work, we addressed the threat of accessibility attacks,
particulary its impact on current financial apps, putting vic-
tims at risk of financial loss. In this regard, we proposed
Proof-of-Presence and Locality (PoPL), a new security mech-
anism that can act as a countermeasure and is based on the
ability to prove the physical presence of a user, therefore
blocking any automated actions that may be attempted by
an accessibility trojan. This can also stop any kind of remote
attack, even if executed live by a human, as this proof of pres-
ence includes a proof of locality as well. We released PoPLar,
a reference open-source, free implementation of PoPL, with
no requirements for additional hardware tokens.

Experimentation with three popular crypto exchange apps
demonstrates superior attack resilience when compared to
any combination of security measures currently deployed.
While the use of our proposal results in longer authentication
times, PoPLar is a production-ready solution with no further
manual configuration required. Furthermore, a BitcoinWallet
case study demonstrates the ease of integration with existing
apps. In the future, we plan to develop a more accessible
version that uses additional sensors, making it ready for users
with any kind of impairments. The upgraded version will also
be implemented for other mobile platforms. We urge Coin-
base, Huobi and all other cryptocurrency exchanges, as well

as classical banking apps to incorporate our inexpensive and
easy to use solution to thwart accessibility and remote attacks.

REFERENCES
[1] J.-E. Ekberg, K. Kostiainen, and N. Asokan, ‘‘The untapped potential of

trusted execution environments on mobile devices,’’ IEEE Secur. Privacy,
vol. 12, no. 4, pp. 29–37, Jul. 2014.

[2] L. H. Newman. (2020). Flaws Could Have Exposed Cryptocurrency
Exchanges to Hackers. Accessed: Jan. 27, 2021. [Online]. Avail-
able: https://www.wired.com/story/cryptocurrency-exchanges-key-flaws-
hackers/

[3] Y. Leguesse, M. Vella, C. Colombo, and J. Hernandez-Castro, ‘‘Reducing
the forensic footprint with Android accessibility attacks,’’ in Proc. 16th Int.
Workshop, Guildford, U.K. Springer, 2020, pp. 22–38.

[4] Google. (2017). Google Developer Training: Accessibility. [Online].
Available: https://google-developer-training.github.io/android-developer-
advanced-course-concepts/unit-3-make-your-apps-accessible/lesson-6-
accessibility/6-1-c-accessibility/6-1-c-accessibility.html

[5] Y. Fratantonio, C. Qian, S. P. Chung, andW. Lee, ‘‘Cloak and dagger: From
two permissions to complete control of the UI feedback loop,’’ in Proc.
IEEE Symp. Secur. Privacy (SP), May 2017, pp. 1041–1057.

[6] L. Stefanko. (2020). Insidious Android Malware Gives Up
All Malicious Features But One to Gain Stealth. Accessed:
Jan. 27, 2021. [Online]. Available: https://www.welivesecurity.com/2020/
05/22/insidious-android-malware-gives-up-all-malicious-features-but-
one-gain-stealth/

[7] Threat-Fabric. (2020). 2020—Year of the RAT. Accessed:
Jan. 27, 2021. [Online]. Available: https://www.threatfabric.com/blogs/
2020_year_of_the_rat.html

[8] Y. Jang, C. Song, S. P. Chung, T. Wang, and W. Lee, ‘‘A11y attacks:
Exploiting accessibility in operating systems,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Nov. 2014, pp. 103–115.

[9] Binance. (2020). How to Resume the Withdrawal Function.
Accessed: Jan. 27, 2021. [Online]. Available: https://www.binance.
com/in/support/articles/360038583951-How-to-Resume-the-Withdrawal-
Function

[10] A. Ometov, S. Bezzateev, N. Mäkitalo, S. Andreev, T. Mikkonen, and
Y. Koucheryavy, ‘‘Multi-factor authentication: A survey,’’ Cryptography,
vol. 2, no. 1, p. 1, Jan. 2018.

[11] S. G. Lyastani, M. Schilling, M. Neumayr, M. Backes, and S. Bugiel,
‘‘Is FIDO2 the kingslayer of user authentication? A comparative usability
study of FIDO2 passwordless authentication,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2020, pp. 268–285.

[12] M. Mohamed, B. Shrestha, and N. Saxena, ‘‘SMASheD: Sniffing and
manipulating Android sensor data,’’ in Proc. 6th ACM Conf. Data Appl.
Secur. Privacy, Mar. 2016, pp. 152–159.

[13] A. A. Shaikh and H. Karjaluoto, ‘‘Mobile banking adoption: A literature
review,’’ Telematics Informat., vol. 32, no. 1, pp. 129–142, Feb. 2015.

[14] S. Haig. (2020). Five Mega Exchanges Hold 10% of Bitcoin’s Entire Sup-
ply. Accessed: Oct. 27, 2021. [Online]. Available: https://cointelegraph.
com/news/five-mega-exchanges-hold-10-of-bitcoin-s-entire-supply

[15] K. Reese, T. Smith, J. Dutson, J. Armknecht, J. Cameron, and K. Seamons,
‘‘A usability study of five two-factor authentication methods,’’ in Proc.
15th Symp. Usable Privacy Secur. (SOUPS), 2019, pp. 357–370.

[16] J. Yan and A. S. E. Ahmad, ‘‘Usability of CAPTCHAs or usability issues
in CAPTCHA design,’’ in Proc. 4th Symp. Usable Privacy Secur., 2008,
pp. 44–52.

[17] F. Aloul, S. Zahidi, and W. El-Hajj, ‘‘Two factor authentication using
mobile phones,’’ in Proc. IEEE/ACS Int. Conf. Comput. Syst. Appl.,
May 2009, pp. 641–644.

[18] S. Sundin. (2016). 2FA QR Code Generator. Accessed: Jan. 27, 2021.
[Online]. Available: https://stefansundin.github.io/2fa-qr/

[19] K. Krol, E. Philippou, E. De Cristofaro, and M. A. Sasse, ‘‘‘They brought
in the horrible key ring thing!’ analysing the usability of two-factor authen-
tication in U.K. online banking,’’ 2015, arXiv:1501.04434.

[20] B. B. Zhu, J. Yan, G. Bao, M. Yang, and N. Xu, ‘‘Captcha as graphical
passwords—A new security primitive based on hard AI problems,’’ IEEE
Trans. Inf. Forensics Security, vol. 9, no. 6, pp. 891–904, Jun. 2014.

[21] G. Reynaga and S. Chiasson, ‘‘The usability of CAPTCHAs on smart-
phones,’’ in Proc. Int. Conf. Secur. Cryptogr. (SECRYPT), 2013, pp. 1–8.

[22] Y. Feng, Q. Cao, H. Qi, and S. Ruoti, ‘‘SenCAPTCHA: A mobile-first
CAPTCHA using orientation sensors,’’ Proc. ACM Interact., Mobile,
Wearable Ubiquitous Technol., vol. 4, no. 2, pp. 1–26, Jun. 2020.

VOLUME 9, 2021 168611

Y. Leguesse et al.: PoPL: PoPL, or How to Secure Financial Transactions on Your Smartphone

[23] T. Hupperich, K. Krombholz, and T. Holz, ‘‘Sensor CAPTCHAs: On the
usability of instrumenting hardware sensors to prove liveliness,’’ in Proc.
9th Int. Conf., Vienna, Austria. Springer, Aug. 2016, pp. 40–59.

[24] Y. Chen, J. Sun, R. Zhang, and Y. Zhang, ‘‘Your song your way: Rhythm-
based two-factor authentication for multi-touch mobile devices,’’ in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2015, pp. 2686–2694.

[25] A. Acien, A. Morales, J. Fierrez, R. Vera-Rodriguez, and
O. Delgado-Mohatar, ‘‘BeCAPTCHA: Behavioral bot detection using
touchscreen and mobile sensors benchmarked on HuMIdb,’’ Eng. Appl.
Artif. Intell., vol. 98, Feb. 2021, Art. no. 104058.

[26] S. N. Alotaibi, S. Furnell, and N. Clarke, ‘‘A novel transparent user
authentication approach for mobile applications,’’ Inf. Secur. J., Global
Perspective, vol. 27, nos. 5–6, pp. 292–305, Feb. 2018.

[27] K. Sun. (2019). Google Play Apps Drop Anubis, Use Motion-Based
Evasion. Accessed: Jan. 28, 2021. [Online]. Available: https://www.
trendmicro.com/en_us/research/19/a/google-play-apps-drop-anubis-
banking-malware-use-motion-based-evasion-tactics.html

[28] Y. Leguesse, M. Vella, and J. Ellul, ‘‘AndroNeo: Hardening Android mal-
ware sandboxes by predicting evasion heuristics,’’ in Proc. Int. Conf. Inf.
Secur. Theory Pract. (WISTP), Crete, Greece. Springer, 2017, pp. 140–152.

[29] E. Alepis and C. Patsakis, ‘‘Trapped by the UI: The Android case,’’ inProc.
20th Int. Symp. Res. Attacks, Intrusions Defenses (RAID), Atlanta, GA,
USA. Springer, 2017, pp. 334–354.

[30] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu, ‘‘Are
mobile banking apps secure? What can be improved?’’ in Proc. 26th ACM
Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., Oct. 2018,
pp. 797–802.

[31] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, ‘‘RERAN: Timing- and
touch-sensitive record and replay for android,’’ in Proc. 35th Int. Conf.
Softw. Eng. (ICSE), May 2013, pp. 72–81.

[32] X. Wang, Y. Chen, R. Yang, S. Shi, and W. C. Lau, ‘‘Fingerprint-jacking:
Practical fingerprint authorization hijacking in Android apps,’’ Blackhat,
Europe, Tech. Rep. Blackhat 2020, 2020.

[33] Z. Yu, X. Li, X. Niu, J. Shi, and G. Zhao, ‘‘Face anti-spoofing with human
material perception,’’ in Proc. 16th Eur. Conf. Comput. Vis. (ECCV),
Glasgow, U.K. Springer, Aug. 2020, pp. 557–575.

[34] A. Taneja, A. Tayal, A. Malhorta, A. Sankaran, M. Vatsa, and R. Singh,
‘‘Fingerphoto spoofing in mobile devices: A preliminary study,’’ in Proc.
IEEE 8th Int. Conf. Biometrics Theory, Appl. Syst. (BTAS), Sep. 2016,
pp. 1–7.

[35] F. H. Alqahtani and F. A. Alsulaiman, ‘‘Is image-based CAPTCHA secure
against attacks based on machine learning? An experimental study,’’ Com-
put. Secur., vol. 88, Jan. 2020, Art. no. 101635.

[36] W. Xu and Y. Fu, ‘‘Own your android! Yet another universal root,’’ in Proc.
9th USENIX Workshop Offensive Technol. (WOOT), 2015, pp. 1–6.

[37] P. Shrestha and N. Saxena, ‘‘Hacksaw: Biometric-free non-stop web
authentication in an emerging world of wearables,’’ in Proc. 13th ACM
Conf. Secur. Privacy Wireless Mobile Netw., Jul. 2020, pp. 13–24.

[38] F. S. Park, C. Gangakhedkar, and P. Traynor, ‘‘Leveraging cellular infras-
tructure to improve fraud prevention,’’ in Proc. Annu. Comput. Secur. Appl.
Conf., Dec. 2009, pp. 350–359.

[39] C. Marforio, N. Karapanos, C. Soriente, K. Kostiainen, and S. Capkun,
‘‘Smartphones as practical and secure location verification tokens for
payments,’’ in Proc. NDSS, 2014, pp. 23–26.

[40] C. Wang, S. A. Anand, J. Liu, P. Walker, Y. Chen, and N. Saxena,
‘‘Defeating hidden audio channel attacks on voice assistants via audio-
induced surface vibrations,’’ in Proc. 35th Annu. Comput. Secur. Appl.
Conf., Dec. 2019, pp. 42–56.

[41] S. A. Anand and N. Saxena, ‘‘Coresident evil: Noisy vibrational
pairing in the face of co-located acoustic eavesdropping,’’ in Proc.
10th ACM Conf. Secur. Privacy Wireless Mobile Netw., Jul. 2017,
pp. 173–183.

[42] R. Spolaor, M. Monaro, P. Capuozzo, M. Baesso, M. Conti, L. Gamberini,
and G. Sartori, ‘‘You are how you play: Authenticating mobile users via
game playing,’’ in Proc. Int. Worskhop Commun. Secur. (WCS), Paris,
France. Springer, 2017, pp. 79–96.

[43] W. Li, S. Luo, Z. Sun, Y. Xia, L. Lu, H. Chen, B. Zang, and H. Guan,
‘‘VButton: Practical attestation of user-driven operations in mobile apps,’’
in Proc. 16th Annu. Int. Conf. Mobile Syst., Appl., Services, Jun. 2018,
pp. 28–40.

[44] K. Ying, A. Ahlawat, B. Alsharifi, Y. Jiang, P. Thavai, and W. Du,
‘‘TruZ-Droid: Integrating TrustZone with mobile operating system,’’ in
Proc. 16th Annu. Int. Conf. Mobile Syst., Appl., Services, Jun. 2018,
pp. 14–27.

YONAS LEGUESSE received the B.Sc. degree in
mathematics and informatics and the M.Sc. degree
(by research) in computer science& artificial intel-
ligence from the University of Malta, in 2009 and
2018, respectively, where he is currently pursuing
the Ph.D. degree in computer science. He has over
12 years experience in cybersecurity across var-
ious sectors, including national LEAs, EU agen-
cies, the private sector, and academia. His interest
in mobile security began during his time as an NIS

expert at ENISA, the EU Cybersecurity Agency, where he was responsible
for preparing and delivering mobile security and incident handling courses.
His research interests includemalware analysis, incident response, andmem-
ory forensics.

CHRISTIAN COLOMBO received the B.Sc.,
M.Sc., and Ph.D. degrees in computer science
from the University of Malta, in 2007, 2009, and
2013, respectively. From 2008 to 2010, he worked
as a Research Assistant on the nationally-funded
project, Dependability and Error-Recovery in
Security Intensive Financial Systems. Since 2010,
he has been employed as an Academician with the
Department of Computer Science, University of
Malta. His research interests include runtime ver-

ification, software testing, compensating transactions, and domain-specific
languages, with over 50 publications in these areas. He is currently focused
on applying runtime verification in the area of cyber security through the
funded projects: Secure Communication in the Quantum Era (NATO) and
Lawful Evidence Collecting & Continuity Platform Development (Horizon
2020). He was a recipient of the MGSS Scholarship Scheme 2008.

MARK VELLA (Member, IEEE) received the
M.Sc. degree in computer science from the Uni-
versity of Malta, and the Ph.D. degree in the area
of computer systems security from the Univer-
sity of Strathclyde, U.K. He spent a number of
years participating and leading enterprise applica-
tion and integration projects before moving back
to academia. He currently holds the position of a
Senior Lecturer with the University of Malta. His
initial research on developing intrusion detection

techniques inspired by the workings of the human immune system, has
today found home and immediate application within the context of using
memory forensics for incident response, while keeping an eye on making
computer systems less prone to security breaches. At University, he lectures
and advises undergraduate and postgraduate students on topics of computer
systems and security.

JULIO HERNANDEZ-CASTRO waswith theUni-
versity of Portsmouth, U.K., and Carlos III Uni-
versity, Spain. He is also affiliated with the Kent
Cybersecurity Center. He is currently a Professor
in computer security with the School of Com-
puting, University of Kent. His research inter-
ests include wide, covering from RFID security
to lightweight cryptography, including steganog-
raphy and steganalysis and the design and analysis
of CAPTCHAs. He has been a Predoctoral Marie

Curie Fellow and also a Postdoctoral INRIA Fellow. He is currently the
Vice-Chair of the EU COST Project CRYPTACUS. He receives research
funding from Innovate U.K. Project aS, EPSRC Project 13375, and EU
H2020 Project RAMSES.

168612 VOLUME 9, 2021

