
WHITE CANE DEVICE: A MOBILE ASSISTANT 

FOR VISUALLY CHALLENGED PEOPLE 

JUDIE ATTARD 

SUPERVISOR: DR. MATTHEW MONTEBELLO 

FACULTY OF ICT 

UNIVERSITY OF MALTA 

27TH MAY 2011 

Submitted in partial fulfilment of the requirements for the degree of B.Sc I. C. T. (Hons.) 





To all those persons who in some way or another made me the person I am today, whether we 
crossed paths for a while or are simply walking together in the same direction. 

iii 



ACKNOWLEDGEMENTS 

First and foremost I would like to express my deepest gratitude to my tutor Dr. Matthew 
Montebello. I would like to thank him for helping me whenever I required any guidance, even 
out of office hours. His support was vital for the completion of this thesis. 

I would like to extend my thanks to Mr. Stanley Debono and Mr. Michael Micallef from the 
Foundation for IT Accessibility (FITA) for believing in my work and providing me with 
important feedback for the evaluation of White Cane Device. 

My thanks also go to my parents, Frances and Joseph, and my brother, Michael-George, who 
always believed in me. Even through rough moments, they always encouraged me and 
supported me, both in life and in education. 

Special thanks go to my friends. I would like to thank my closest friends for being such, and for 
all the times we spent together; laughing, crying, or even both at once. I would also like to thank 
a relatively new friend, Fernand Fenech, for the designing of the icon used for the White Cane 
Device. 

Last but not least my thanks go to a special friend, Jere my Debattista, and his parents, Michelle 
and Ronnie, who welcomed me with open arms in their home and treated me as their own. 
Jeremy gave me help and suggestions invaluable for the development of this thesis. He 
encouraged me when everything seemed bleak, and kept me company through endless hours of 
coding and documentation. "V". 

iv 



ABSTRACT 

A large percentage of the population is affected in various ways by visual impairments and most 
of the latter have no effective cure. Such visual impairments can significantly deteriorate the 
quality of life of people affected. The goal of this study is to exploit the portability and 
availability of mobile phones to provide a means of guidance to the visually impaired while 
travelling. 

The proposed system takes into consideration a visually impaired person while travelling 
through the city. The main challenge for such a person is to continously identify the correct 
location of his/her whereabouts. This system assists the user, through image recognition from a 
mobile phone, by guiding and offering information of the immediate vicinity. The 'White Cane 
Device' being proposed enables the user to capture a picture, and receives back information 
about the surroundings. This includes the object recognized within the query image, as well as 
the current location of the user ifs/he is some distance away from the object recognized within 
the image. 

The White Cane Device was implemented in a client-server architecture, where the client acts as 
a peripheral device, and the server implements the SIFT feature extraction algorithm to perform 
object recognition. The GPS coordinates of the images are used to optimize the latter process. 
This is done by reducing the search space. A thorough evaluation of the proposed system gave 
exciting results and showed that White Cane Device performs reliable matching even when 
images contain occlusion or are taken from various perspectives. The tested system returned 
results within more than acceptable time spans and received positive feedback from the 
usability evaluations held. 

v 



CONTENTS 

Introduction ......................................................................................................................................................................... 1 

1.1 Motivation ......................................................................................................................................................... 1 

1.2 Aims and Objectives ...................................................................................................................................... 1 

1.3 Chapters' overview ........................................................................................................................................ 2 

Background and Literature Review ........................................................................................................................... 3 

2.1 GPS ........................................................................................................................................................................ 3 

2.2 Digital Image Representation .................................................................................................................... 4 

2.3 Image Transformations ............................................................................................................................... 5 

2.3.1 Scale ............................................................................................................................................................ 5 

2.3.2 Rotation .................................................................................................................................................... 5 

2.3.3 Blur ............................................................................................................................................................. 6 

2.3.4 Illumination ............................................................................................................................................. 6 

2.3.5 Affine transformations ....................................................................................................................... 6 

2.4 Object Recognition ......................................................................................................................................... 7 

2.4.1 Geometry-Based Approaches .......................................................................................................... 7 

2.4.2 Appearance-based Algorithms ........................................................................................................ 9 

2.5 Feature Matching ......................................................................................................................................... 21 

2.5.1 Best-Bin-First matching .................................................................................................................. 21 

2.5.2 Randomized kd-tree algorithm .................................................................................................... 22 

2.5.3 Hierarchical k-means tree .............................................................................................................. 23 

2.6 Feature-based Algorithms evaluation ................................................................................................ 23 

2.6.1 SIFT .......................................................................................................................................................... 23 

2.6.2 PCA-SIFT ................................................................................................................................................ 26 

2.6.3 ASIFT ....................................................................................................................................................... 29 

?. 6.4 SURF ........................................................................................................................................................ 32 

2.6.5 A comparison of SIFT, PCA-SIFT and SURF performance evaluations ........................ 34 

2. 7 Similar Systems ............................................................................................................................................ 44 

2.7.1 Mobile Visual Aid Tools for Users with Visual Impairments ........................................... 44 

2. 7.2 Mobile Museum Guide based on fast SIFT recognition ...................................................... 45 

2.7.3 Scene recognition with camera phones for tourist information access ...................... 45 

2. 7.4 Geo-contextual priors for attentive Urban object recognition ........................................ 46 

vi 



2.8 Conclusion ...................................................................................................................................................... 46 

Design .................................................................................................................................................................................. 47 

3.1 System Design Overview .......................................................................................................................... 48 

3.1.1 Client Component .............................................................................................................................. 48 

3.1.2 Server Component ............................................................................................................................. 50 

3.1.3 Database Component ....................................................................................................................... 54 

3.2 Evaluation ....................................................................................................................................................... 55 

3.3 Conclusion ...................................................................................................................................................... 55 

Implementation ............................................................................................................................................................... 56 

4.1 Client Component ........................................................................................................................................ 56 

4.1.1 User Interface ...................................................................................................................................... 57 

4.1.2 

4.2 

4.2.1 

4.2.2 

4.3 

4.4 

Backend .................................................................................................................................................. 58 

Server Component ...................................................................................................................................... 61 

Training Process ................................................................................................................................. 61 

Query Process ................ : ..................................................................................................................... 66 

Database Component ................................................................................................................................. 71 

Conclusion ...................................................................................................................................................... 72 

Experiments and Evaluation ...................................................................................................................................... 73 

5.1 Experimental Setup .................................................................................................................................... 73 

5.2 Testing Datasets ........................................................................................................................................... 74 

5.2.1 TSG-40-HTC Dataset ......................................................................................................................... 74 

5.2.2 UoM Dataset ......................................................................................................................................... 75 

5.2.3 Training .................................................................................................................................................. 76 

5.3 Evaluation Metrics ...................................................................................................................................... 76 

5.4 Experimental Results ................................................................................................................................. 76 

5.4.1 Number of checks for Nearest Neighbor approximation .................................................. 77 

5.4.2 Threshold for number of false positives having no training image .............................. 78 

5.4.3 SIFT vs. SIFT+GPS .............................................................................................................................. 79 

5.4.4 SIFT vs. PSI FT ...................................................................................................................................... 81 

5.4.5 Multiple training images ................................................................................................................. 81 

5.5 Client Evaluation .......................................................................................................................................... 82 

5.6 Conclusion ...................................................................................................................................................... 83 

Future Work ...................................................................................................................................................................... 84 

6.1 Improving the Client mobile Application .......................................................................................... 84 

vii 



6.2 Feature extraction Algorithm ................................................................................................................. 84 

6.3 Video object recognition ........................................................................................................................... 84 

6.4 Path Indication ............................................................................................................................................. 84 

6.5 Concurrent Users ......................................................................................................................................... 84 

6.6 Additional Information with Training Images ................................................................................ 84 

6. 7 Conclusion ...................................................................................................................................................... 85 

Conclusions ....................................................................................................................................................................... 86 

Bibliography ...................................................................................................................................................................... 88 

viii 



LIST OF FIGURES 

Figure 1 . .............................................................................................................................................................................. 5 
Figure 2 ............................................................................................................................................................................... 5 
Figure 3 ............................................................................................................................................................................... 5 
Figure 4 ............................................................................................................................................................................... 6 
Figure 5 ............................................................................................................................................................................... 6 

Figure 6 ............................................................................................................................................................................... 7 

Figure 7 ............................................................................................................................................................................ 11 
Figure 8 ............................................................................................................................................................................ 11 
Figure 9 ............................................................................................................................................................................ 12 
Figure 10 ......................................................................................................................................................................... 13 
Figure 11 ......................................................................................................................................................................... 16 
Figure 12 ......................................................................................................................................................................... 16 
Figure 13 ......................................................................................................................................................................... 18 
Figure 14 ......................................................................................................................................................................... 18 
Figure 15 ......................................................................................................................................................................... 19 
Figure 16 . ........................................................................................................................................................................ 20 
Figure 17 ......................................................................................................................................................................... 20 
Figure 18 ......................................................................................................................................................................... 24 
Figure 19 ......................................................................................................................................................................... 24 
Figure 20 ......................................................................................................................................................................... 25 
Figure 21 ......................................................................................................................................................................... 26 

Figure 22 ......................................................................................................................................................................... 26 

Figure 23 ......................................................................................................................................................................... 27 
Figure 24 ......................................................................................................................................................................... 28 

Figure 25 ......................................................................................................................................................................... 29 
Figure 26 ......................................................................................................................................................................... 30 

Figure 27 . ........................................................................................................................................................................ 30 

Figure 28 ......................................................................................................................................................................... 31 
Figure 29 ......................................................................................................................................................................... 31 
Figure 30 ......................................................................................................................................................................... 32 

Figure 31 ......................................................................................................................................................................... 32 

Figure 32 ......................................................................................................................................................................... 33 

Figure 33 . ........................................................................................................................................................................ 34 
Figure 34 ......................................................................................................................................................................... 36 

Figure 35 ......................................................................................................................................................................... 37 
Figure 36 ......................................................................................................................................................................... 38 
Figure 37 ......................................................................................................................................................................... 38 
Figure 38 ......................................................................................................................................................................... 39 

Figure 39 ......................................................................................................................................................................... 39 

Figure 40 ......................................................................................................................................................................... 41 
Figure 41 ......................................................................................................................................................................... 41 
Figure 42 ......................................................................................................................................................................... 41 

ix 



Figure 43 ......................................................................................................................................................................... 42 

Figure 44 ......................................................................................................................................................................... 42 

Figure 45 ......................................................................................................................................................................... 42 

Figure 46 ......................................................................................................................................................................... 43 
Figure 47 ......................................................................................................................................................................... 43 
Figure 48 ......................................................................................................................................................................... 43 
Figure 49 ......................................................................................................................................................................... 44 

Figure 50 ......................................................................................................................................................................... 47 
Figure 51 ......................................................................................................................................................................... 49 

Figure 52 ......................................................................................................................................................................... 49 
Figure 53 ......................................................................................................................................................................... 50 
Figure 54 ......................................................................................................................................................................... 51 
Figure 55 ......................................................................................................................................................................... 51 
Figure 56 ......................................................................................................................................................................... 53 
Figure 57 ......................................................................................................................................................................... 54 

Figure 58 ......................................................................................................................................................................... 56 
Figure 59 ......................................................................................................................................................................... 57 

Figure 60 ......................................................................................................................................................................... 58 
Figure 61 ......................................................................................................................................................................... 62 

Figure 62 ......................................................................................................................................................................... 64 
Figure 63 ......................................................................................................................................................................... 65 
Figure 64 ......................................................................................................................................................................... 67 

Figure 65 ......................................................................................................................................................................... 67 

Figure 66 ......................................................................................................................................................................... 69 
Figure 67 ......................................................................................................................................................................... 70 
Figure 68 ......................................................................................................................................................................... 71 
Figure 69 ......................................................................................................................................................................... 73 
Figure 70 ......................................................................................................................................................................... 7 4 
Figure 71 ......................................................................................................................................................................... 75 

Figure 72 ......................................................................................................................................................................... 75 

Figure 73 ......................................................................................................................................................................... 77 
Figure 74 ......................................................................................................................................................................... 77 

Figure 75 ......................................................................................................................................................................... 78 
Figure 76 ......................................................................................................................................................................... 79 

Figure 77 ......................................................................................................................................................................... 80 

Figure 78 ......................................................................................................................................................................... 81 
Figure 79 ......................................................................................................................................................................... 82 

x 



LIST OF EQUATIONS 

Equation 1 .......................................................................................................................................................................... 3 
Equation 2 .......................................................................................................................................................................... 4 
Equation 3 ....................................................................................................................................................................... 27 

Equation 4 ....................................................................................................................................................................... 40 

Equation 5 ....................................................................................................................................................................... 40 

xi 



Chapter 1 

INTRODUCTION 

A large percentage of the population is affected in various ways by visual impairments and most 
of the latter have no effective cure. Such visual impairments can significantly deteriorate the 
quality of life of people affected. With advancement in technology, various products offering aid 
in daily activities are available on the market, however these are often expensive and/ or 
dedicated to a single task. For example, NanoPac [1] offers several software solutions such as 
screen enlargers, OCR, screen readers and the KNFB mobile reader. 

1.1 MOTIVATION 

The goal of this thesis is to exploit the portability and availability of mobile phones to provide a 
means of guidance to the visually impaired while travelling. The imaging, processing and 
communication capabilities of mobile phones provide the device with exciting possibilities for 
new uses such as image processing and computer vision technologies. Being a portable hand­
held device, a camera enabled mobile phone has some unique advantages. Firstly, such devices 
are already carried by a very large number of people, and secondly, new functions can be added 
to the device easily without the requirement for any additional hardware. Besides, the 
communication capability of mobile phones, such as an Internet connection and GPS capability, 
provide the perfect setting for the purpose of functions such as the one explored in this thesis. 

In the proposed system, we consider the problem of identifying the content of an image. This can 
be done using two methods; namely Content Based Image Retrieval (CBIR) or Object 
Recognition. Consider a visually impaired person travelling through a city. He feels lost and 
requires some guidance, so he takes his mobile phone, takes a picture of his surroundings and 
runs a system implementing one of the mentioned methods. CBIR focuses on the semantic 
annotation of images, rather than textual as per regular search engines. A CBIR system has a 
database module containing indexed samples of images of the relevant subject (in this case, 
images of the city in question). The picture taken by the visually impaired person is processed, 
and a similarity measure is used to find a similar image annotated about the image content from 
the database. Object recognition, on the other hand, involves identifying an instance of a 
particular object in an image. The database module, instead of containing images, would contain 
features extracted from the latter, and any other relevant data. In this work we build on the 
latter method. 

1.2 AIMS AND OBJECTIVES 

The main aim of this thesis is to provide a travelling aid to visually impaired persons. The system 
should enable the latter to take an image using a mobile phone equipped with a camera and 
return any objects (mainly buildings) recognized in the snapshot, such as a particular pharmacy. 
Also, the GPS capability of a phone should be exploited to enhance the object recognition process 
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by minimizing the image search space. To implement such a system, the following objectives 
have to be met: 

• The development of a user-friendly mobile application enabling the user to take a geo-
tagged image; 

• The implementation of an object recognition method; 
• The use of GPS coordinates to reduce the search space; 
• The development of a system incorporating the mobile application and the object 

recognition method. 

To obtain the mentioned objectives various challenges need to be overcome. The first challenge 
is the limited processing power of the mobile phone. Object recognition (and the required image 
pre-processing) are quite resource intensive. Thus an adequate solution is required as the user 
obviously expects relevant results in real time. Another challenge is the visual impairment of the 
users; one cannot expect the user to focus perfectly the mobile phone camera on the particular 
object of interest, therefore allowance for blurry images is a must. Also, one must keep in mind 
the relatively low-quality mobile phone camera lenses when compared with regular cameras. 
Another challenge to be considered is the change in lighting and pose. Images of a particular 
object taken in different lighting conditions and/or from a different viewpoint can have a large 
impact on the object recognition process. Clutter and occlusion also have a large impact on 
object recognition. The GPS capability of the mobile phone can be used in such a way that when 
the user takes an image, the relevant coordinates of the current position of the user are 
recorded. This data can also be used to find the current location of the user. 

1.3 CHAPTERS' OVERVIEW 

After having introduced the context of this thesis, in Chapter 2 we discuss relevant literature 
which sustains our work and gives the reader a background. In Chapter 3 we discuss the 
specification and design of the proposed system 'White Cane Device'. Chapter 4 explores the 
implementation details for the development of the system. Various experiments and evaluations 
were carried out and discussed in Chapter 5. Proposed future work is described in Chapter 6 
while Chapter 7 concludes this thesis. 
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Chapter 2 

BACKGROUND AND LITERATURE REVIEW 

In this chapter we describe and explain some basic concepts and methods used in this thesis to 
help the reader better understand the content of the latter. These include the GPS system, image 
transformations, various object matching approaches and algorithms, and similar systems which 
implement the latter object matching algorithms. 

2.1 GPS 
The Global Positioning System (GPS) provides location information to a GPS enabled device if 
said device is within line of sight to GPS satellites orbiting the Earth. The conventional units used 
for GPS coordinates are degrees, minutes and seconds. The latter two are not to be confused 
with time units. GPS coordinates usually also include a letter denoting the orientation, namely N, 
S, E, or W. N and S denote the Northern and Southern hemisphere while the E and W denote the 
respective direction from the prime meridian. 

GPS coordinates can be displayed in decimal or degree format: 

• Degree (DDD, MM, SS) 
10° 44' 29.97" N, 119°20'19.44" W 

• Decimal (DD.DDDD) 
10.741658, -119.338733 

It is important to note that the decimal format does not contain seconds and four decimal places 
are usually enough. Also, W and S are denoted by a negative sign. The methods used to do the 

conversion from degrees, minutes and seconds (OMS) to decimal degrees, and vice versa, are the 
following 1: 

• DMS to Decimal Degrees: 

M S 
d-D+-+--

60 3600 

Equation 1: Equation to convert degrees from DMS to decimal format 

• Decimal Degrees to DMS: 
Being somewhat complicated, let us explain this method using an example. Consider 
having the decimal degree reading of 5.23456 degrees. To convert it to OMS format, we 

first subtract the whole degree: 5.23456 - 5 = 0.23456. Then we multiply the remaining 

1 http://www.fao.org/docrep/006/y4816e/y4816e0e.htm 
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fraction with 60 minutes: 0.23456 * 60 = 14.0736. The whole number gives the minutes 
value: 14.0736 - 14 = 0.0736. Finally, the fraction is multiplied with 60 seconds: 0.0736 * 
60 = 4.416, giving the remaining seconds. Thus the OMS format of 5.23456 degrees is 5 
degrees, 14 minutes and 4.416 seconds. 

The distance between two GPS coordinates can be calculated using the Haversine formula [2]. 
This equation gives the great-circle distance between two points on a sphere using the longitude 
and latitude coordinates. The Haversine formula is as follows: 

dlon = lon2 - lon1 

dlat = lat2 - lat1 

(
dlat) (dlon) a = sin2 
-

2
- + cos(lat1) * cos(lat2) * sin2 -

2
-

c = 2 * arcsin(min( 1, sqrt(a) )) 

Equation 2 : The Haversine Formula. Equation from [2]. 

Where (lonl, latl) and {lon2, lat2) are the coordinates (in radians) of the two points and R is the 
radius of the Earth (6371km)2. The resulting distance dis in the metrics used for the Earth's 
radius. 

2.2 DIGITAL IMAGE REPRESENTATION 

A digital image is represented by a two-dimensional grid of points known as pixels. Each pixel 
has a color value representing the color tone of that particular point on an image. This is the 
color depth of the image and can be represented using a number of bits. An image can be of 
various color depths, the most widely used being: 

• 1-bit, which represent a monochrome (black and white) image 
• 8-bits, which can represent either greyscale or 256-color images 

• 24-bit, which represent the full colors possible by mosl compulers 

The image resolution is the number of pixels in the rows and columns of the grid representation 
of the image; the larger the resolution, the larger the file size. For example a 384x640 image with 
24-bit color depth is approximately 100 Kb. 

2 http://nssdc.gsfc.nasa.gov/planetary /factsheet/earthfact.html 
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Figure 1: The same image in RGB and greyscale format. Image adapted from [48]. 

2.3 IMAGE TRANSFORMATIONS 

2.3.1 SCALE 

Image scaling is the process of resizing a digital representation of an image. Scaling involves a 
finding a trade-off between efficiency, smoothness and sharpness. As the size of an image is 
increased, so do the pixels which make up the digital representation of the image. This results in 
the image having a stair stepped effect (pixelation). Conversely, reducing the size of an image 
results in the image appearing smoother and sharper. 

Figure 2: Scale Change (Zooming). Images adapted from [33]. 

2.3.2 ROTATION 

Image rotation is the process of revolving an image around a point of rotation. 

Figure 3: Image Rotation. Images from [33] 
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2.3.3 BLUR 

A smudged or unclear image is called a blurred image. The blurring of an image can be caused by 
the movement of either the subject of the picture or the movement of the camera ifthe subject is 

a static background. 

Figure 4: Blurring. Images from [33]. 

2.3.4 ILLUMINATION 

Illumination is the degree of light captured in an image. This depends on the lighting conditions 
in which the picture was taken or on camera settings. 

Figure 5: Illumination change. Images from [33]. 

2.3.5 AFFINE TRANSFORMATIONS 

A transformation changes the position of points on a plane. Such a transformation results in the 
points acquiring a different shape. An affine transformation can be defined as a transformation 
that fixes the origin in the image, while translating the points on the entire plane. An affine 
transformation is generally brought about by a viewpoint change. 
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Figure 6: Affine Transformation. Images from [33]. 

2.4 OBJECT RECOGNITION 

Object recognition, as stated by Yang in [3], is one of the most astonishing capabilities humans 
possess from a very young age. Simply by looking at an object, humans are able to categorize or 
identify it, despite any appearance variation due to change in illumination, pose, and any 
occlusion. Furthermore, after seeing some objects of the same category, humans are capable of 
categorizing objects that they have never seen before. Even if it is a daunting task to create 
systems which mimic human object recognition capabilities, several systems with scene and 
pattern recognition abilities have been developed. These are explored in Section 2.7. 

The object recognition problem starts with one or more pictures of an object, possibly taken 
from various perspectives and using different cameras and/or resolutions. These pictures are 
the search images. Given a query image, the problem is whether the latter contains one or more 
objects contained in the search images. Object recognition differs from object categorization in 
that the problem is not to recognize a class of objects, such as cars or buildings, but to recognize 
an instance of a particular object. In terms of recognition, several challenges have to be tackled, 
the most conspicuous of which is the apparent deformation of an image due to a change in 
perspective. Other challenges include recognizing objects from different viewpoints, varying 
illumination, and occlusion by other objects and clutter. The problem of object recognition can 
be tackled using various approaches [3]. The latter are explored in this chapter. 

2.4.1 GEOMETRY-BASED APPROACHES 

Since the earliest attempts at object recognition, efforts were focused on the use of the geometric 
models of objects to account for their change in appearance due to perspective and illumination 
change. A number of reasons exist as to why geometry has performed such an important role in 
object recognition, such as viewpoint invariance, illumination invariance, as well as a well­
developed geometric theory [ 4]. Alas, it has been shown that the reliable extraction of geometric 
primitives, such as lines and circles which are invariant to viewpoint change, is only possible 
under limited [3] . 

An early example of a geometry-based approach is the "Blocks world" framework (late 1950s). 
The aim of this approach was a simplification of object shapes in such a way that mathematical 
models could be applied to solve the recognition problem. Objects are simplified to polyhedral 
projection of such shapes into images under perspective. A powerful implementation of the 
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blocks world was that of Lawrence G. Roberts [5]. For more than a decade, the Blocks world 
framework was a main field in vision research before more realistic scenes took over. This was 
because it became obvious that such approaches would not hold in real-world scenes since too 
many assumptions were being made. 

The generalized cylinder (GC), proposed by Thomas Binford [6], was the next major 
advancement in the field of representations for recognition. The main reasoning behind the 
generalized cylinder is that the majority of shapes can be expressed as a "sweep of a variable 
cross section along a curved axis" [4]. Gerald Agin and Rodney Brooks were Binford students 
who based their work on the generalized cylinder. Agin developed "A ranging system ... [which] 
obtains three-dimensional images of curved solid objects. The object is segmented into parts by 
grouping parallel traces obtained from the ranging system. Making use of the property of 
generalized translational invariance, the parts are described in terms of generalized cylinders, 
consisting of a space curve, or axis, and a circular cross section function on this axis" [7]. Brooks, 
on the other hand, introduced "new approaches to prediction and interpretation based on the 
propagation of symbolic constraints" [8]. Practically, the system could prove theorems 
"regarding the existence ofa parameterized GC configuration with associated tolerances" [4]. 

Object oriented representation is an approach based on the premise that objects can be 
recognized from their shape outlines and interior intensity discontinuity boundaries. In the 
1970s a different representational scheme was introduced, based on a network of the diverse 20 

views of a particular object. This scheme is called an aspect graph, the computation of which 
Jean Ponce and David Kriegman later extended to generalized cylinders [9]. Aspect graphs are 
made up of nodes for each aspect, and edges connecting adjacent aspects. In the early 1990s, 
aspect graphs met with major difficulties such as the rapid growth of size in graphs, as well as 
their complexity. 

Perceptual grouping was the process which formed the foundation of the early geometric period. 
Perceptual grouping consisted of the notion that "bottom-up boundary descriptions could be 
formed from single intensity views of an object" [4]. The latter notion, however, was not 
problem-free. Some problems included: 

• Occlusion by complex-textured objects; 
• Clutter with high edge density in the background. 

Such difficulties prompted researchers to implement recognition systems based on fragmentary 
feature segmentations in terms of 20 point and line or curve segments. Instead of the generic 
descriptions which predominated the early period, the organization of the features was based on 
a specific individual object model. 

In the early 1980s, the focus was mainly based on 20 planar shapes or 30 objects as portrayed 
by 30 range cameras. It was felt that it was more important to solve 20 planar object recognition 
before attempting to solve the harder problem of 30 object recognition from a single intensity 
image. At this point in time, one can say that the 20 problem is solved for many daily-life 
problems such as industrial inspection; however a large amount of background clutter along 
with a significant amount of occlusion can result in a large number of false hypotheses. 
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Later on in the decade, recognition of 30 objects from 20 intensity images re-conquered the 
scene. Such approaches made use of viewpoint consistency where the pose of an object was 
calculated from a small number of features. Instead of bowing to the limitation of full­
perspective image formation, affine image projection models were used. 

At the end of the 1980s, the object recognition community showed a rise in interest in trying to 
automate the creation of models for recognition which would ideally only require a single view 
of an object. The concept of geometric invariance was explored, where viewpoint-invariant 
properties of an object are determined. 

Due to the difficulties such as missing features and noisy geometry in feature segmentation 
methods, such methods did not advance much. Since the smallest possible number of image 
features are used for the invariant construction, geometric invariants were noise prone. Yet, in 
spite of these limitations, by 1995 it was possible to recognize a number of 30 objects in a 
cluttered scene [10] by "exploiting class-based invariance such as of surfaces of revolution and 
canal surfaces" [4]. However, this progress all led to the realization that more progress would 
depend on better image segmentation methods. 

2.4.2 APPEARANCE-BASED ALGORITHMS 

The development of state-of-the-art feature descriptors and pattern recognition algorithms has 
enabled efforts to be transferred from geometry-based object recognition to appearance-based 
techniques. The goal of object recognition is to recognize an object from an image containing 
other clutter. To aid this purpose, discriminative classifiers such as k-nearest neighbor, neural 
networks with radial basis function (RBF), dynamic link architecture, support vector machines 
(SVM), and boosting algorithms have been used to exploit the class-specific information, and to 
recognize 30 objects from 20 images [11] [12]. As opposed to geometry-based object 
recognition, appearance-based methods are more effective at handling viewpoint and 
illumination change, but somewhat less effective at handling occlusion. 

Feature-based algorithms fall under the appearance-based algorithms category. In the fields of 
computer vision and image processing the term feature detection refers to methods which aim 
at extracting image information and making checking at each image point if there exists an 
image feature or not. This stage is known as feature detection. This approach is based on the 
idea of finding interest points which are invariant to change due to scale, illumination and affine 
transformation. As such, there does not exist a proper definition of a feature. Rather, the 
definition of a feature depends on the type of application at hand. Simply, a feature can be 
defined as an interesting part of an image, or a specific structure in the image itself such as 
points or edges. These interest points are then converted to feature descriptors, which describe 
the feature in some structured way. The descriptions may include information about the scale, 
translation, color, texture and rotation of the extracted feature. Such descriptors have been 
successfully implemented in several applications such as the recognition of object categories 
[13], [14], image retrieval [15], [16], wide baseline matching [17], object recognition [18], [19], 
texture recognition [20], video data mining [21], robot localization [22] and building panoramas 
[23]. 
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Since such features are mostly used as starting points for subsequent algorithms, the resulting 
complete algorithm can only be as good as the implemented feature detector. Thus, desirable 
properties of features are: 

• Distinctiveness - a distinctive feature can be matched reliably against a large database of 
features extracted from many images; 

• Invariance - an invariant feature can provide "robust matching across a substantial range of 
affine distortion, change in 3D viewpoint, addition of noise, and change in illumination" [18]; 

• Repeatability - a repeatable feature is detected in two or more views of the same object or 
scene. 

Many computer vision applications require feature detectors as an initial step, thus various 
feature detectors have been developed, varying on the kind of features detected, the 
computational complexity and the feature properties. 

Once the detection of features is complete, data from the image is extracted for each feature, 
amongst which the feature descriptor and other details such as the coordinates of the feature on 
the image. The descriptor contains data such as the scale and the orientation from which the 
feature was extracted. The number of dimensions a descriptor has impacts directly the time 
taken to compute the matching process which is often based on finding the distance between 
vectors, such as Euclidean distance or Mahalonobis. 

Following are some popular state-of-the-art feature-based algorithms. It is important to note 
that they all operate on greyscale images. 

2.4.2.1 SIFT 
The SIFT method extracts distinctive invariant features from images which are then used to 
match different views of some object reliably. The latter features are scale and rotation 
invariant, and provide robust matching even with substantial noise addition, illumination 
differences and affine distortion. The features are also highly distinctive. The SIFT approach 
generates a large number of features from all over the image and over a large range of scales and 
locations. This number of features is important for object recognition since the capability of 
detecting objects in cluttered scenes requires at least the correct matching of 3 features for each 
object, for reliable identification. 

An important aspect of the SIFT method is that a large number of features is generated from an 
image, although the number depends on image content and various parameter choices. The 
number of features generated is especially imporlanl f 01 ubjecl i ecugniliun, where lhe correcl 
matching of at least 3 features for each object is required to detect small objects in cluttered 
backgrounds. 

The main stages required to generate the set of image features are as follows [18]: 

• Scale-space extrema detection: 
The first stage of this process searches through all scales and image locations. A difference­
of-Gaussian function is implemented to find possible interest points which are scale and 
orientation invariant. 
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A scale space attempts to replicate the concept of the level of detail one notices when 
viewing an object. For example when viewing a tree, one might view the leaves in detail, or, 
on the other hand, one might view the tree as a whole, forgoing the details of the tree's 
leaves. The mathematical method of replicating this concept is by using the Gaussian blur. 
Simply put, Gaussian blur takes the original image and generates progressively blurred out 
images. Then the image is resized to half its size and the blurred out images are generated 
again. This process is repeated for as long as required. As can he seen in Figure 7, images 
of the same size form an octave, where each octave is made up of increasingly blurred 
images. 

Figure 7: Scale Space. Image from [49]. 

The created scale space is then used to create another set of images, namely the Difference 
of Gaussians (DoG). The DoG is used as an approximation to the scale-normalized, but 
computationally intensive Laplacian of Gaussian (LoG). For the DoG, two consecutive 
images in an octave are taken and one is subtracted from the other. This process is 
repeated for all the images in the octave, for all octaves, as can be seen in Figure 8. 

Scale 
{next 
octave) 

Scale 
!first 
octave) 

Gaussian Gaussian (DOG) 

Figure 8: Difference of Gaussian. Image from [18]. 
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• Keypoint localization: 
At each possible location, a detailed model is fit to determine location, scale and ratio of 
principal curvatures. Thus, points having low contrast (therefore noise-sensitive) or points 
localized along an edge are discarded. Keypoints are selected based on measures of their 
stability. 

The first step for this stage is the coarse location of maxima and minima in the DoG images. 
This is done by iterating through each pixel in the image and checking all its neighbors. This 
process is repeated within the current image, and also the scale above and below it. This is 
portrayed in Figure 9. 

Figure 9: Maxima and Minima of the DoG images. Image from [18]. 

The current pixel (marked with an x in the image) is defined to be a keypoint only if it is a 
minimum or a maximum amongst all of its neighbors. The cost of this check is quite low 
since most candidate points are rejected after the first few checks. These keypoints are the 
approximate maxima and minima. The approximation is due to the fact that maxima or 
minima never lie exactly on a particular pixel, but somewhere in between. Since one cannot 
simply access data in-between pixels, the sub-pixel must be located mathematically. Sub­
pixel values are generated using the Taylor expansion. 

The next step for this stage is the rejection of some of the detected keypoints, either 
because they don't have enough contrast or lie on an edge. Such keypoints are not useful as 
features. Edge features are removed using an approach similar to the Harris Corner 
Detector while low contrast features are identified by checking their intensities. 

• Orientation assignment: 
Having stable, scale-invariant keypoints, one or more orientations are assigned to each 
keypoint according to the gradient directions of the local image. All future operations are 
executed on image data which has been transformed with respect to the assigned 
orientation, scale, and location for each feature, therefore providing invariance to these 
transformations. 

Basically this stage involves the collection of the gradient directions and magnitudes of 
sample points in an area around each keypoint, and the most prominent orientation is 
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assigned to the keypoint. This orientation enables rotation invariance. An orientation 
histogram having 36 bins (thus covering the 360 degree range of orientations) is 
constructed from the collected data. Peaks in this histogram indicate the major directions 
of local gradients. The highest peak is identified and if there is any other local peak that is 
within 80% of the highest peak, it is used to create another keypoint with the respective 
orientation. Therefore, for keypoints having multiple peaks with similar magnitudes, a new 
keypoint is created for each major orientation. This results in a number of keypoints at the 
same location and scale but with different orientations. This only happens to about 15% of 
the points, but the latter contribute significantly to the stability of the matching process. 

• Keypoint descriptor: 
The local image gradients are measured at the given scale in the area around each keypoint. 
These are converted into a representation which allows for substantial levels of local shape 
distortion and change in illumination. 

Image gradients Keypoint descriptor 

Figure 10: Keypoint descriptor. Image from [18]. 

Figure 10 depicts the computation of a keypoint descriptor. First, the gradients and 
magnitudes extracted from the image in the previous stage are weighted by a Gaussian 
Window shown by the superimposed circle. The purpose of the Gaussian Window is "to 
avoid sudden changes in the descriptor with small changes in the position of the window, 
and to give less emphasis to gradients that are far from the center of the descriptor" [18]. 

This data is then represented by orientation histograms, with a summary of the contents in 
1·x4 sub-regions, as shown on the right hand side of the image. The length of each arrnw 
corresponds to the magnitude of the histogram entry in question. It is important to note 
that the figure shows a 2x2 descriptor array computed from an 8x8 set of samples; 
however the experiments led in [18] use 4x4 descriptors computed from a 16x16 sample 
array, resulting in 128 values for each keypoint descriptor. 

To reduce the illumination dependence, numbers (from the 128 values) greater than 0.2 
are given a threshold to be no larger than 0.2, and then the vector is normalized to unit 
length. The 0.2 value was "determined experimentally using images containing differing 
illuminations for the same 3D objects" [18]. To reduce rotation dependence, the keypoints' 
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rotations are subtracted from each orientation. Therefore gradient orientations are relative 
to the keypoints' orientations. 

This approach matches new images by comparing each feature from the image in question with 
a database of SIFT features, and finds matching features based on Euclidean distance of their 
feature vectors. Correct matches can be identified from the full set of matches by finding sub­
sets of keypoints which agree on the object in question and its location, scale and orientation in a 
new image. The determination of clusters can be quickly done using an efficient hash table 
implementation of the generalized Hough transform. 

Each group of three or more keypoints which agree on a given object and its respective pose is 
then subjected to further confirmation. A least-squared estimate is made for an affine 
approximation to the object pose, and any image features matching the latter pose are identified, 
and outliers rejected. Then, given the accuracy of fit and number of probable false matches, the 
probability that a particular set of features indicates the presence of an object is determined. 
Object matches which pass all the mentioned tests can be defined as correct with high 
probability. 

2.4.2.2 PCA SIFT 
In [24] Ke and Sukthankar examine and improve upon the local image descriptor used by SIFT. 
The aim is to create a descriptor for the area of pixels around a keypoint's local neighborhood 
which is "compact, highly distinctive ... and yet robust to changes in illumination and camera 
viewpoint" [24]. Similar to SIFT, the descriptors of PCA-SIFT encode the important aspects of the 
image gradient in the keypoint's neighborhood. Yet, instead of using SIFT's smoothed weighted 
histograms, Principal Components Analysis (PCA) is applied to the normalized gradient patch. 
PCA enables Ke and Sukthankar to "linearly-project high-dimensional samples onto a low­
dimensional feature space" [24]. The latter projection can be computed once and saved. 

Practically, PCA-SIFT is identical to SIFT in the first three stages of the approach. The fourth and 
final stage, namely the keypoint descriptor stage, builds a representation for each keypoint 
based on a patch of pixels in its local neighborhood. The PCA-SIFT algorithm for this stage 
accepts the same data as the standard SIFT descriptor, namely; sub-pixel location, scale, and 
dominant orientations of the keypoint. As stated in [24], PCA is a standard technique 
implemented in various computer vision problems such as feature selection, object recognition 
and face recognition, and, even though PCA has some shortcomings, it is still popular due to its 
simplicity. 

The first stage of PCA-Sll'T requires the pre-computation of an eigenspace Lo express the 
gradient images of local patches. After computing the first three stages of the SIFT algorithm, a 
41x41 patch is extracted at the given scale and centered over the keypoint in question. This is 
then rotated to align its prominent orientation to a canonical orientation. Similar to SIFT, for 
keypoints with more than one prominent orientation, a representation for each orientation is 
built. The input vector required by the PCA-SIFT algorithm is then created by concatenating the 
horizontal and vertical gradient maps for the extracted patch at the keypoint at hand. This 
results in a vector of 2x39x39 = 3042 elements. This vector is then normalized to unit 
magnitude. The normalization is done to minimize the impact of illumination changes. One 
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should note that the 41x41 patch does not cover all of the pixel value space, nor the smaller 
number of regions extracted from natural images. Rather, it consists of the small set of patches 
which passed through the first three stages of the SIFT algorithm, more precisely [24]: 

• "It is centered on a local maximum in scale-space; 
• It has been rotated so that (one if its) dominant gradient orientations is aligned to be 

vertical; 
• It only contains information for the scale appropriate to the keypoint - i.e. the 41x41 

patch may have been created from a much larger region from the original image." 

The eigenspace is then built by applying PCA to the covariance matrix of the extracted vectors. 
The matrix, made up of the top n eigenvectors, is serialized to disk and used as the projection 
matrix for PCA-SIFT. 

The aim of the next stage for PCA-SIFT is to identify the feature vector for a particular image 
patch. This vector is considerably smaller than the standard SIFT feature vector, yet, it can be 
used with the same matching algorithms. The feature vector is calculated by creating its 3042-
element normalized image gradient vector, and projecting it into the feature space using the pre­
computed eigenspace. Ke and Sukthankar empirically determined good values for the 
dimensionality of feature space, n. 

As mentioned, Euclidean distance between two feature vectors is used to determine whether 
they belong to the same feature within different images. The use of a fine-tuned threshold for 
this distance enables one to find a trade-off between false positives and false negatives. 

2.4.2.3 ASIFT 
This method, proposed by Morel and Yu in [25], simulates all possible views of an image by 
varying the two camera axis orientation parameters, namely the latitude and longitude angles. 
The ASIFT method thus covers the two parameters left over by SIFT. This addition to the SIFT 
approach results in a mathematically proved, fully affine invariant method whose complexity is 
approximately twice that of SIFT. 

ASIFT simulates the scale and changes of the camera axis orientation and normalizes the 
rotation and translation. In fact, more specifically, ASIFT simulates the two camera axis 
parameters, then SIFT is implemented to simulate the scale and normalize the rotation and 
translation. Morel and Yu introduce an invaluable parameter for the evaluation of the 
performance of affine recognition, namely the transition tilt. The latter parameter measures the 
degree of viewpoint change between different views of the same object. 

Figure 11 depicts one of the first perspectively correct Renaissance paintings by Paolo Uccello. 
One can see how the perspective on the floor is strongly projective; the rectangular pavement of 
the room takes a trapezoidal form. Yet, each tile on the floor is nearly a parallelogram. This 
shows the "local tangency of perspective deformations to affine maps" [25]. In fact, by 
implementing an affine map, by the first order Taylor formula, any planar smooth deformation 
can be approximated around each point. 
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Figure 11: The global deformation of the ground is strongly projective (a rectangle becomes a 
trapezoid), but the local deformation is affine: each tile on the pavement is almost a 
parallelogram. Image from [24]. 

Similarity- invariant image matching 

/ 

Figure 12: Overview of the ASIFT algorithm. Image from [24]. 

Figure 12 represents an overview of the ASIFT algorithm. The perfect square images, A and B, 
represent the two images to be compared. The simulated images, represented by the 
parallelograms, are the simulations of the changes brought about by a variation of the camera 
optical axis direction. The latter images are then compared using SIFT, which is rotation, scale, 
and translation invariant. 

A key observation is that a tilt distortion, even though it is "irreversible due to its non­
commutation with the blur, [it] can be compensated up to a scale change by digitally simulating 
a tilt of same amount in the orthogonal direction" [25]. ASIFT makes use of simulation instead of 
normalization methods, which suffer from the mentioned non-commutation. This enables ASIFT 
to be fully affine invariant. It is important to note that the simulation of the whole affine space 
with the proposed affine space sampling is not restrictive. Besides, the implementation of a two­
resolution scheme reduces the ASIFT complexity to approximately twice that of SIFT. 
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The AS I FT algorithm can be summarized by the following stages: 

• First, every image is transformed by a simulation of all possible affine distortions caused 
by "the change of camera optical axis orientation from a frontal position" [25]. These 
distortions are determined by the longitude and latitude parameters; 

• The images undergo rotations and tilts for a finite and a small number of latitude and 
longitude angles. The sampling steps of the latter parameters ensure that the simulated 
images are kept close to any other possible view obtained by other values of latitude and 
longitude; 

• SIFT is implemented to compare all the simulated images. 

The acceleration with two resolutions involves applying ASIFT on low-resolution versions of a 
query and the search images. In case of a match, the affine transforms which resulted in matches 
in the low-resolution process are selected. These transforms are then simulated on the original 
query and search images. Finally, the generated images are compared using the SIFT algorithm. 

2.4.2.4 SURF 
In [26], the authors present SURF: a scale and rotation invariant interest point detector and 
descriptor. Their approach relies on integral images for image convolutions, implements a 
Hessian matrix-based measure for the detector, and a distribution-based descriptor, and 
simplifies the latter methods to the essential. More precisely, the detector uses a very basic 
approximation of the Hessian matrix. The approximation relies on integral images to reduce the 
computation time. Thus, the detector is known as a 'Fast-Hessian' detector. The descriptor, on 
the other hand, describes "a distribution of Haar-wavelet responses within the interest point 
neighborhood" [26]. Yet again, the integral images are exploited for speed. Apart from this, only 
64 dimensions are used. This results in quicker computation and matching, while at the same 
time increasing robustness. The authors also introduce a new indexing step based on the sign of 
the Laplacian which, apart from increasing the robustness of the descriptor, also increases the 
matching speed. 

The following stages describe the Fast-Hessian Detector: 

• The Hessian 
The SURF detector is based on the Hessian matrix since it has good performance in 
computation time and accuracy. To be more precise, blob-like forms are identified at 
locations where the determinant is maximum. Yet, instead of using different measures 
for the selection of the location and the scale, the determinant of the Hessian is used for 
both. The latter value, known as the discriminant, is used as a means of classification for 
the maxima and minima of the function. This discriminant is a product of eigenvalues of 
the Hessian, thus, points can be classified according to the sign of the result. "If the 
determinant is negative then the eigenvalues have different signs and hence the point is 
not a local extremum; if it is positive then either both eigenvalues are positive or both 
are negative and in either case the point is classified as an extremum" [27]. The use of 
Gaussian in the described process allows the varying of the amount of smoothing during 
the convolution stage. This means that the determinant is calculated at various scales. 
However, the authors of [26] explore a simpler alternative to the Gaussian filters, and 
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extend Lowe's LoG approximations by using box filters. The latter, shown in Figure 13, 
approximate second order Gaussian derivatives and, using integral images, can be 
evaluated very fast independently of size. 

Figure 13: Left to right - The (discretised and cropped) Gaussian second order partial 
derivatives in y-direction and xy-direction, and the SURF approximations using box 
filters. The grey regions are equal to zero. Image from [26]. 

• Constructing the Scale-Space 

Interest points require to be identified within different scales, since the search of 
matches often requires their comparison in images where they are seen within different 
scales. Scale spaces, usually implemented as an image pyramid, are repeatedly smoothed 
with a Guassian and then scaled to a smaller size in order to achieve a higher level of the 
pyramid. Since SURF uses box filters and integral images, there is no need to iteratively 
apply the same filter to the output of a previously filtered layer. Instead, box filters of any 
given size can be applied directly on the original image. The use of integral images 
reduces the computation time drastically. 

• 

Figure 14: Filter Pyramid - The left hand side portrays the traditional approach to 
constructing a scale space while the right hand side shows the SURF approach. Image 
from [27]. 

The difference belween the traditional approach and the approrir.h 11sP.rl in STJRF to 
constructing a scale-space can be seen in Figure 14. In the traditional approach, the 
image size is varied and the Gaussian filter is applied to smooth subsequent layers. The 
SURF approach, on the other hand, leaves the original image unchanged and varies only 
the filter size. For a more detailed description of scale space refer to Section 2.4.2.1. 

• Accurate Interest Point Localization 

The localization of scale and rotation invariant interest points in an image starts with the 
thresholding of the responses in such a way that all values under a pre-determined 
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threshold are discarded. The latter threshold can be adapted according to the 
requirements in question; a higher threshold value leaves only the strongest interest 
points and vice versa. 

Next, each pixel in the constructed scale space is compared to its neighbors in the scale in 
question, and the scales above and below it, as can be seen in Figure 9. The latter 
process is done to find a set of candidate interest points. This stage results in a set of 
interest points "with minimum strength determined by the threshold value and which 
are also local maxima/minima in the scale-space" [27]. 

The final process of this stage involves the interpolation of data near the interest points 
to find the location in "both space and scale to sub-pixel accuracy" [27]. This is done by 
expressing the determinant of the Hessian function as a Taylor expansion centered at the 
detected location. This process leaves only the most stable interest points. 

The SURF interest point descriptor describes the distribution of the pixel intensities 
within a scale dependent region of keypoints identified by the Fast-Hessian. The 
approach used by SURF exploits integral images for speed, together with filters known as 
Haar wavelets, to increase robustness and decrease computation time. Haar wavelets, as 
can be seen in Figure 15, are used to find gradients in the x and y directions. When used 
together with integral images, each wavelet requires only six operations to be computed. 

Figure 15: Haar wavelets - The left filter computes the response in the x-direction 
while the right filter computes they-direction. Weights are 1 for black regions and -1 
for white regions. Image from [27]. 

The first process for the extraction of the descriptor involves the assignment of an 
orientation to each interest point. Then, a scale-dependent window is constructed in 
which a 64-dimensional vector is extracted. It is vital that measurements respective to 
the detected scale are used in all calculations for the descriptor to ensure scale-invariant 
results. 

• Orientation Assignment 

Rotation invariance is achieved by assigning a reproducible orientation to each detected 
interest point. It is important that such an orientation is found to be repeatable under 
varying conditions, since extraction of the descriptor components is computed relative 
to this direction. Orientation assignment is done by calculating Haar wavelet responses 
for a set of pixels within a given radius of the detected point, according to the scale at 
which the point was detected. 
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The responses are then weighted with a Gaussian centered at the interest point in 
question. This Gaussian is also dependent on the scale of the latter point. After they are 
weighted, the results are represented as points in vector space. The most prominent 
orientation is chosen by rotating a circle segment around the origin, and summing up the 
x and y-responses within the segment to form a new vector. The longest vector is 
assigned as the interest point orientation. 

t 
/ : 
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Figure 16: Orientation assignment. Image from [27]. 

• Descriptor components 

Firstly, a square window containing the pixels which will form values in the descriptor 
vector is constructed around the interest point in question. This window is oriented 
along the dominant orientation found in the previous stage, in such a way that all 
subsequent calculations are relative to this orientation. 

Figure 17: Descriptor Windows - Each window is 20 times the size of the scale of the 
detected point and is oriented along the dominant dirr.r.tion shown in errrn . lmner 
from [27]. 

The descriptor windows are divided into 4x4 regular sub-regions. For each sub-region, 
Haar wavelets are calculated for 25 regularly distributed sample points, resulting in four 
values. This means that the descriptor vector is oflength 4x4x4 = 64. The resulting SURF 
descriptor is rotation, scale and brightness invariant, and, after reduction to unit length, 
even contrast-invariant. 
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For the matching stage, for faster indexing, the sign of the Laplacian for the underlying interest 
point is included in the descriptor. The sign of the Laplacian enables the distinguishing of bright 
blobs on dark backgrounds from the opposite situation. Since this feature is computed during 
the detection stage, it is available at no additional computational cost. For the matching process, 
only features with the same type of contrast are compared, thus, this minimal information 
enables faster matching and a slight increase in performance. 

2.5 FEATURE MATCHING 

The use of features in object recognition requires a matching approach which compares 
individual features to a database of features and discards false positive matching feature pairs. 
Many features will be incorrectly matched due to ambiguous features, or features arising from 
clutter. As described in [18], if clusters of at least 3 features are identified which agree on object 
and pose, then the feature has a high probability of being a correct match. 

The nearest neighbor approach involves identifying the best candidate by finding the nearest 
neighbor of a keypoint from a database of features. The nearest neighbor can be defined as the 
keypoint with the minimum Euclidean distance for the feature descriptor. Simply finding the 
nearest neighbor however, will not give the best results, as many features extracted from the 
image in question can be derived from clutter, thus there will be no matching features in the 
database. The case might also be that the features were not detected in the training images. This 
problem requires a means to reject features which do not have a good match in the database. A 
global threshold on the distance to the nearest neighbor would not be useful here, since some 
descriptors are more discriminative then others. An effective solution, as proposed by [18], 
would be to set a threshold on the ratio between the distance of the first nearest neighbor to the 
distance of the second nearest neighbor. If the database contains multiple training images of the 
same object, then the second nearest neighbor is taken to be the first nearest neighbor from a 
second unrelated image. The threshold on the ratio between distances is effective since correct 
matches require having the closest nearest neighbor significantly closer than the second-closest 
nearest neighbor. Thus, false matches will be distinguished by a large ratio between the first and 
second nearest neighbors. Figure 21 depicts the probability of a correct match by using the 
nearest neighbor ratio matching. 

The proposed solution has however one major setback; nearest neighbor search times depend 
exponentially on the dimension of the space. This is coined as "the curse of dimensionality". Due 
to this setback, many algorithms cannot be more efficient than exhaustive search in the 
identification of exact nearest neighbors of points in high dimensional spaces. Taking the 
example of SIFT's 128 dimensional feature vector, the kd tree algorithm [28] would provide no 
speedup over exhaustive search for more than about 10 dimensional spaces. Following are some 
of the most feasible solutions. 

2.5.1 BEST-BIN-FIRST MATCHING 

In [29], Lowe and Beis propose a variant of the kd-tree search algorithm which makes indexing 
in higher dimensional spaces practical. The proposed search approach, coined Best Bin First 
(BBF) search, is an approximate algorithm which finds the nearest neighbor to a query point for 
a large number of queries, while finding a very close neighbor for the remaining cases. Even 
though the developing of such an algorithm was done with the application of shape indexing in 
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mind, this search approach can be used efficiently for closest point matching in appearance­
based recognition [30]. 

The standard kd-tree begins with a complete set of N points in Rk. The data space is split on the 
dimension i in which the data shows the greatest variance. A cut is performed at the median 
value m of the data in dimension i in such a way that both sides of the cut have an equivalent 
number of points. An internal node is created to store i and m, and the process is repeated with 
both halves of the data. This process results in a balanced binary tree with depth d = [logz N]. 
The leaves of a kd-tree form a complete section of the data space. An interesting property one 
should note is that bins are smaller in higher-density areas and larger in lower density regions. 
Thus, with high probability, the nearest neighbor to a query should lie in the bin where the 
query falls, or in a bin adjacent to it. 

To find the nearest neighbor to a query point q, a "backtracking, branch-and-bound search" [29] 
is implemented. This involves traversing the tree to find the bin containing the query point. This 
step requires only d scalar comparisons, and gives a good approximation to the nearest 
neighbor. Then, the backtracking stage requires the pruning of whole branches of the tree if the 
region of space they represent is further from the query point than the distance from q to the 
closest neighbor yet seen. The described process can be very effective in low-dimensional 
spaces, but, since higher dimensions result in many more bins adjacent to the central one that 
must be examined, performance degrades rapidly. It is important to note that a great deal of the 
search time is spent examining bins in which only a small fraction of their volume could provide 
the nearest neighbor [29]. This means that if an approximation to the nearest neighbor is 
sufficient to the problem at hand, then sustained search can be avoided by posing a limit on the 
number of leaf nodes to be examined (Emax}, and settling for the best neighbor found up to that 
point. 

Even though the mentioned modification extends by a small amount the domain of kd- tress for 
fast nearest neighbor, the backtracking step described earlier is still inefficient. This is due to the 
order of examining leaf nodes, which is done according to the tree structure and depends only 
on the stored points. Also, the order does not consider the position of the query point. An 
optimization could be looking in bins in order of increasing distance from the query point. The 
distance to a bin is defined as "the minimum distance between q and any point on the bin 
boundary" [29]. 

The BBF search strategy proposed provides a drastic improvement in nearest neighbor search 
for moderate dimensionality (e.g. 8-15) and, for fairly small values of Emax,, this approach 
identifies the exact nearest neighbors a large percentage of the time, and gives a very close 
neighbor the remaining times. 

2.5.2 RANDOMIZED KD-TREE ALGORITHM 

Silpa-Anan and Hartley in [31] propose an improved version of the kd-tree algorithm where 
multiple randomized kd-trees are generated. As opposed to the original kd-tree algorithm, the 
randomized trees are generated by choosing the split dimension randomly from the first D 
dimensions on which data has the greatest variance. 
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When searching the trees, a single priority queue is maintained across all the randomized trees 
with the aim of ordering the search by increasing distance to each bin boundary. The degree of 
approximation is determined by examining a fixed number of leaf nodes. When this threshold is 
reached, the search is stopped and the best candidates are returned. 

According to experiments led by Lowe and Muja in [32], performance of randomized kd-trees 
improves with the number of generated trees up to a certain point. Increasing the number of 
random trees beyond this point leads to static or decreasing performance. 

2.5.3 HIERARCHICAL K-MEANS TREE 

Lowe and Muja in [32] present an algorithm which applies priority search on hierarchical k­
means trees, as opposed to branch-and-bound approaches which search in depth-first order. 
The hierarchical k-means tree is built by separating the data points at each level into K distinct 
areas using a k-means clustering. The same method is applied recursively to the points in each 
area. This recursion is stopped when the number of points in an area is smaller than K. 

Lowe and Muja developed an algorithm which explores the hierarchical k-means tree in a BBF 
manner. This algorithm starts by performing a single traversal through the tree and appends to a 
priority queue all the unexplored branches in each node along the traversed path. Then, the 
branch which has the closest center to the query point is extracted from the priority queue, and 
the tree traversal is restarted from that branch. As it traverses the branches in turn, the 
algorithm keeps appending to the priority queue the unexplored branches along the path. The 
degree of approximation is specified similarly as for the randomized kd-trees; by stopping the 
search after a specified number of leaf nodes (dataset points) have been examined. 

The hierarchical k-means tree performs best with most datasets, however, a disadvantage of this 
algorithm is that it often has a higher tree-build time than the randomized kd-trees. This build­
time can be reduced significantly by executing a small number of iterations in the k-means 
clustering stage instead of running it until convergence. 

2.6 FEATURE-BASED ALGORITHMS EVALUATION 

In the papers presenting SIFT [18], PCA-SIFT [24] and SURF [26], the authors perform an 
evaluation on the proposed algorithms. These evaluations are done with the purpose of 
determining various properties of the detectors and descriptors of each algorithm. 

2.6.1 SIFT 
In [18] Lowe conducts various experiments to evaluate the SIFT descriptor. One of which is the 
vrirylns of two parameters used to vary the complexity ot the descriptor, namely the number of 
orientations, r, in the histograms and the width, n, of the n x n array of orientation histograms. 
The resulting descriptor vector can be described as rn2• The more complex a descriptor is, the 
more it discriminates when using a large database of features, however it is more susceptible to 
shape distortions and occlusion. Figure 18 depicts this experiment. The graph was generated 
using images with a viewpoint transformation where a planar surface is tilted by 50 degrees 
away from the viewer and 4% noise is added. Such images present the descriptor with the most 
extreme data for reliable matching. The graph shows the percentage of keypoints which find a 
correct match to a single nearest neighbor from a database of 40,000 features. Results show that 
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a single orientation histogram (n = 1) has a very poor discrimination. The best n-value is found 
to be 4, with 8 orientations. More orientations or a larger descriptor would end up making the 
descriptor more sensitive to distortion. 
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Figure 18: The percentage of keypoints giving the correct match to a database of 40,000 
keypoints as a function of width of then x n keypoint descriptor and the number of orientations 
in each histogram. Image from [18]. 

Figure 19 shows the experiment led to evaluate the sensitivity of the descriptor to affine 
change. The graph shows "the reliability of keypoint location and scale selection, orientation 
assignment, and nearest neighbor matching to a database as a function of rotation in depth of a 
plane away from a viewer" [18]. Results show that there is a reduced percentage of repeatability 
at each stage of computation with increasing amounts of affine distortion. Yet, up to a 50 degree 
change in viewpoint, the final matching accuracy remains above 50%. 
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Figure 19: The stability of detection for keypoint location, orientation, and final matching to a 
database as a function of affine distortion. The degree of affine distortion is expressed in terms of 
the equivalent viewpoint rotation in depth for a planar surface. Image from [18]. 
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Lowe conducted an evaluation to determine the varying in the reliability of matching as a 
function of the number of features in the database of keypoints. The graph in Figure 20 was 
generated using a database of 112 images with a viewpoint depth rotation of 30 degrees and 2% 
image noise, along with normal random image rotation and scale change. The leftmost point on 
the dashed line shows the matching against features from a single image while the rightmost 
point is the matching against all features in the database. The reason that the solid line is flat is 
that the testing of the number of keypoints which were identified at the respective matching 
location and orientation in the transformed image was run over the full database for each value. 
The results show that the larger the database, the less reliable the matching is, however, correct 
matches will still be found even with very large databases. The small gap between the two lines 
indicates that a failure in finding a match is more probable to be due to problems with the initial 
feature localization and orientation assignment, than due to the feature distinctiveness. This is 
true even in large databases. 
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Figure 20: The dashed line shows the percentage of keypoints correctly matched to a database 
as a function of database size (using logarithmic scale) . The solid line shows the percentage of 
keypoints assigned the correct location, scale, and orientation. Image from [18]. 

Images with random scale and orientation change, a depth rotation of 30 degrees, and addition 
of 2% image noise were used to evaluate the probability of a correct match against a database of 
40,000 features. Figure 21 shows the results. All matches in which the distance ratio between 
the closest neighbor and the second closest neighbor is larger than 0.8 are discarded. This 
rejects 90% of false matches while it discards only 5% of the correct matches. This approach is 
known as nearest neighbor distance ratio matching. 
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Figure 21: The probability that a match is correct can be determined by taking the ratio of 
distance from the closest neighbor to the distance of the second closest. The solid line shows the 
Probability Density Functions for correct matches, while the dotted line is for matches that were 
incorrect. Image from [18]. 

2.6.2 PCA-SIFT 
Apart from experimenting with the relationship between the dimensionality of PCA-SIFT and the 
matching accuracy, the authors of [24] run three main types of experiments with the aim of 
evaluating the difference between standard SIFT representation and PCA-SIFT . 
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Figure 22: PCA-SirT performance as PCA dimension (11) b va1 ieJ. Image from [24]. 

Figure 22 shows the relationship between the matching accuracy of PCA-SIFT and the 
dimensionality of the feature space. As can be seen, 36 is the best value for n, with higher 
dimensions actually resulting in a decline of matching accuracy. It is important to note that a 
larger dimensionality requires a longer running time. 

The first experiment type was aimed to examine the robustness of both descriptors to artificially 
created effects; addition of noise, changes in illumination and the application of image 
transformations. The graphs showing the results are generated as follows: 
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• The keypoints ofall images in the dataset are extracted (using the initial stages of SIFT); 

• All pairs of keypoints from different images are examined - if the Euclidean distance 
between feature vectors for the pair of keypoints in question is beneath a given 
threshold, the pair is defined a match. If two keypoints correspond to the same physical 
location, the match is termed a correct-positive, otherwise, it is a false-positive. 

The evaluation metrics used are recall vs. 1-precision: 

number of correct positives 
recall= . 

total number of positives 

. . number of false positives 
1 - precision=-----------------­

total number of matches (correct or false) 

Equation 3: Evaluation metrics equations 
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Figure 23: SIFT vs. PCA-SIFT on a matching task where the images are deformed or corrupted 
under controlled conditions. (a) Target images were corrupted by Gaussian noise. (b) Target 
images were rotated by 45 degrees and scaled by 50%. (c) Target images were projectively 
warped to simulate a viewpoint change of 30 degrees. ( d) Target image intensities were scaled by 
50%. Image from [24]. 

27 



Figure 23 depicts the results for the first set of matching experiments. Figure 23(a) shows 
that PCA-SIFT is much better at handling noise in images for nearly all values of 1 - precision. 
SIFT only outperforms PCA-SIFT when extremely high false positive rates can be tolerated. 
Figure 23(b) shows the results where target images were rotated by 45 degrees and scaled by 
50%. Figure 23(c) on the other hand shows matches after target images were distorted by a 
perspective transformation equivalent to a 30 degrees out-of-plane rotation. Finally, Figure 
23(d) shows that all descriptors are capable of handling illumination changes, with a recall of 
more than 95%. 

The second experiment type was run using real images taken from varying viewpoints. Figure 
24 shows the results: although the absolute recall is quite low, PCA-SIFT definitely gives the best 
results. 
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Figure 24: SIFT vs. PCA-SIFT using real images taken from varying viewpoints. Image from 
[24]. 

The last experiment involved the integration of SIFT and PCA-SIFT in an image retrieval 
application. Given two images, the corresponding feature vectors were extracted. Each feature 
vector in one image was compared against all feature vectors in the other image in turn, and the 
number of features falling within a threshold distance were counted. In short, the experiment 
required the use of a small dataset of 3 images each of 10 household items from different 
viewpoints. 2 images of each object were added to the database while the remaining images 
were used as query images. The algorithm in question was awarded points according to the 
result of the image retrieval process: if the top 2 images corresponding to the query were 
returned the algorithm was awarded 2 points, if 1 image was returned, 1 point is awarded, 
otherwise 0 points were awarded. The resultant scores were divided by 60 (the number of 
correct matches). This experiment resulted in the SIFT obtaining 43% and PCA-SIFT obtaining 
68% correctly retrieved images. Results also showed that the localization of features in images 
took comparable times for both SIFT and PCA-SIFT, but PCA-SIFT is much faster in the matching 
stage. 

To study the reason behind SIFT's matching success, namely the careful design of its feature 
representation to be robust to localization error, another experiment was led where registration 
error was introduced after the localization stage. When error was introduced into the 
orientation assignment phase (1 and 3 pixel errors at the appropriate scale in a random 
direction with respect to the prevailing orientation), or in the scale estimation, PCA-SIFT's 
accuracy declines. This confirms that SIFT is better suited at handling such errors. 
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2.6.3 AS/FT 
Experiments presented in [25] include extensive tests using the Mikolajczyk database [33] and a 
thorough evaluation of various methods' invariance to absolute and transition tilts. Here we 
focus on the results obtained by SIFT and ASIFT, since the other methods are not relevant in this 
context. 

The Mikolajczyk database was used to evaluate the robustness to four types of distortions, 
namely blur, similarity, change in viewpoint and JPEG compression. The results show that ASIFT 
performs best in these tests. This is shown in Figure 25. 
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Figure 25: Number of correct matches achieved by ASIFT and SIFT under four types of 
distortions. On the top-right corner of each graph m/n gives for each method the number of 
image pairs m on which more than 20 correct matches were delecled, and Lhe average number of 
matches n over these m pairs. Image from [25]. 

Figure 26 (a) shows the settings adopted for the absolute tilt test. A planar object was 
photographed with an optical zoom varying from xl to x10 and with viewpoint angles between 
the camera axis and the normal to the object varying from 0 degrees (frontal view) to 80 
degrees. Figure 28 depicts the results; for zoom xl, the number of sift matches drops 
considerably when the angle is larger than 65 degrees and fails completely when the angle is 
larger than 75 degrees. ASIFT, on the other hand, functions perfectly till 80 degrees. For images 
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taken at zoom x10, SIFT performance is possible only with angles smaller than 45 degrees. 
Again, ASIFT works perfectly until 80 degrees. 

For the transition tilt test a planar object is photographed as depicted in Figure 26 (b) to obtain 
two sets of images. For each image set, the camera, set with a fixed latitude angle equivalent to 
t=2 and t=4, is circled around with the longitude angle growing from 0 to 90 degrees. The 
optimal zoom and the focus distance were set to x4. For absolute tilt of 2, the SIFT performance 
drops considerably when the transition tilt goes from 1.3 to 1. 7. Under an absolute tilt of 4, SIFT 
struggles at a 1.9 transition tilt, and fails completely when the tilt gets bigger. ASIFT works 
perfectly for transition tilts up to 16, with the experimental limit transition tilt going easily up to 
36. The results are depicted in Figure 29. 

Figure 26: The settings adopted for systematic comparison. (a) Absolute tilt test (b) Transition 
tilt. Image from [25]. 

Figure 27: When the camera focus distance is small, the absolute tilt of a plane object can vary 
considerably in the same image due to the strong perspective effect. Image from [25]. 
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Figure 28: Absolute tilt invariance comparison - number of correct matches for viewpoint angles 
between 45 degrees and 80 degrees. Top: images taken with zoom x1 Bottom: images taken with zoom x 
10. The latitude angles and the absolute tilts are listed in the left column. For the x1 zoom, strong 
perspective effect is present and the tilts shown are average values. Image from [25]. 
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2.6.4 SURF 
The authors of (26] evaluate SURF using the images and testing software provided by 
Mikolajczyk (33]. The SURF descriptor is compared to SIFT, PCA-SIFT and GLOH; a SIFT-like 
descriptor. SURF resulted the best descriptor for almost all comparisons. Figure 30 depicts 
matching results obtained with two different matching techniques, namely a similarity­
threshold-based strategy and a nearest-neighbor-ratio matching strategy. Tests were done on 
the 'Graffiti' images, with a view change of 30 degrees. Figure 32 shows recall vs. (1-precision) 
graphs using various Mikolajczyk image sets using similarity-threshold-based matching. 

As can be seen from the diagrams, the SURF descriptor outperforms the other descriptors with 
sometimes more than 10% improvement in the recall for the same level of precision. SURF-128 
corresponds to the extended SURF descriptor, which shows slightly better results than standard 
SURF. SURF-128 however has a longer matching process. This is shown in Figure 31. 
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Figure 30: Recall vs. 1-precision graph for different binning methods and two different 
matching strategies. Left: Similarity-threshold-based matching strategy. Right: Nearest­
neighbor-ratio matching strategy. Image from (26]. 
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Figure 31: Computation times for the joint detector-descriptor implementations. The 
thresholds are adapted in order to detect the same number of interest points for all methods. 
Image from (26]. 

The SURF approach was also tested in a practical application with the aim of recognizing art 
objects in a museum. A database of 216 images depicting 22 objects was built using images 
taken under various conditions. The conditions included extreme lighting changes, images of 
objects within reflecting glass cabinets, changes in viewpoint, zoom, various camera qualities, 
etc. The resolution used was 320x240. Using the nearest neighbor matching strategy, the results 
ranked with the following recognition rate: 

• SURF-128 - 85.7% 
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• U-SURF (Upright SURF) - 83.8% 

• SURF - 82.6% 

• GLOH - 78.3% 

• SIFT - 78.1 % 

• PCA-SIFT - 72.3% 
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Figure 32: Recall vs. 1-precision graphs for, from left to right and top to bottom, Viewpoint 
change of 50 degrees (wall), scale factor of 2 (Boat), image blur (Bikes), image blur (Trees), 
brightness change (Leuven) and ]PEG compression (Ube). Image from [26]. 
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2.6.5 A COMPARISON OF SIFT, PCA-SIFT AND SURF PERFORMANCE EVALUATIONS 

The authors of [34] and [35] compare and evaluate various feature detection methods and their 
descriptors. In [34], Juan and Gwun compare SIFT, PCA-SIFT and SURF. In [35], Mikolajczyk and 
Schmid evaluate the performance of numerous descriptors, however here we consider only PCA­
SIFT and SIFT, as only the latter are relevant in this context. Since both papers follow similar 
approaches, albeit different, to evaluate the methods, we will explore each paper in turn. One 
should note that since ASIFT algorithm was proposed only very recently, as yet there exist no 
evaluations comparing it to other feature extraction algorithms. 

2.6.5.1 Evaluation One 
Mikolajczyk and Schmid in [35] use the Mikolajczyk database [33] as a dataset for the 
performance evaluation. The dataset contains six different image transformations, namely 
rotation, scale change, viewpoint change, image blur, JPEG compression and illumination change. 
The evaluation criterion proposed is similar to the one used in [24], that is, image pairs with a 
transformation large enough to introduce some noise. The evaluation criterion is based on the 
number of correct keypoint matches and the number of false matches for a given image pair; 
refer to Section 2.6.2 for a description. Following are the experimental results led on the dataset, 
divided by the image transformation in question. 

Figure 33: Comparison of different matching strategies. (a) Threshold-based matching. (b) 
Nearest neighbor matching. (c) Nearest neighbor distance ratio matching. Image from [35]. 
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Schmid and Mikolajczyk first evaluate the following matching approaches: 

• Threshold-based matching; 
• Nearest-neighbor matching; 
• Nearest neighbor distance ratio matching. 

The purpose of matching is to obtain only relevant features and ignore irrelevant ones, such as 
features extracted from the background. The matching of features also enables changes in 
viewpoint and invariance towards transformations in images. The results of the first test, shown 
in Figure 33, give similar ranking for all descriptors. As can be seen from Figure 33 (b) and (c) 
the precision is higher for nearest neighbor-based matching than for the threshold-based 
approach shown in Figure 33 (a). Nearest neighbor matching selects only the best match below 
a threshold and rejects all others. This results in less false-positives and a higher precision. This 
is similar to nearest neighbor distance ratio matching, however the latter penalizes descriptors 
which have similar matches, i.e. "the distance to the nearest neighbor is comparable to the 
distances to other descriptors" [35]. Again, this improves the precision. The nearest neighbor­
based approaches are best suited for matching, as opposed to searching in a large database. For 
the latter, the best approach is the similarity criterion, i.e. the distance between descriptors. This 
approach is used for experiments in this paper. 

2.6.5.1.1 Affine Transformations 
For affine transformations, performance was evaluated for viewpoint changes of approximately 
50 degrees. This viewpoint change "introduces a perspective transformation which can locally 
be approximated by an affine transformation" [35]. 

For this section of evaluation, the authors test descriptors performance for different affine 
region detectors and various scene types. Figure 34 (a) and (b) show the results for a 
structured scene with Hessian-Affine and Harris-Affine regions while Figure 34 (c) and (d) 
show the results for a textured scene also using Hessian-Affine and Harris-Affine regions. 
Textured scenes give better recall than structured ones, and the SIFT-based descriptors perform 
best in textured scenes. This shows that such scenes require large discriminative power to 
match. SIFT obtains the best results for the textured images. 
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Figure 34: Evaluation for viewpoint changes of 40-60 degrees. (a) Structured scene with 
Hessian-Affine regions. (b) Structured with Harris-Affine regions. (c) Textured scene with 
Hessian-Affine regions. (d) Textured scene using Harris-Affine regions. Image from [35]. 
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2.6.5.1.2 Scale Changes 
For this stage of evaluation, descriptors are tested using combined image rotation and scale 
change. Scale changes vary between 2 and 2.5 while image rotation lies within the range of 30 to 
45 degrees. Figure 35 (a) and (c) show the performance results for the descriptors computed 
for Hessian-Laplace regions and the Harris-Laplace regions respectively, detected on a 
structured scene. Figure 35 (b) and (d) on the other hand use both regions for a textured 
scene. 

Figure 35: Evaluation for scale changes of a factor 2-2.5 combined with an image rotation of 
30-45 degrees. (a) Structured scene with Hessian-Laplace regions. (b) Structured with Harris­
Laplace regions. (c) Textured scene with Hessian-Laplace regions. (d) Textured scene using 
Harris-Laplace regions. Image from [35]. 
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2.6.5.1.3 Image Rotation 
Images with rotation between 30 to 45 degrees were used for this evaluation. From Figure 36 
(a) one can see that all curves are horizontal at similar recall values. This shows similar 
performance. In Figure 36 (b) SIFT ranks second. The precision is low for all descriptors since 
they do not capture small variations in texture. This results in many false matches. 

Figure 36: Evaluation for an image rotation of 30 to 45 degrees. (a) Results for structured 
images. (b) Results for textured images. Image from [35]. 

2.6.5.1.4 Image Blur 
This evaluation stage is done using images with a significant amount of blur, introduced by 
changing the camera focus. Figure 37 (a) shows that PCA-SIFT achieves higher scores than 
SIFT. The opposite is true in Figure 37 (b). Results show that all descriptors are affected by 
blur in images, though since it is difficult to model naturally-occurring blur, artificially generated 
blurred images tend to be overly-optimistic. 

Figure 37: Evaluation for blur. (a) Results for a structured scene. (b) Results for a textured 
scene. Image from [35]. 
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2.6.5.1.5 ]PEG Compression 
The influence of JPEG compression for a structured scene is evaluated in this stage. The quality 
of the transformed image used is 5% of the original one. As can be seen from FIGURE 38, 
descriptor performance increases when precision is decreased, for all descriptors. PCA-SIFT 
obtains the best score for a low false-positive rate while SIFT obtains the best score for a false­
positive rate above 0.2. 

Figure 38: Evaluation for JPEG compression. Image from [35] 

2.6.5.1.6 Illumination Changes 
Images for this evaluation were obtained by changing camera settings. The results are shown in 
Figure 39. SIFT obtains higher scores than PCA-SIFT. 

Figure 39: Evaluation for illumination changes. Image from [35]. 
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Mikolajczyk and Schmid also perform a matching example for images with a viewpoint change of 
more than 50 degrees. For a fixed number of 400 nearest neighbor matches, SIFT obtains a 
higher score than PCA-SIFT, obtaining 177 and 139 nearest neighbor correct matches 
respectively. Recall and precision values for SIFT are 0.24 and 0.56 while for PCA-SIFT the 
values are 0.19 and 0.65. 

2.6.5.2 Evaluation Two 
Juan and Gwun in [34] compare SIFT, PCA-SIFT and SURF. They use K-nearest neighbor (KNN) 
and Random Sample Consensus (RANSAC) with the aim of evaluating the methods' application 
in recognition. KNN is used to find matching keypoints while RANSAC is used to reject 
inconsistent matches. Similar to [35], the feature detectors are compared for scale changes, 
rotation, image blurring, change in illumination and affine transformations. Methods' 
performance is ranked according to repeatability measurement and the number of correct 
matches. 

The repeatability measurement is defined as "a ratio between the number of point-to-point 
correspondences that can be established for detected points and the mean number of points 
detected in two images: 

r1,2 = ------
mean(m1, m2) 

Equation 4: Repeatability measurement equation. Equation from [34]. 

Where C(Ii, 12) denotes the number of corresponding couples, m1 and m2 means the numbers of 
the detector. This measurement represents the performance of finding matches" [34]. 

RANSAC is used as an evaluation measurement to reject inconsistent matches. An inlier can be 
considered a point which has a correct match in the input image. An outlier, on the other hand, 
can be considered the equivalent of a false-positive. Thus, the goal is to obtain the inliers and 
reject outliers. "The probability that the algorithm never selects a set of m points which are all 
inliers is 1-p: 

Equation 5: Equation of the probability that the RANSAC algorithm never selects a set of m 
points which are all inliers. Image from [34]. 

Where m is the least number of points needed for estimating a model, k is the number of samples 
required and w is the probability that the RANSAC algorithm selects inliers from the input data" 
[34]. 

2.6.5.2.1 Processing Time 
The evaluation of time is relative, depending on image size, quality, type (e.g. scenery or texture) 
and algorithm parameters. Thus, such an evaluation only shows the time the three algorithms 
take relative to each other. The dataset used was the Graffiti dataset, with 300x240px image 
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sizes. The algorithms' parameters were set as defined in the original papers [26] [24] [18]. Time 
was counted for the complete processing, including feature detecting and matching. Figure 40 

shows the results; SURF is the fastest while SIFT is the slowest, yet finding the most matches. 

Items SIFT PCA-S!IFT SURF 
total matches 271 18 186 

tota l time (ms) 2.15378e+007 2.13969e+007 336,2.86 

11 O matches' time( ms) 2.14806e+007 2.09696e+007 3304.97 

Figure 40: Processing time comparison. Image from [34]. 

2.6.5.2.2 Scale Changes 
This experiment evaluates the algorithms' scale invariance. As can be seen from Figure 41 and 
Figure 42, SIFT and SURF perform much better than PCA-SIFT when the scale change gets 
larger. 

Figure 41: Scale changes comparison. The first result is SIFT (10/66 matches), second is 
SURF (10/26 matches). The last two images show the results of PCA-SIFT in scale changes. 
Image from [34]. 

Data S.IFT PCA-SIFT SURF 
1-2 4 1i 10 

3-4 35 {J 38 
5-6 495 19 298 
7-8 3~5 65 418 

Figure 42: Scale changes comparison showing total number of matches for each method. Image 
from [34]. 

2.6.5.2.3 Image Rotation 
The next experiment is aimed to show the effect of rotation on the three algorithms. SIFT is the 
method which detects the most matches and is the most stable to rotation. SURF, on the other 
hand, does not work as well, finding the least number of matches and achieving the least 
repeatability. Though PCA-SIFT found only one correct match of the first ten matches, it can be 
improved, thus it is better than SURF. Figure 43 and Figure 44 show the results. 
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Figure 43: Rotation comparison showing the repeatability of rotation. Image from [34]. 

Figure 44: Rotation comparison with rotation degree of 45. The first two images show the first 
ten matches of SIFT (10 correct /10) and PCA-SIFT (1 correct /10), the result of SURF (2 
correct /2) is the total number of matches. Image from [34]. 

2.6.5.2.4 Image Blur 
This experiment uses a blur similar to a Gaussian. The radius of the blur ranges from 0.5 to 9.0. 
As shown in Figure 45, SURF and PCA-SIFT perform well, however as the radius of the blur gets 
larger, SIFT shows the best performance, while SURF finds a small number of matches and PCA­
SIFT finds a larger number of matches, but fewer correct ones. This can be seen in Figure 46. 

0.5 1 1.5 2 25 i 4 5 0 7 'J 

Figure 45: Blur comparison showing the repeatability of blur. Image from [34]. 
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Figure 46: Blur comparison. From left to right: SIFT (10 correct /10), SURF (3 correct /3), 
PCA-SIFT (1 correct /10), with blur radius of 9. Image from [34]. 

2.6.5.2.5 Illumination changes 
The fifth experiment evaluates the effect of illumination change on the methods. As shown in 
Figure 47, SURF has the highest repeatability at 31 %. 

Data SIFT PC A-SIFT SURF 
1-2 43°;;, 39°/o 70% 

1-3 32'% 34% 49~·b 

1-4 18% 27% 25% 

1-5 8% 18% 6% 

1-6 2% 9% 5% 

average 21% 25% 31% 

Figure 47: Illumination changes comparison showing repeatability and the average of 
repeatability. Image from [34]. 

2.6.5.2.6 Affine transformations 
The last experiment evaluates the "methods' stability of affine transformations" [34]. The change 
of viewpoint in the images used is approximately 50 degrees. As can be seen in Figure 48, SURF 
and SIFT have a good repeatability with a small viewpoint change, however with a larger 
viewpoint change, SURF detects 0 matches and PCA-SIFT performs better. 

Data S!FT PGA·SllFT SURF 

1-2 47%. 15°/o 54°1~ 

1-3 37°/o l 2% 3.3% 

1-4 22% 12% 1 2°.l~ 

1-5 '7'% 10% 2% 

1-6 0% 9% 0%. 

Figure 48: Affine transformation comparison showing the repeatability. Image from [34]. 

43 



Method Time Scale Rotation Blur mumination Affine 
SIFT common bestt best best common good 

PCA-SIFT good corn 0 good common good ·good 

SURF best goodl co mon good best good 

Figure 49: Conclusion of all experiments. Image from [34]. 

Figure 49 shows the results of all led experiments. It indicates that there is no best method for 
all image transforms. Obviously, the experiments led are not constant, as a change in an 
algorithm or the matching method used can change the results. Figure 49 shows that PCA-SIFT 
would require an improvement to handle blur and scale deformations. SURF is fast and performs 
quite well in most situations, however its performance degrades with large rotations. SIFT is 
stable in all experiments except for time and changes in illumination. 

2. 7 SIMILAR SYSTEMS 

2.7.1 MOBILE VISUAL AID TOOLS FOR USERS WITH VISUAL IMPAIRMENTS 

The authors of [36] explain 'MobileEye'; a mobile based software suite intended for the use of 
visually impaired persons in their daily activities. MobileEye consists of four functions, namely: 

• "A color channel mapper which can tell the visually impaired different colors; 

• A software based magnifier which provides image magnification as well as enhancement; 

• A pattern recognizer which can read currencies; 

• A document retriever which allows access to printed materials." [36] 

Since it is the most relevant for the subject of this thesis, here we focus on describing the pattern 
recognizer. The aim of the latter is to recognize currency bills. This is done by processing the 
image in real-time, since a visually impaired user could find it hard to take a focused picture of a 
currency note. 

First, a very fast classifier is used to filter the images and locate areas of the images which 
probably do not contain the target feature area (the part of the bill showing the number 
denomination). This step is inspired by the Viola-Jones face detector [37] and SURF [26], which 
both implement box filters for the purpose of object and feature detection. This pre­
classification stage was found to speed the algorithm by 20 times on a camera phone [36]. Then, 
32 local pixel pairs are used to form weak classifiers. Such pairs have a relatively stable 
relationship in that one pixel is usually brighter than the other. Ada-boost is then used to train 
strong but fast classifiers from the weak classifiers. Local pixel pairs provide the advantages of 
being robust to noise, blur and change in illumination. 

The software suite was designed with the end-users of MobileEye in mind. Each operation is 
guided by vocal instructions and other details include the automatic exit of the software if it is 
idle for more than two minutes, to save battery power. A user evaluation was also carried out 
where the results presented showed that visually impaired users managed to recognize a bill in 
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21.3 seconds on average. No false positive was raised by the currency reader during the 
experiment. 

2. 7.2 MOBILE MUSEUM GUIDE BASED ON FAST SIFT RECOGNITION 

[38] explores the feasibility of a mobile based pattern recognition system serving the purpose of 
a museum guide system; a camera-enabled phone is used to recognize paintings in art galleries. 
Simply, a user takes a picture of a particular painting and image processing technology is used to 
recognize the painting. The user is then provided with information regarding the painting in 
question, such as artist, title, and historical context. 

The architecture of the explored system is based on the client-server approach, where the client 
only acts as a peripheral device used to take and send data (picture) and receive the results. 
This type of architecture was used for several reasons. First of all, the CPU of mobile phones has 
low computational power, thus running feature extraction on the phone would result in 
unbearably long times for the user to receive a result. Besides, on a server, even low resolution 
images would return good results. 

After thoroughly evaluating the SIFT and SURF algorithms, SIFT was found to be most suitable 
for the purpose of this system. Both SIFT and SURF algorithms' best benefit for this purpose is 
the use of local features, since global features would require the extraction of objects of interest 
from the background. The authors explored an approximated SIFT; a k-means based clustering 
approach coined SIFT fast. This was implemented with k=5. Evaluation showed that some 
performance deterioration was obvious, however since the implementation in question mainly 
concerns frontal views, SIFT fast gave an acceptable trade-off between speed and performance. 

2.7.3 SCENE RECOGNITION WITH CAMERA PHONES FOR TOURIST INFORMATION ACCESS 

The authors of [39] present Snap2Tell, a prototype system which provides a scene description 
based on an image taken of the scene. For this system they use the STOIC 101 database and 
implement an innovative approach towards pattern discovery. The STOIC 101 database is made 
up of 101 Singapore tourist points of interest with a total of 5278 images. The images were 
taken from various distances and perspectives with occlusion and clutter. GPS coordinates were 
also recorded. 

The authors propose "a new pattern discovery algorithm to learn image patches that are 
recurrent within a scene class and discriminative across others" [39]. This approach generates 
positive training patches for discriminative learning. Support Vector Machines (SVMs) are used 
as discriminative classifiers. Multi-scale uniform sampling is used to extract patches from images 
instead of interest point scheme as the former has an advantage over random and uniform 
samplings when the sampling is dense enough. 

A thorough experimental evaluation was led using patch features such as color histograms in 
RGB, HSV or HS color channels, linear edge histograms and combined color and edge histograms. 
This was done since the authors believed that color and edge features were the most relevant for 
the STOIC database. Feature vectors were compared using simple city block distance metric, 
while color and edge features were combined linearly using equal weights in the SVM. Using GPS 
coordinates for location priming proved to considerably increase the recognition rate. 
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2.7.4 CEO-CONTEXTUAL PR/ORS FOR ATTENTIVE URBAN OBJECT RECOGNITION 

In [ 40] the authors propose the exploitation of "geo-information in association with visual 
features to restrict the search within a local context". They describe the embedding of this 
association in a general system implementation of an Attentive Machine Interface (AMI). The 
AMI enables the contextual processing of information gathered from various sensors in a 
probabilistic framework. 

For the implementation, the authors chose an Informative Features Approach which applies 
local density estimations. By determining the posterior entropy, computed from a normalized 
histogram of object votes, local information content is made explicit with regard to object 
discrimination. Thus images which do not contain objects of interest are discarded. This 
proposed recognition process is "characterized by an entropy-driven selection of image regions 
for classification, and a voting operation" [40]. 

For urban object recognition, the object hypothesis is determined from the appearance of the 
image and the GPS-based positioning; first, the user position is defined within a given radius, 
then distances between the user location and points of interest is estimated. These distances are 
then weighted. The recognition and the geo-services processes are computed in parallel, and the 
results are integrated using Bayesian decision fusion. 

The use of geo-contextual information contributed to the improvement in performance of the 
system, as it enabled a "meaningful selection of expected object hypotheses" [40]. 

2.8 CONCLUSION 

In this chapter we explored and described various methods and concepts which, put in the 
context of this thesis, help the user understand better its contribution. The use of the GPS system 
was explained, as well as digital image representation and image transformations. Various object 
recognition approaches were explored, and the SIFT, SURF, PCA-SIFT and ASIFT algorithms 
were explained and evaluated. A number of similar systems were also explained to aid the user 
understand the current object recognition systems. 

46 



Chapter 3 

DESIGN 

The purpose of White Cane Device is to provide a travelling aid to visually impaired persons. The 
system should enable the latter to take an image using a camera and GPS equipped mobile 
phone. The query image should be sent to a server (through a webservice) which extracts 
features and GPS tags from the image and implements object recognition against a database of 
features. If an object is recognized, the result should be returned back to the user. An abstract 
overview of the system is shown in Figure 50. In this chapter we describe the proposed design 
for the implementation of White Cane Device. This includes the various modules and their 
purpose, as well as the flow of data. We also propose criteria for evaluating the system. 

GPS Tag 
Extraction 

Feature 
Database 

---------

Feature 
Extraction 

Object 
Recognition 

Results 

Figure 50: Overview of system 

Two approaches can be chosen for the system architecture, namely a client approach and a 
client-server approach. A client-server architecture is the best approach for this system for 
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several reasons. The main reason is that feature extraction algorithms require large 
computational power. The execution of such an algorithm on a mobile device would take much 
longer than on a server, due to the limited processing power of mobile devices when compared 
to a server 3. Also, the feature database would require a large amount of space, which is not so 
feasible on a mobile device. A disadvantage of using the client-server architecture is the 
requirement of a telecommunication means such as WIFI or 3G. 

Using a client-server architecture means the client can act as a periphery device, used only to 
acquire the image and send it over to the server. This would also encourage portability, as it 
would be much easier to create various mobile clients for different mobile operating systems. 
One should note that White Cane Device does not make use of additional hardware installed in 
location such as Bluetooth senders. This improves the scalability of the system. The systems 
developed in [39], [40] and [38] all use the client-server approach for mobile based object 
recognition. The latter systems are explored in Section 2. 7. 

3.1 SYSTEM DESIGN OVERVIEW 

The required system will be divided into three main components; the client, the server and the 
database. These components can be seen in Figure 51, which shows a level 0 DFD of the 
system. The components' functions are as follows: 

3.1.1 CLIENT COMPONENT 

The client component is a mobile-based application which allows a user to take a picture of 
his/her surroundings and then send it over to the server component. An activity diagram of the 
client component is shown in Figure 52. When the user takes an image, the geo-tagging option 
should be enabled. Geo-tagged images would enable the optimization of the recognition process. 
As shown in Figure 20 in Section 2.6.1, the reliability of the matching process decreases as the 
number of features in the database increases. The optimization process is further explained in 
Section 3.1.3. As shown in [40], the use of location priming (GPS coordinates) can substantially 
increase the recognition rate of an object recognition system. By using GPS coordinates, the 
search space can be reduced to features extracted from images taken within a specified radius 
from where the query image was taken. 

Keeping in mind the end users of the client component, the user interface of the mobile 
application is designed to be very simplistic, with as few operations as possible to capture an 
image. Also, the application implements voice prompts to guide the user as to what is expected 
from him/her. 

3 Consider the example of an HP Pavilion dvS laptop and an HTC Desire mobile phone. The former has an 
AMD Athlon XZ Dual-Core QL-60 1.90 GHz CPU with 3.00 GB RAM while the latter has a Qualcomm 
Snapdragon 1 GHz CPU and lGB RAM. 
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Figure 52: Activity Diagram for Client component 
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3.1.2 SERVER COMPONENT 

The server component is made up of two processes; the training process and the query process. 
The level 1 DFD shown in Figure 53 shows data required from these processes, and also any 
results returned. Before a query is performed, the training process should be run at least once to 
populate the database, but it could be executed for as many times as desired. 

User Training Images 

Results __ _ 

Training 

Feature Database 

Figure 53: DFD Level 1 

3.1.2.1 Training 
The training process enables a user to select a number of images from the local machine. This is 
done using a very simple user interface consisting of a window with a button, which opens up a 
dialog box. Though this process is not directly aimed for the use by visually impaired persons, 
the use of a screen reader should enable such persons to use it easily. The purpose of the 
training process is to populate the feature database with features, which are then used by the 
query process for object recognition. Figure 54 shows the level 2 DFD of the training process. 
For each image, the training process extracts the features using a feature extraction algorithm, 
and the GPS tags. Each image results in a large number of features, and generally the larger the 
image, the more features are extracted. The number of features howevP.r r:ilso depends on the 
subject of the image. The feature descriptor is then serialized to the feature database, along with 
the GPS coordinates and the name of the image from which the feature was extracted. 

so 
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Figure 54: DFD Level 2 of Training Process 
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3.1.2.1.1 Feature Extraction 
Since the scope of this thesis doesn't allow for controlled lighting, scaling and rotation, the ideal 
approach for the feature extractor is feature-based. Feature-based algorithms are the most 
promising to achieve the desired objectives since they are the most robust regarding scale, 
lighting and changes in perspective, and their greatest benefit is the use of local features. The 
local feature approach, in contrast with the global feature approach, selects only distinctive 
features from the image in question. The global feature approach considers the image as one 
entity. In [38] both SIFT and SURF algorithms were evaluated in a fully implemented prototype 
mobile-based system to find the best performing algorithm. The SIFT algorithm was also 
implemented in [40]. 

3.1.2.2 Query 
The query process is the crux of the system. This process receives a geo-tagged image, as 
depicted in Figure 55. The GPS coordinates are extracted from the image, and the feature 
extraction algorithm is implemented as described in Section 3.1.2.1.1. The GPS coordinates are 
then used to formulate a query to retrieve particular features from the feature database. The 
latter features should be from images taken within a particular radius from where the query 
image was taken. Figure 5 6 shows an activity diagram describing the query process. 

3.1.2.2.1 Object Recognition 
This process accepts the features extracted from the query image, along with the features loaded 
from the feature database according to the GPS coordinates of the query image. These features 
are used by the matching algorithm to find if the database contains an image depicting the same 
object as the query image. The name of the matching image, if any, is then returned to the client 
component. 
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Figure 56: Activity diagram depicting the Query process 
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3.1.3 DATABASE COMPONENT 

The database is made up of a single table containing features extracted from the training images, 
and other relevant data. This includes: 

Name Description 
Id The primary key of the table, used to uniquely identify each feature in the 

database. 
Image Name The name of the image the feature was extracted from. A single image will 

have a large number of features. 
Descriptor The descriptor of the feature in question. This is used for the matching 

process. 
GPS The coordinates of the image that the feature was extracted from. 

Both the query and the training processes interact with the database, as shown in Figure 53. 
The training process passes both the GPS coordinates and the features extracted from the 
training images, which are appended to the database. The query process, on the other hand, 
passes the GPS coordinates of the query image as a parameter to create a query. This query 
enables the loading of features which were extracted from images taken within a particular 
radius from where the query image was taken. These features are then returned to the query 
process. 

Figure 577: Training images within a given radius 

Figure 577 shows an aerial view of the University of Malta. Assume the yellow point is the 
location where the query image was taken, and that all other points are the locations of training 
images. If the radius value (the yellow circle) is set, for example, to 20m, then all images taken in 
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locations which fall within the specified radius are loaded from the database. Thus, the red 
points shown in the image are loaded, while the pink ones are not. 

3.2 EVALUATION 

For the evaluation of an object recognition system, as in the case of White Cane Device, one must 
mainly evaluate the correctness, accuracy and response of the latter. The assessment of a 
system is divided into four parts [ 41]: 

1. Accuracy Requirements: Here a system is evaluated on its capability of giving accurate 
results and also the ability to anticipate the degree of certainty of the accuracy of its results. 
In [38] Cumulative Match Characteristic (CMC) curves were used to this purpose. 

2. Samples Constraints: The training set used must be carefully considered before assessing 
the system's performance. Image aspects such as perspective and resolution have an 
impact on the results. 

3. Speed: Since for the purpose of this thesis, the results are required in real time, 
computational speed plays a vital part for the evaluation of this system. 

4. User Interface: The system's user interface should be evaluated to assess the software 
usability. 

3.3 CONCLUSION 
In this chapter we described various aspects of the design required for the implementation of 
White Cane Device. The best architecture for this system is the client-server architecture. The 
various components and modules which make up the system were described, as well as data 
passed between modules. We also proposed evaluation criteria for the final evaluation of the 
system. 
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Chapter 4 

IMPLEMENTATION 

In this chapter we will define the methods and approaches used to reach the specified objectives 
of this thesis, according to the design specified in the previous chapter. This chapter includes 
detailed descriptions of how the various modules and components of White Cane Device were 
implemented. 

4.1 CLIENT COMPONENT 

The client component, which is the component used by the visually impaired user, was 
implemented on an HTC Desire mobile phone, a GPS and camera enabled touchscreen 
smartphone. The Desire has a 1 Ghz Qualcomm Snapdragon processor, a 5 megapixel camera 
with auto focus and flash and the Android version 2.2 operating system. The client component is 
a mobile application which was developed using the Android version 2.2 API level 8. This means 
that the mobile application is compatible with all phones running the Android operating system 
version 2.2 or later. Monodriod, a software development kit allowing developers to use C#.NET 
to create mobile applications for Android-based devices, was also considered due to more 
experience with C#.NET. However, since Monodriod is fairly recent, there is little support for 
developers, and scarce example code. 

Figure 58: HTC Desire. Image from [50] 

56 



4.1.1 USER INTERFACE 

The most important thing we kept in mind for the implementation of the user interface is the 
end user, that is, the visually challenged person. Such a person can only navigate a touchscreen 
phone by using the TalkBack function, a screen reader which speaks out as the user navigates. 
The screen reader reads out menus, application names, and any actions taken by the user such 
as a click. The TalkBack function provides spoken feedback to the user if the Accessibility 
function is enabled. This can be done through the settings menu. 

As can be seen in Figure 58, the Desire has 3 buttons and an optical track ball. The buttons, 
from left to right, have the following function: 

• Home screen; 

• Menu; 
• Left side of button: Back, Right side of button: Search. 

The optical track ball can be used to navigate through the phone without using the touch screen; 
a press of the trackball is equivalent to a click on the touchscreen. Buttons provide easy 
interaction with the phone, as the user can easily feel and distinguish the buttons. With the latter 
things in mind, the user interface was implemented as a simple application which when run 
starts up the camera and requires only two key presses from the user to get a result. The 
TalkBack function was also implemented in the application to provide prompts and guidance to 
the user, whether the Accessibility function of the phone is enabled or not. 

Figure 59: Screenshots of Application. From Left to right: Home screen, Running application -
searching for GPS, Running application - GPS locked 

The middle and the rightmost screenshots in Figure 59 depict the running application. The icon 
on the top right corner shows that the geo-tagging setting is enabled. This can be done through 
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the camera settings. When the icon changes to the one shown in the rightmost screenshot, the 
phone has obtained the current GPS coordinates. 

On start-up, the application starts the camera and prompts the user to take a picture. At this 
point, if the user wants to exit he/she only requires pressing the back button twice; a prompt 
will inform the user that the operation was cancelled. A user can take a picture in two ways; 
either by pressing and holding anywhere on the touchscreen (the holding enables the camera to 
auto-focus), or by pressing the optical trackball. If on start-up the WIFI is disconnected, the 
application prompts the user to wait until a connection is established. When an image is taken, 
the user can decide to send the image to be recognized, or else take another image. The option to 
take another image is given in case the user feels he moved the mobile phone while taking the 
picture, as this would result in a blurry image. The application provides two buttons, shown in 
Figure 60, for the said decision. In the case of this thesis, however, these buttons are not user 
friendly. The user can instead use the optical trackball to navigate between both buttons. By 
'swiping' the trackball to the right or left, the focus passes from one button to another, and a 
press of the optical trackball confirms the image or restarts the camera to take another picture. 
The focus is on the 'done' button by default. When the user confirms the image, the user is 
prompted to wait for a response. After hearing the response, the user can exit the application by 
pressing the back button. One should note that the image to be sent to the server should be of a 
small size. In this implementation we use 384x640px images. The picture resolution only needs 
to be set once, then it remains as set for any subsequent runs of the mobile application. 

Figure 60: Screenshot on Image taken 

4.1.2 BACKEND 

The backend of the application is made up of a single class, CameraActivity, which extends the 
Activity class and implements OnlnitListener. CameraActivity has two main functions, namely 
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taking a picture and sending it over to the web service. Some of the code used in the backend 
was adapted from a code sample4. The following are three main methods implemented to 
achieve the required results: 

• on Create 
This method is called on start-up of the application to initialize the latter, and overrides 
the Activity onCreate method. The onCreate method first sets the layout using the 
setContentView method. This method is used to set a layout resource, defined as an 
xml file, to define the user interface. In this case, the layout is set to take the whole 
screen of the phone. The method then checks the current state of the WIFI, and turns it 
on if it was not enabled. Thus, the user does not have to turn it on manually. 

Within the onCreate method, a TextToSpeech object is then initialized. This makes a 
call to the onini t method, described later on in this section. The last part of this method 
is used to create a new camera intent. An intent is a type of operation to be performed. 
The default camera intent only returns a small bitmap image of the picture taken. Thus, 
the putExtra method is called, which saves the full sized image to a given URI with a 
given file name. To be unique for each image captured, the images are given the current 
system time in milliseconds using the currentTimeMillis method. Finally, the 
startActi vityForResult method is called. The latter method calls the 
onActi vi tyResul t method once the camera intent activity is complete. 

Intent carneraintent new Intent(MediaStore.ACTION_IMAGE_CAPTURE); 

carneraintent.putExtra(MediaStore.EXTRA_OUTPUT, rnCapturedirnageURI ); 

startActivityForResult(carneraintent, PICTURE_ACTIVITY); 

• onActivityResult 
This method is called upon completion of the camera intent described above. First, an if­
statement is used to check if the result of the activity was a 'cancelled operation' or a 
'confirmed image'. If the result is a confirmed image, the URI of the image just saved is 
obtained. Then, the GPS coordinates are extracted from the image EXIF tags, however if 
no GPS coordinates are available, null values are set. The coordinates are in string form 
for each of the latitude and longitude (DDD/1, MM/1, SSS/100), latitude ref (Nor S) and 
longitude ref (E or W). The image is then compressed into PNG format and converted 
into a byte array. It is important to note that the GPS tags are extracted from the image 
before the compression because PNG images do not support such tags. Propertyinfo 

ohje1ts ;:ire C"re;:iterl for e;:i1h of the data to be sent to the webserv1ce, namely the byte 
array representing the image, the latitude and latitude ref, and the longitude and the 
longitude ref. 

The next step in this method is to send the data over to the webservice. This is done 
through the SOAP protocol by using a SoapObj ect and a 

4 https://github.com/mdinstuhl/ Android_Camera_Demo 
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SoapSerializationEnvel ope defined in the kSOAP2 5 library. It is important to note 
that due to size restrictions on the data sent through SOAP, images are always taken to 
be the smallest resolution supported by the phone, that is 640x480px. The SoapObj ect 

requires as parameters the namespace of the webservice and the method name to be 
used. Since the webservice is implemented in C#.NET, the dotNet attribute of the 
SoapSerializationEnvelope was set to true. The setOutputSoapObj ect method 

was used to set the SoapSerializationEnvelope as a request. 

SoapObject request = new SoapObject( NAMESPACE , METHOD NAME ) ; 

SoapSerializationEnvelope enve l ope = new 
SoapSerializationEnvelope(SoapEnvelope . VER11 ) ; 

envelope. dotNet = true ; 
envelope . setOutputSoapObject(request) ; 

HttpTransportSE andro i dHttpTransport = new HttpTransportSE( URL ) ; 
androidHt tpTransport.call (SOAP_ACTION, envelope); 

SoapPrimitive result=(SoapPrimitive)envelope.getResponse(); 

The two lines before the last of the sample code above show the sending of the SOAP 
request by using the HttpTransportSE . call method. The last line shows the explicit 

casting of the response received from the webservice to a SoapPrimi ti ve object. This 
response is received in the form of a string delimited by";" in the format '7ocation of user 

; recognized image; distance", where location of user is the location of a training image 
nearest to the location where the query image was taken, the recognized image is a 
match between the query image and a training image, and the distance is the 
approximated distance between the location of both images. It is important to note that if 
there was no matched image or no training images available the string would only 
contain one of the following strings accordingly: 

• "No matched image"; 

• "No Training Image available". 

However, if the location of the user is nearest to the matched image, the first and second 
parts of the string are equivalent. This is better explained in Section 4.2.2.1.1. If­
statements are used to check Lhe conlenls of Lhe response slring, and output the results 
to the user accordingly. If the response is in the format "location of user; recognized 

image; distance", and the location of the user is different to the recognized image, the 
output to the users is as follows: 

5 Downloaded from http://code.google.com/p/ksoap2-android/source/browse/m2-
repo /corn/ go ogle/ code /ksoap2-android/ksoap2-android-assem bly /2. 5.2 /ksoap2-android-assembly-
2 .5.2-jar-with-dependencies.jar 
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You are at <location of user> and you are looking at <recognized image> which is 
approximately <distance> metres away. 

If, on the other hand, the location of the user is equivalent to the recognized image, the 
output is as follows: 

You are at <location of user>. 

The results are communicated to the user by using the Text ToSpeech. speak method 
which accepts the given strings as parameters. 

• onlnit 
This method is called after a new TextToSpeech object is initialized. If the initialisation 
was successful, the language of the Text To Speech object is set, in this case to US English. 
If the language is not set successfully because the language is not available or not 
supported, the user is prompted to install any missing requirements from the market. 
Since the new TextToSpeech object is initialized on start-up of the application, the 
onini t method is used to give the user instructions by calling the 
TextToSpeech. speak method. Similarly, the latter method is called each time a voice 
prompt is required. 

4.2 SERVER COMPONENT 

The server component, implemented in the C#.NET 4.0 framework, is made up of two processes; 
namely the training process and the query process. This component was implemented in C# due 
to previous extensive experience with the framework, as opposed to C++ or C, which one might 
argue would be more fast for an application such as the one proposed. However, this system was 
developed keeping efficiency in mind, thus a trade-off was made to develop an efficient system 
within the given time restrictions. Also, C# enables easy development of webservices, such as 
the one implemented for the query process. OpenCV6, a library of programming functions for 
real time computer vision, was used in the implementation of the server component. EmguCV7 

was used as a cross platform .NET wrapper to OpenCV. The Microsoft.Sq1Server.Types8 library 
was used when spatial data types, such as geometric and geographic data types, were needed. 

4.2.1 TRAINING PROCESS 

The training process involves the populating of the feature database, which is then used for 
object recognition. The training process can be run more than once, obviously to add new 
midges. However, il has lo be run al least once before a query can be executed successfully. 

4.2.1.1 User Interface 
The user interface is a very simple form which enables the user to select a number of images 
from the local machine. As can be seen in Figure 61, the form is made up of two buttons and a 
progress bar. The top button opens a dialog box enabling the user to select the desired images, 

6 Downloaded from: http://opencv.willowgarage.com/wiki/ 
7 Downloaded from: http://www.emgu.com/wiki/index.php/Main_Page 
8 http:/ /msdn.microsoft.com/ en-us /library /microsoft.sq iserver. types.aspx 
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while the bottom button is used to truncate the database. As explained in the design, the user 
interface was implemented in a very simple manner because even though this process is not 
directly aimed for the use of visually impaired persons, the latter can run this process easily by 
using a screen reader. 

Training White Cane Device 

Select images and Train 

Truncate Database and T 

Tl\6!Cale Datat> 

Tearing 

Figure 61: Training UI 

The Truncate Database button is self-explanatory; all the data stored in the database is deleted. 
The Select images and Train button launches a series of processes. On button click, a background 
worker is implemented, which calls the methods required by the training process. Message 
boxes are shown upon completion of the processes of both buttons to confirm success of 
operation. 

It is important to note that training images are added to the database of features successfully 
only if they are geo-tagged. The insertion of images which are not geo-tagged in the database 
would result in the GPS optimization in the query process becoming futile. 

4.2.1.2 Backend 
The Select images and Train button, as described above, is used as an entry point to a number of 
processes which are described below. 

4.2.1.2.1 CPS extraction 
The GPS coordin11tr~ nrr rxtrnr.trrl from rrirh im;;iep in turn. The coordinates are extracted in the 
format "DDD MM SS" and "N\O" where D, M and S represent degrees, minutes and seconds 
respectively, while N represents the orientation. To enable the building of a database containing 
only correct data, images without GPS coordinates are discarded. 

4.2.1.2.2 Feature Extraction 
The SIFT algorithm was chosen for the implementation of the feature extraction process. In 
Section 2.6.5, the evaluations led by [34] and [35] were presented. According to both papers' 
extensive evaluation, even though the selection of the ideal feature extraction algorithm depends 
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on the problem at hand, the SIFT algorithm performs best overall. In [35], SIFT performed best 
in the evaluations of scale, blur (in a textured scene), JPEG compression, illumination, and in the 
matching example. In [34], SIFT performed best in the evaluations of scale, rotation and blur 
(with a large radius). ASIFT was also considered since the evaluation in [25] gave good results, 
however no other evaluations which compare AS I FT to other feature extraction algorithms exist 
yet. Therefore SIFT was favored for having more comparative evaluations and the availability of 
supporting libraries. 

An enquiry with Lowe, the author of the SIFT algorithm, confirmed that he did not run a 
complexity analysis on his algorithm. Since the SIFT algorithm processes images according to 
their resolution and content, the complexity of the algorithm as a whole cannot be calculated -
changing some variables in the algorithm would result in a different complexity. Yet, some of the 
processes involved can be calculated separately. According to [42], the complexity of the scale 
space construction (explained in Section 2.4.2.1) for 640x480 monochrome images is as follows. 
The calculations assume three pyramid levels and three scales per level and represent the 
minimum operations for SIFT. 

O(N .M .P2
) + O(N .M) 

Where 

N is the image width; 

M is the image height; 

P is the (symmetric) filter size, e.g. 9x9. 

The first term is the result of the convolution while the second term is the result of the 
resampling. Accordingly, for a 640x480 image, building the scale space takes about 100,000,000 
operations. 

Consider the application for this thesis; a visually challenged person is required to take a picture 
to be used for object recognition. The first image transformation which comes to mind is blur. 
The visually challenged person cannot focus properly, even though the implemented mobile 
application has auto focus. However, users using a mobile phone with a different operating 
system (which would require a different client implementation) might not support such a 
feature. Thus blur was an important image transformation which required to be considered. 
Other important image transformations which required consideration are scale and viewpoint 
change. A user might take an image of a particular object from various distances and viewpoints. 
One might also say that illumination is relevant in the context of this application since various 
times of the day (and night) result in image transformations. Time is also important for the 
application in question, since the user requires real time results. 

Keeping in mind the mentioned requirements as the most important, but also giving the other 
transformations some consideration, SIFT results the best choice for this implementation. Even 
though SIFT does not outperform the other algorithms in all image transformations, it gives the 
best trade-off between the performance on various image transformations. This gives the best 
overall feature extractor for the purpose of this implementation. 

63 



Various open source implementations of the SIFT algorithm exist, however, due to previous 
experience using C#.NET, a C# version of the SIFT algorithm, ported from a C++ version was 
implemented in this thesis9• This implementation is very similar to the SIFT algorithm as 
described in Section 2.4.2.1, with the only difference that the scale space is computed in parallel. 
This modification, which allows faster implementation of the algorithm, was done based on the 
[43] and [44]papers. 
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Figure 62: UML class diagrams for Feature class 

9 Downloaded from https://sites.google.com/site/btabibian/projects/3d-reconstruction/code 
on 22 February 2011 
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The SIFT algorithm implemented in this thesis accepts a greyscale image and returns a list of 
Feature objects for each training image. Figure 62 shows the class diagram for the Feature 
class. It is important to note that we use features as described by Lowe in [18], and that we will 
only be using the feature descriptor, represented by an array of double values, for further 
processes. 

4.2.1.2.3 Saving to database 
Up to this point, the backend of the training process has extracted the GPS coordinates from a 
training image, and computed a list of features from the same image. This data is added to a 
SerializableFeatureList object, along with the respective GPS coordinates and image name. 
Figure 63 shows the class attributes. Thus, we now have a SerializableFeatureList object for 
each training image selected by the user. 

( ~' Serializable~eaturelist ~ 

Cl i155 

8 lhoperties 

imageN'ame : " ring 

.ai l'ai!i1tud'e : sltring 

.ai l'altifucfel?;e : .string 

longii!ud'e : strin g 
l'ongi'tudeRe : string 

[si!fea.li:ures : lislt<rea~u re > 

Figure 63: SerializableFeatureList UML class diagram 

The next step is to actually save the features to database. The following process is repeated for 
each feature extracted, for all training images selected by the user: 

The feature descriptor is extracted from each Feature object, and transformed into a string. This 
is done simply by implementing string concatenation with blank space as a delimiter, for all 128 
double values stored in the array representing the descriptor. Then, the latitude and longitude 
strings are transformed in an array of double values. This array is in turn used along with the 
latitudeRef and longitudeRef to transform the coordinates to decimal format as explained in 
Section 2.1. An SqlGeometry object is used so store this GPS data as follows: 

SqlGeometry geo = SqlGeometry .Poi nt(decimalLatitude, decimallongitude, 4326); 

Where 4326 is the SRID for the WGS 84 ellipsoidal Earth model; that is, the reference coordinate 
system used by the GPS. An SqlCommand object is then executed to save the feature to the 
database, along with its respective coordinates, the descriptor, and the name of the training 
image from which the feature was extracted. The CommandText attribute of the SqlCommand object 
is set to the following text: 
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"INSERT INTO dbo . Features (ImageName, Descriptor, Gps) VALUES ('" + imageName + 
+descrString+ " ', '" +geo+ "')" 

This will result in the appending to the database a number of features derived from a single 
image, with different descriptors and identical GPS coordinates and image name. 

4.2.2 QUERY PROCESS 

The query process is started by a call from the client to the webservice, which acts as an 
interface to the server application. The webservice accepts a byte array representing the query 
image, and four strings representing GPS coordinates of the image at hand. The latter strings can 
be null values if the query image at hand did not have GPS coordinates. When the query process 
is complete, the webservice returns a string representing the result to the client. 

The query process starts with the re-building of the image from the byte array. The resulting 
bitmap image is then transformed into greyscale and passed to the SIFT algorithm. Feature 
extraction is then computed as explained in Section 4.2.1.2.2. The descriptor of each feature is 
then used to build a matrix of float values. Consider the example of 2345 features which were 
extracted from the query image. The matrix in this case would consist of 2345 rows, one for each 
feature, and 128 columns, one for each value in the feature descriptor. 

The next step is to extract relevant features from the feature database. This is done by calling a 
method, and passing the query image GPS coordinates as well as a pre-set radius value as 
parameters. This radius value is used to define a specific area around the location the query 
image was taken. The features extracted from training images taken within this area are loaded 
from the database. This radius value makes the object recognition process more efficient and 
reliable [18], compared to loading the entire database, and subsequently having to compare all 
the features. The default value for the radius is set to SOm. The features are loaded from the 
database by calling a stored procedure, which is described in the following sections. For query 
images without GPS coordinates, all the features within the database are loaded. 

Each loaded feature is stored in an ExtractedFeature object containing the unique feature id (as 
stored in the database), the image name from which the feature was extracted, the descriptor of 
the feature, as well as the distance between the location where the query image was taken and 
the location the training image in question was taken. This distance must fall within the defined 
radius. Figure 64 depicts the UML class diagram for the Ext ractedFeature class. This method 
results in a list of Extr'.:ictedFc.:iturc objects, one for each feature extracted from the database. At 
this point, the size of the mentioned list is checked. If the list contains no features, then there are 
no training images available, and this result is returned to the client. 

66 



Ext racte dfe.ature ~ 
Cl a~s. 

8 Properties 

21 distance : ifloail: 

id: inil: 

image Jame : si!ring 

lis!:Descr : sirin g 

Figure 64: UML class diagram of the ExtractedFeature class 

The list of ExtractedFeature objects is then used to build the dataset matrix of float values, 
similar to the one created using the query features. Thus, if 10,000 features were loaded from 
the database, the matrix will have 10,000 rows and 128 columns. During the building of the 
matrix, a hashtable mapping each row from the matrix (representing a single feature) to its 
respective image name and distance is created. The value of the hashtable is represented by an 
array of string. The building of this hash table is done to aid in the matching process. 

N ameMannin!!Tbl 
Key Value 
0 runiversitv entrance, 5 7.530981 
1 fUniversitv entrance, 57.530981 
... ... 
4500 fUniversitv canteen, 14.452191 
4501 fUniversity canteen, 14.452191 
... ... 
x f!mage name, distance from query image l 

Figure 65: Table showing NameMappingTbl hastable contents 

4.2.2.1.1 Object recognition 
The system proposed by Lowe and Muja [32] was used for the implementation of the object 
recognition process. Given a dataset and the desired degree of precision, the proposed system 
automatically determines the best nearest neighbor algorithm and the respective parameter 
values. According to experiments led by [35], nearest neighbor distance ratio matching 
approaches give the best performance when matching descriptors such as the SIFT descriptor. 
The system developed by Lowe and Muja uses a "cross-validation approach to identify the best 
algorithm and to search for the optimal parameter values to minimize the predicted search cost 
of future queries" [32]. The system also allows the user to fine-tune it according to the 
requirements at hand; such as preferring a less than optimal query time in exchange for reduced 
memory usage, a smaller data structure build-time, or less time spent on parameter selection. In 
experiments the authors led, the latter show that it is possible to obtain a speed-up by a factor of 
1,000 times when compared to linear search, while still identifying 95% of the correct nearest 
neighbors. 
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FLANN10 is a library containing the system proposed by [32] and a collection of algorithms 
which were found to work best in nearest neighbor search problems in high dimensional spaces. 
Open CV provides an interface to the FLANN libray, which we used through EMGU. 

The object recognition process starts with the building of a kd-tree index using the dataset 
matrix. This is done simple by calling a library routine. Next, the nearest neighbors for each 
feature extracted from the query image are computed using the index just created. The method 
performing this computation accepts five parameters as follows: 

KdTreeindex.KnnSearch(Query, Indices, SqDist, KNN, CHECKS); 

Where; 

• KdTreelndex is the index just built; 
• Query is the matrix of float values (size is: number of features x 128) built using the 

descriptors of features extracted from the query image; 

• Indices is a matrix of integer values (size is: number of features loaded from database x 
number of nearest neighbors specified) providing mapping to the respective feature in the 
dataset matrix; 

• SqDist is a matrix of float values (size equivalent to Indices matrix) representing the 
Euclidean distance between a query feature and a nearest neighbor specified in the 
Indices matrix; 

• KNN is the specified number of nearest neighbors required. The default value for this 
implementation is set to 2; 

• CHECKS is the maximum number of leaves to visit when searching for neighbors. A 
higher value for this parameter would result in better search precision, but also take 
more time. The default value for this implementation is 200, as specified in [18]. 

This method thus populates two matrices, the Indices matrix and the SqDist matrix. These 
matrices indicate the first two nearest neighbors to each feature extracted from the query image, 
and their respective distances from the query feature in question. 

The final and crucial step left is the computation of the results. Initially this was done using a 
weighting system, however the final implementation was deemed to be better. The initial 
implementation made use of the distances between the query image and the training images and 
used them as weights on the number of matched features to compute a score. The score was 
calculated by dividing the number of features from <i tr<iining im<ige which matched the query 
image by the distance between both images. The training image with the highest score was taken 
to be the recognized image. The weighting was based on the assumption that the further a 
training image is from the query image, the less probable it is that the training image matches 
the query image in question. Consider having 100 features each from two training images A and 
B which match a query image X. If the distance between A and X is smaller than between B and X, 
then the matching image is taken to be A. 

10 http://www.cs.ubc.ca/-mariusm/index.php/FLANN/FLANN 
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This initial implementation raised some problems. Imagine having two training images A and B 
and a query image X. If one takes an image of B from very near A, then the weighting system 
would give an incorrect result, since the correct image, that is B, would get a lower score than A. 

This is because the distance weighting would overcome the number of matched features. Thus, 
we considered using the image orientation, and match the query image only with images facing 
that orientation. This option was however discarded in favor of a different implementation 
which gives a different set of results. 

The results in the final implementation contain the following three things in the format "location 

of user; recognized image; distance": 

• An approximation to the location of the user when the query image was taken. This 
result's accuracy depends on the content of the database. The approximation is 
calculated on the training image whose GPS coordinates are nearest to the coordinates of 
the query image. Thus, if the database contains more training images of the particular 
place in question, the result is more accurate; 

• The recognized object within the query image; 
• The approximated distance between the current location of the user and the recognized 

object. This data has already been calculated when the features were loaded from the 
database. 

The recognized image result is computed by calculating the distance ratio between the first and 
the second nearest neighbor for each feature of the query image, using the Indices and SqDist 
matrices. This is done as explained in [18]; features whose distance ratio (distance of first . 
nearest neighbor /distance of second nearest neighbor) is larger than 0.8 are discarded. This 
"eliminates 90% of the false matches while discarding less than 5% of the correct matches" [18]. 
This measure performs well as correct matches require having a nearest neighbor significantly 
closer than the closest incorrect match for reliable matching. False matches, on the other hand, 
will likely have a number of other false matches within similar distances due to the high 
dimensionality of feature space. Using the NameMatchingTbl hashtable described earlier, a new 
hashtable is built. This time, the NameCount hashtable contains the following data: 

Name(;ount 
Key Value 
University Entrance r93, 57.530981 
University canteen r69, 14.452191 
... ... 
Traininp; Imap;e name rNumber of correct features, distance from query image l 

Figure 66: Table showing NameCount hastable contents 

This hash table thus contains the name of the training image from where features were 
extracted, as well as the number of matched features, and the distance between the query image 
and the training image in question. Thus, if the features from 5 images were loaded from the 
database, and if at least 1 feature from each image correctly matched a query feature, the 
NameCount hashtable would contain five key values containing the names of the five training 
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images, along with the respective count and distance values. Here we are assuming that each 
training image has a unique name. 

Each key-value pair in the hashtable is then used to create a FeatureName object. Figure 67 
shows the UML class diagram of the latter. All FeatureName objects are used to create a list. This 
list is then counted; if it is empty or the maximum number of matched features is less than a 
given threshold, then the client is given a "No matched image" result. This threshold will be 
determined after evaluating the system. Otherwise, the list is sorted according to the image 
name having the maximum number of matched images. Thus, continuing with the example 
portrayed in Figure 66, 'University Entrance' would rank first, followed by 'University canteen'. 
The image ranking first is the recognized object within the query image. 

Feature Name ® 
Cla.ss 

8 Pmperties 

.ai ccun~er : in1t 

dist::nce : sf!ring 

iii image~,J aim.e : ~ring 

Figure 67: UML class diagram for the FeatureName class 

The list is sorted again, this time according to the distance attribute. Continuing with the 
example portrayed in Figure 66, 'University canteen would rank first, followed by 'University 
Entrance. The image ranking first is the training image nearest to the location where the query 
image was taken, thus giving the approximation as to the location of the user when he/she took 
the query image. This is the first part of the results. The third and last part of the results is the 
distance attribute of the image which ranked first; in the case of 'University canteen' would be 
'14.45219m'. 

The sorting of the list according to the distance attribute is done as following. The sorting of the 
list according to the count attribute is done similarly. 

NameCountLst.Sort( delegate ( Feat ureName fl, FeatureName f2) 
{ 

ret urn (fl.distance.Lomparelo(f2.distance)); 
}); 

result NameCountLst[0].imageName; 

It is important to note that the recognized image and the approximated location might coincide. 
This occurs when the recognized image is also the training image nearest to the user's location. 
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Consider having two training images taken from different, but near, locations A and B. If a user 
takes a query image of B from A, then the result containing the matched image will contain A and 
the approximated location will contain B. If, on the other hand, the user takes an image of B, 
from very near B itself, both results will be B. 

Upon completion of the computation of the results, the latter are returned to the client in String 
form. Of course, one must note that having a query image without GPS coordinates, the distance 
between the query image and the training images cannot be computed. Therefore, this last 
mentioned process is skipped, and only the recognized object within the query image is output 
as a result. 

4.3 DATABASE COMPONENT 

The database component was implemented using Microsoft SQL Server 2008 R2. The feature 
database is made up of a single table populated by the training process as described in Section 
4.2.1.2.3. Simply put, the database contains the respective data of all features extracted from all 
training images, namely the image name, the descriptor and the GPS coordinates. 

Column Name Data Tvue 
Id (Primary Keyl int 
ImageName nvarchar(100) 
Descriptor nvarchar(MAX) 
GPS geometry 

Figure 68: Database Schema 

As described earlier, both the query and the training processes interact with the database. The 
training process simply appends rows of data to the table. The query process, on the other hand, 
passes the GPS coordinates of the query image as a parameter to a stored procedure. The stored 
procedure is a query which enables the loading of features which were extracted from images 
taken within a particular radius from where the query image was taken. 

The stored procedure calculates the distance between the query image GPS coordinates passed 
as a parameter and the respective GPS coordinates of the features by implementing the 
Haversine formula explained in Section 2.1. The implementation is as follows: 

!f)'371000 (2" '.asin dbo.MinArgurmmtd,sqrt( (Power \sin( '.PJ\DIZ\NS'@lo.tituctc: 

- RADIANS ( Gps. STX l l 1 2 .i , 2' ' cos RADIANS Gps. STX) ) , cos 

(RADIANS (@latitude): ~Power ,sin ((RADIANS (@longitude) -

RADIANS ( Gps ~STY) ,: I 2; , 2) ~ ; ~ ) 1 1 

Where latitude and longitude are the respective GPS coordinates of the query image and Cps.STX 

and Cps.STY are the latitude and longitude GPS coordinates of the feature at hand. MinArgument 

is a function which returns the minimum of two values, while the Radians function converts the 
degree coordinate to radians. The value of the Earth's radius is taken in meters in such a way 
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that the resulting distances are all in meters. All features whose resultant distance is less than 
the given radius value are passed back to the query process. 

If the query image in question does not have any GPS coordinates, instead of calling the stored 
procedure, a simple query is executed which loads all features within the database. 

4.4 CONCLUSION 

In this chapter we have defined any implementation choices made for each of the components of 
the system and the main processes. Any relevant approaches to solve the problem at hand were 
also explored, including libraries used. We described the various user interfaces of the system. 
The implementation for the training and query processes was described in detail, as well as for 
minor processes such as feature extraction, GPS extraction and saving to database. 
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Chapter 5 

EXPERIMENTS AND EVALUATION 

In this chapter we run a series of tests and experiments to determine any variations in the 
results when system variables are changed. Such tests also help us determine and quantify the 
contribution of various system features to the end result. To aid the experimentation process, a 
testing module was added to the server-side, since testing the system thoroughly would be very 
cumbersome through the default client-server approach. It is important to note that this is not 
an evaluation of the SIFT feature extraction algorithm per se, since innumerable evaluations 
already exist in literature. Rather, this evaluation focuses on the implementation of the SIFT 
algorithm within the developed system in the context of an object recognition problem. 

5.1 EXPERIMENTAL SETUP 

To enable easy experimentation, a testing module was added to act as an interface to the query 
process described in Section 4.2.2, to replace the default webservice used by the client. This 
interface is a simple form, as shown in Figure 69, which enables the user to select a number of 
query images at one go. The form also enables the user to modify the radius value as described 
in Section 3.1.3. To aid the data gathering, required information obtained while computing the 
results are written to a text file. 
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Figure 69: Testing UI 
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5.2 TESTING DATASETS 

5.2.1 TSG-40-HTC DATASET 

The TSG-40-HTC11 dataset is made up of 246 JPEG real-world images taken in the inner city area 
of Graz, Austria. The images were taken using an HTC Touch Cruise camera enabled mobile 
phone. The images were taken at 3 megapixel resolution, from different viewpoints and under 
different weather and illumination conditions. Some images also contain occlusion. A 
spreadsheet file accompanying the dataset contains information regarding each image, such as 
the GPS coordinates, the weather conditions and the viewpoint. 

The dataset contains 6 images per object taken from viewpoints 1,2,3,4,6,8 as shown in Figure 
70. The images were captured using neither flash nor zoom. The GPS coordinates were obtained 
using a GPS device in such a way that the GPS data corresponded to a real world scenario. The 
pictures were taken at different times of the day, namely: 

• morning (8 - 10 am) 
• noon (10 am - 2 pm) 
• afternoon (2 - 5 pm) 

and under different weather conditions, namely sunshine and cloudiness. 

Figure 70: Dataset viewpoints. Z is the central point of the building (the middle of fa~ade), 
Gamma is of 90 degrees, Alpha and Beta are of 30 and -30 degrees respectively. Image from [ 4 7]. 

11 Downloaded from http:i idib.joanneum.aticapeiTSG-40iindex.php?page=downioad 
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Since the TSG-40-HTC images were not geo-tagged, but the GPS coordinates were available, we 
developed a program to add the GPS coordinates to the dataset images as properties. Simply, 
this program read the respective coordinates of the image in question from a spreadsheet, and 
created a new image with the added GPS properties. Also, to reduce the number of features in 
the database, the images were all scaled to 853x640. This enables faster computation of results, 
and yet does not necessarily hinder the matching process, as evaluated in [38]. 

Figure 71: Sample images of the TSG-40-HTC database. Images (from left to right) are taken 
from viewpoints 1, 2 and 3 respectively. Image from [46]. 

5.2.2 UoM DATASET 

The UoM dataset is a number of JPEG images depicting various buildings around the University 
of Malta, Msida, Mdina and Sliema. The images were taken under various illumination and 
weather conditions, and are all geo-tagged. An HTC Desire mobile phone with a 384x640 
resolution was used to capture this dataset. The images were taken from random distances and 
viewpoints, in order to mimic the action of a real-life user of the proposed system. This dataset 
also has some images containing occlusion. 

Figure 72: Sample images of the UoM dataset. 



5.2.3 TRAINING 

We started off the testing process by training the system. This was done using the training 
process as described in Section 4.2.1. For the training images, an image of each object in the TSG-
40-HTC dataset was used. The images chosen were all taken from viewpoint 6, since it best 
views the entire building fa~ade and enables best matching. 13 images from the UoM dataset 
were also used as training images. The training process resulted in around 97,500 features being 
stored in the database. 

5.3 EVALUATION METRICS 

Receiver Operating Characteristics (ROC) and Recall-Precision are popular metrics in literature, 
sometimes even used interchangeably. Both metrics can be used to show that we want to 
increase the number of correct positive features, while decreasing false positives. Yet, as one can 
observe in [45], ROC are more suited to evaluate classifiers, since the false detection rate is well­
defined. Recall-Precision, on the other hand, are better-suited to evaluate detectors (such as in 
the case of this thesis), since the number of false positives relative to the number of all 
detections can be correctly expressed by 1-precision, even though the total number of negatives 
cannot be determined. 

This evaluation is similar to the one in [35], where the performance of the system is measured 
on a keypoint matching problem, that is, having a feature extracted from a query image (the 
query feature), find all the matches of the query feature from the feature database. Since this is 
clearly a detection problem, rather than a classification one, Recall-Precision are used for this 
evaluation. Equation 3 in Section 2.6.2 shows the Recall and 1-Precision equations. 

The graphs of Recall against 1-Precision are constructed as follows. First, the required features 
are loaded from the database according to the given radius. These features are extracted from 
various images, along with features from the training image of the object portrayed in the query 
image. The first and second nearest neighbors for each query feature are then found. Nearest 
neighbor distance ratio matching is then implemented. The features which pass the ratio 
threshold are the total number of matches. These features can belong to various images, 
amongst which the correct training image with respect to the query image in question. The 
features which belong to the correct training image are termed correct positives, while those 
which belong to other training images are termed false positives. The number of features 
extracted from the correct training image make up the total number of positives. 

5.4 EXPERIMENTAL RESULTS 
In this section we present and discuss the experimental results of the evaluation. We explain the 
purpose of the experiments, any variables which were modified, and the outcomes of the 
experiments. Assume that the same random sample of 20 JPEG images from the TSG-40-HTC 
dataset was used as test data unless otherwise specified, and that no training image was used as 
a query image. Also assume that the radius value is taken at SOm unless otherwise specified. One 
should note that this radius returns most of the training images from the TSG-40-HTC dataset. 
The time taken is measured from before the loading of the image, to the computation of the final 
result. The resulting matched images should be assumed to be correct unless otherwise stated. 
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5.4.1 NUMBER OF CHECKS FOR NEAREST NEIGHBOR APPROXIMATION 

This experiment involves varying the number of checks made for the approximation of the 
nearest neighbor with respect to the query feature in question. In [18], Lowe defines this value 
to be 200 for the Best-Bin-First algorithm. The purpose of this experiment is to determine the 
varying of the accuracy of the results, as well as the varying in the time taken. 
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Figure 74: Graph showing recall for Number of checks for Nearest Neighbor 
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Figure 73: A graph showing 1-Precision for Number of checks for Nearest Neighbor 

The results in both Figure 74 and Figure 73 show that precision and recall both diminish as 
the number of checks is reduced. The recall has a larger range of values for the different images 
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while the 1-precision is similar for all images. The 1-precision values are mostly above 0.8, 
showing that the check value used does not have such an impact on the resulting false positive 
features. The recall values are somewhat more affected, as the number of correct features is 
reduced a notch for each descending tested value of checks. The query images in these tests all 
gave the respective training images as the resulting matched image. Thus we can see that even 
though the reducing of the number of checks made to find the nearest neighbour resulted in 
slightly worse values for the recall and 1-precision, the end results were more than satisfactory 
for all the number of checks. 

01:43.680 

01:26.400 

01:09.120 c: 
QJ 

..:.: 
ro 
I- 00:51.840 
QJ 

E 
i= 

00:34.560 

00:17.280 

00:00.000 

I - I 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Testing Image No. 

Figure 75: A graph showing the Time Taken for Number of checks for Nearest Neighbor 
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As can be seen in Figure 75, the time taken to compute the results varies and is not always 
proportional to the number of checks being made. This might be due to some background 
process running on the machine during the testing, even though utmost care was taken to 
prevent this. Various tests all resulted in similar time patterns. 

5.4.2 THRESHOLD FOR NUMBER OF FALSE POSITIVES HAVING NO TRAINING IMAGE 

This experiment is done to determine a threshold to set on the number of allowed "correct 
positives" for a training image to be defined a match. In fact, when there is no training image to 
the query in question, there can be no correct positives at all. These features are simply features 
which pass the ratio threshold and belong to the training image with the highest number of 
matches. This experiment is uone by comparing the number of correct positive features for a set 
of testing images; once having their respective training images in the database, and once not (by 
removing the respective training images from the feature database) . This threshold is required 
so that if a user takes a query image of a building of which there is no training image in the 
database, then the system does not return a wrong match. 
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Figure 76: Graph showing the number of correct features for test images with and without 
respective training images 

The results in Figure 76 show that for most images, the number of correct positive features is 
much larger when the database contains a training image matching the given query image, than 
for the opposite case. However, the large range of values for different images indicates that 
setting a threshold would not be efficient in determining images without a training image. Thus, 
a scenario where the query image does not have a respective training image in the database 
would result in the image most similar to the query image to be defined a match. Correct positive 
features in such a scenario are non-distinctive features, probably derived from clutter, which can 
be matched to various images. 

5.4.3 SIFT vs. S/FT+GPS 
In this experiment we compare the results obtained using the SIFT algorithm as defined by Lowe 
in [18], to the proposed implementation which exploits GPS coordinates to reduce the search 
space. For the traditional SIFT approach, testing images were used without any GPS tags in such 
a way that all the features from the feature database are loaded and used for the object 
recognition process. 

Consider the following scenario: having two locations A and B near each other, the user takes an 
lm<lgP of R st;:inrline nPrirPst to A. If thP rl<ltrih<lsP rontains the training images matchmg both 
locations, then the result should contain the recognized object within the image, that is B, and 
the training image nearest to the location the query image was taken, that is A. One must keep in 
mind that the more training images the database contains of a particular location, the more the 
latter function can be accurate. 

Testing images for both SIFT and SIFT+GPS were selected from the UoM dataset, since it 
contains scenarios such as the one described, and the results can be known a priori. Also, the 
UoM dataset contains images from sparse locations, thus the SOm radius loads only a small 
number of training images from the database. This is in contrast to the TSG-40-HTC dataset, 
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where most images are concentrated in a small area. The testing was done using 9 images of 
various buildings captured from different perspectives. 
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Figure 77: Graph showing the difference in Time taken for SIFT with and without GPS. Images 
1,2 and 8 returned incorrect results for SIFT without GPS. 

According to the results shown in Figure 77 the average time to calculate the results for SIFT is 
01:07 minutes while for SIFT + GPS is 00:36 minutes. This is nearly half the time taken by using 
SIFT without the GPS optimization. This discrepancy in the time is mainly due to the large 
difference in the amount of features loaded from the database. Though the loading itself does not 
make such a difference in the time taken, the computation for the nearest neighbors takes much 
longer. Also, without the GPS optimization, there is a larger probability that the query image is 
matched with the incorrect training image, as happened for images 1, 2 and 8. 

Images 5 and 8 returned the current location of the user to be different than the location of the 
object recognized within the query image. The results were as follows: 

Approx. Distance 
Query Image Time Taken You are looking at: You are at: from matched 

image 

lecture building q.jpg 00:38.8 lecture building computer building 26.88 

library q.jpg 00:30.3 library canteen 28.47 

As explained, this means that, having a query image taken at location A, and two training image 
sat locations 8 and C, A was nearer to 8, even though the query image depicted the object at C. 

For the "lecture building q" query image, the "computer building" training image is 26.09m away 
while for the "library q" query image, the canteen training image is 11.25m away. These training 
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images, having their locations nearer to the location of the query image than the locations of the 
matched images, were given as the "you are at" results. 

5.4.4 SIFT vs. PS/FT 
This experiment involves evaluating the implementation approach of the SIFT algorithm. As 
stated in Section 4.2.1.2.2, the proposed system implements a parallel version of SIFT (PSIFT), 
where the scale space is computed in parallel. The aim of this experiment is to evaluate any 
differences in time taken to compute the results between the default and the parallel 
implementation of the SIFT algorithm. This is done simply by passing a boolean variable to the 
SIFT feature extraction method, and the method is implemented accordingly. 
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Figure 78: Graph showing the time taken for SIFT vs. PSI FT 
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The results in Figure 78 show that PSIFT is generally faster than SIFT. Some images prove the 
opposite; however this is probably due to the particular content of the image. 

5.4.5 MULTIPLE TRAINING IMAGES 

The Nearest Neighbor distance ratio matching, explained in Section 4.2.2.1.1, requires the first 
and second nearest neighbors of a query feature to have a distance rntio larger than 0.8, as 
defined in [18]. Thus, the second nearest neighbor requires to be from a training image other 
than the training image depicting the object within the query image. For example, having a query 
image A, its respective training image B, and a different training image C, the first nearest 
neighbor should be from B while the second should be from C. Having multiple training images 
depicting the same object therefore might raise some problems. This is because if the first and 
second nearest neighbor to the query feature are taken to be the correctly matching features 
from two distinct and correct training images, then the distance ratio will be smaller than 0.8, as 
both features can be correct matches to the query feature. This phenomenon results in the 
correctly-matching features being discarded. 
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This experiment is led with the aim of evaluating any difference in the number of correct 
positive features with, and without, multiple training images. For the multiple training images 
part of the experiment, 6 images from the UoM dataset depicting 3 different buildings are added 
to the feature database. The testing was done using 9 images from the U oM dataset. 

450 

400 

"' 350 QJ 

> 
+;; 

300 ·;;; 
0 
c.. ... 250 u 
QJ .... 

200 .... 
0 
u - 150 0 

0 100 z 

50 

0 
1 2 3 4 5 6 

Testing Image No. 

7 8 9 

• Single Training Images 

• Multiple training images 

Figure 79: Graph showing the number of correct positives for a query image having single and 
multiple training images respectively. Images 3, 7 and 8 returned one of the new training 
images as result for the test using multiple training images. 

Generally, having single training images results in a higher number of correct positive features. 
Yet, some images such as image 8 happened to match much better with the new training image, 
and resulted in a much higher number of correct positives. One should note that images 3 and 7 
shown in Figure 79 also returned a new training image as the matched image. 

5.5 CLIENT EVALUATION 

The user evaluation was done with the kind help of Mr. Michael Micallef and Mr. Stanley Debono 
from the Foundation for IT Accessibility (FITA). Micallef, who is visually challenged, was 
introduced to the White Cane Device and gave important feedback on its usability. Debona, who 
works on a day to day basis with visually challenged persons, also gave important suggestions. 
White Cane Device was considered to be of great aid to persons with visual impairments, and 
quite easy to use and understand with some basic instructions. Micallef suggested that instead of 
just returning the image matched with the query image, the system should also return the 
current location of the user if the latter is different than the matched image. This was 
implemented accordingly. Debona voiced a concern regarding having multiple training image of 
a particular object; namely if a query image matches more than one training image, what result 
is returned. The evaluation in Section 5.4.5 shows such a scenario; the end result being the 
image which has the largest number of matched features with the query image. Both Debo no and 
Micallef agreed that the addition of further information with each training image would be much 
more useful to the end user. Such information could include the accessibility of the building in 
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question. Being a prototype, such information was not added to this implementation, however it 
was added to the Future Work section. 

5.6 CONCLUSION 

The various experiments shed light on the results achieved by changing properties within the 
SIFT algorithm. The system was tested using different values for the number of checks for the 
approximation of the nearest neighbor. The results confirmed that a higher number of checks 
results in higher precision and recall values. The timing results for the latter test were 
inconclusive. When query images do not have their matching training images, the training image 
most similar to the testing image is defined as the matching image, since the implementation of a 
threshold would not be effective. The exploiting of the GPS coordinates resulted in a great 
improvement on the time taken to compute the results; with SIFT +GPS taking nearly half the 
time taken by SIFT only. This optimization also enabled the user to be given more detailed 
results regarding his/her whereabouts. The PSIFT implementation resulted to be generally 
faster than the classic SIFT implementation. When tested with multiple training images, having 
more than one training image for a particular query image resulted in a smaller number of 
correct positive features, however the tests always returned the correct training image as the 
matching image. The use of datasets containing images taken from various perspectives also 
shows that White Cane Device is adequate for the proposed use, as reliable matching can be 
achieved even using images with quite a different perspective from the training image. Using the 
TSG-40-HTC dataset proved that the performance of White Cane Device is not affected when 
there is a change in viewpoint up to 30 degrees in either direction. Also, light occlusion 
contained within some testing and training images did not cause any observable drop in the 
system accuracy. White Cane Device received very good feedback from the intended end users of 
the system. 
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Chapter 6 

FUTURE WORK 

In this chapter we explore various ideas which could enhance the proposed system in some way, 
but, mainly due to the imposed time limitations, could not be added to our implementation. 
Other future work was not implemented as it was beyond the scope of this thesis. 

6.1 IMPROVING THE CLIENT MOBILE APPLICATION 

The client application can be made more efficient by adding the capability of sending the image 
to the server through 3G, as well as WIFI. This would enable the users to use White Cane App 
more flexibly, without requiring a WIFI connection. Also, the automatic setting of the image 
resolution would be more user-friendly. Another addition would be the addition of user 
preferences regarding to the format of the output result. 

6.2 FEATURE EXTRACTION ALGORITHM 

The implemented feature extraction algorithm can be optimized in many ways. For example, the 
use of color in the feature detectors and descriptors could result in better object recognition. 
Also, careful implementation of the algorithm could make the recognition process faster. 

6.3 VIDEO OBJECT RECOGNITION 

The use of video instead of images for object recognition, as proposed in [36], could help easier 
use by visually impaired persons as there is no need to focus on the object of interest. Rather, a 
number of snapshots are taken from the video as it is being recorded. 

6.4 PATH INDICATION 

A very interesting addition to the proposed system would be the implementation of algorithms 
which find the shortest path to the desired destination, given the current location. Visually 
impaired users would greatly benefit from step by step directions to a desired location. 

6.5 CONCURRENT USERS 

The full implementation of the White Cane Device prototype should be able to handle multiple 
concurrent users. Thus appropriate testing should be done to evaluate the scalability of such a 
system. 

6.6 ADDITIONAL INFORMATION WITH TRAINING IMAGES 

As suggested by Debono and Micallef in the client evaluation (Section 5.5), the addition of 
relevant information to training images would result in much more useful information to the 
end user. Such information could include the accessibility of a building and any other relevant 
information pertaining to the building in question. For example, a training image of a pharmacy 
might include information about its opening times. 
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6. 7 CONCLUSION 

The overall system could benefit from the mentioned additions in that it would become more 
efficient and user-friendly. Also, by providing more information, the system would give more 
useful guidance to the end users. 
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Chapter 7 

CONCLUSIONS 

Various state-of-the-art feature extraction algorithms were researched with the purpose of 
finding the best algorithm for this implementation. The evaluations of SIFT, SURF, PCA-SIFT and 
ASIFT algorithms were compared and SIFT resulted the algorithm best suited for the scope of 
this thesis. The features extracted by SIFT are scale, rotation and blur invariant, while being 
robust to changes in illumination and affine transformations. Such features were ideal for our 
implementation since we required catering for images which were taken by visually challenged 
persons. The geo-tagging capability of mobile phones was exploited to enable optimization of 
the object recognition process. The latter process involves extracting features from a query 
image and finding matches from a database of features extracted from training images. 

Research was extended to papers proposing similar systems whi!=h implemented feature 
extracting algorithms as the ones mentioned above. Such papers provided a starting point to 
determine the order of the amalgamations of various processes required. The proposed system 
was modeled on a client-server environment, where the client is a mobile application enabling 
the user to take a picture and send it over to the server. The server, on the other hand, 
implements a webservice to act as an interface. This webservice accepts the picture taken by the 
user as well as the GPS coordinates. The server than performs object recognition on the picture 
and returns the results to the client. 

White Cane Device resulted to be a very useful system capable of aiding visually impaired users 
by providing information about their current location. Extensive experiments and evaluations 
prove that White Cane Device is an effective solution which gives the correct matches for nearly 
all training images. Query images of a small resolution are correctly matched against a large 
database of features. The use of geo-tagged images enables the optimization of the object 
recognition process. Apart from considerably diminishing the time taken to compute the results, 
the GPS optimization also returns more correct results: less query images are matched 
incorrectly. Most importantly, a change in viewpoint did not result in any hindrance for the 
object recognition. Light occlusion was also not a concern. 

The aims defined in Section 1.2 were fully achieved. White Cane Device is a very user-friendly 
system which can be used as a travelling aid to visually impaired persons. Apart from the latter, 
persons suffering from dementia could also find the proposed system useful. Also, White Cane 
Device can be tweaked for the use in the tourist industry; training images could be taken to be 
particular points of interest. For such a case, and also for the proposed scope of White Cane 
Device, additional information regarding the object depicted within the query images could be 
stored in the database. Thus any returned results would not only contain the name given to the 
training image, but also any other relevant information. For the proposed scope, this could 
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include the accessibility state of the place in question, while for the tourist industry this could 
include general information or historic context about the particular point of interest. White Cane 
Device is also flexible in the devices used as clients to connect to the server, as the client is only 
acting as a peripheral. Thus any camera enabled device with GPS capabilities could be used as a 
client, including tablet PC's. 

This study proved to be a highly-academic exercise as well as an amazing tool to assist visually 
challenged persons. The application of image processing algorithms in combination with other 
location-based information provided an excellent basis to fruitfully train and employ an 
intelligent prototype system, thereby offering numerous future directions and additional 
research possibilities in such a noble and worthy area. 
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