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Abstract

Portfolio Selection (PS) is a perennial financial engineering problem that re-
quires determining a strategy for dynamically allocating wealth among a set of port-
folio assets to maximise the long-term return. We investigate state-of-the-art Deep
Reinforcement Learning (DRL) algorithms that have proven to be ideal for contin-
uous action spaces, mainly Deep Deterministic Policy Gradient (DDPG) and Twin
Delayed Deep Deterministic Policy Gradient (TD3), for the PS problem. Further-
more, we investigate the effect of including stock movement prediction indicators
in the state representation and the potential of using an ensemble framework that
combines multiple DRL models. We formulate experiments to evaluate our DRL
models on real data from the American stock market, against benchmarks includ-
ing state-of-the-art online portfolio selection (OLPS) approaches, using measures
consisting of Average daily yield, Sharpe ratio, Sortino ratio and Maximum draw-
down. Our experiments show that TD3-based models generally perform better than
DDPG-based ones when used on real stock trading data. Furthermore, the introduc-
tion of additional financial indicators in the state representation was found to have
a positive effect overall. Lastly, an ensemble model also showed promising results,
consistently beating the baselines used, albeit not all other DRL models.
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1

Introduction

The work presented within this dissertation has been accepted to be presented at the
FinPlan workshop, which is to be held in conjunction with the 31st International Con-
ference on Automated Planning and Scheduling (ICAPS 2021).

Online portfolio selection (OLPS) is considered a principal problem in computational fi-
nance and has been studied across various research communities. Among others, these
include finance, statistics, artificial intelligence, machine learning, and data mining (Li
and Hoi, 2014). Some popular theories suggest that stock markets movements are sim-
ply a random walk, making it a fool’s game to attempt to predict their trends (Shah and
Isah, 2019). The leading cause of this challenge is the number of variables involved.
Shah and Isah (2019) describe that in the short term, the market behaves like a voting
machine which tallies up the popular firms, but in the longer term acts like a weighing
machine which assesses the substance of companies. This description hints that there is
scope for predicting the market movements over a longer time frame.

1.1 | Portfolio Selection
Portfolio Selection (PS) is a perennial financial engineering problem that requires de-
termining a strategy of dynamically allocating wealth among a set of assets to max-
imise the long-term return (Li et al., 2012). The PS problem is a fundamental one in the
investment industry, which has now been studied intensively for over 50 years, as it
originated from the seminal paper of Markowitz (1952). As Li and Hoi (2014) indicate,
there are two major schools for investigating the PS problem. These are the Mean Vari-
ance Theory (Markowitz, 1952) originating from the finance community, and the Capital
Growth Theory (Cover, 1996; Kelly, 1956) originating from information theory (Li and
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Hoi, 2014). The Mean Variance Theory focuses on a single-period or batch portfolio
selection. It aims to trade off expected return (mean) with risk (variance), to create
an optimal portfolio subject to the investor’s risk-return profile (Li and Hoi, 2014). In
contrast, the Capital Growth Theory focuses on multiple-period or sequential portfo-
lio selection. Additionally, it aims to maximise the portfolio’s expected growth rate, or
expected mean logarithmic return (Li and Hoi, 2014). Despite the fact that these Cap-
ital Growth Theory aims follow the same concept of focusing more on return rather
than risk awareness, the latter assumes the use of a commonly used function within fi-
nance, which is the log return calculation. This involves calculating the change in price
within a period, dividing it by the previous price, and finally calculating the logarithm
of the result (Quantivity, 2011). Both theories pose a solution to the portfolio selection
task. However, only the Capital Growth Theory fits the “online“ scenario (Li and Hoi,
2014) and incorporates the online machine learning perspective, consisting of multiple
periods or steps. This theory of PS has set the foundation for studies over the years,
all posing solutions that sequentially allocate portfolios. Many of which make use of
machine learning and online learning methodologies (Li et al., 2012).

1.1.1 | Online Portfolio Selection
Online Portfolio Selection (OLPS) strategies aim to sequentially select portfolios over a
group of assets in order to achieve portfolio optimisation targets (Li and Hoi, 2014). For
each period or step, the portfolio weight is tuned to maximise the cumulative wealth
(Li and Hoi, 2014). Due to the numerous amounts of studies aiming to improve OLPS
performance, today, one can find a great variety of state-of-the-art OLPS strategies and
approaches (Li and Hoi, 2014). Additionally, due to their availability and replicabil-
ity (Islam et al., 2017), OLPS algorithms such as Exponential Gradient (EG) (Helmbold
et al., 1996, 1998), Passive Aggressive Mean Reversion (PAMR) (Li et al., 2012), and
Online Moving Average Reversion (OLMAR) (Li and Hoi, 2012) are popularly used in
portfolio optimisation studies as benchmarks to evaluate the performance of their port-
folios (Jiang and Liang, 2018; Kanwar, 2019; Li and Peng, 2019; Patel, 2018; Ye et al.,
2020).

1.2 | Reinforcement Learning
RL is an actively researched branch of machine learning in which an agent is iteratively
fed new data to discover which actions yield the most reward by trying them out (Cum-
ming, 2015; Khushi and Meng, 2019; Sutton and Barto, 1999). In contrast to a supervised

2
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approach, in an RL based approach the learner is not told which actions to take. Sutton
and Barto (1999) defines RL as

‘learning what to do, how to map situations to actions, so as to maximise a
numerical reward signal.‘

The RL algorithm taxonomy is primarily split based on the access to a model of the
environment (Sutton and Barto, 1999). For example, the AlphaGo algorithm created by
Silver et al. (2016) to play the Go board game is a model-based one. This is due to the Go
board game being confined by a set of defined rules, allowing the agent to plan ahead
and see what would happen for a range of possible choices (Kanwar, 2019). In contrast,
model-free RL algorithms do not make use of such a model. This allows them to be
more efficient and simpler to implement (Kanwar, 2019). Furthermore, model-free RL
can be applied to a broader range of problem domains, including OLPS which has a
continuous action space.

1.2.1 | Deep Reinforcement Learning Frameworks
Deep Reinforcement Learning (DRL) is the combination of RL with Deep Learning from
Deep Neural Networks, extending to tasks with high-dimensional input and action
spaces (Khadka et al., 2019). Deep learning (DL) has been successful in speech recog-
nition (Noda et al., 2015) and image identification (Liu et al., 2020), and was shown
to have the capability to capture complex, non-linear patterns (Liang et al., 2018). To-
day, a wide array of state-of-the-art RL algorithms designed for DRL exist, and many
have been applied to the portfolio management and optimisation domain. Such algo-
rithms include Advantage Actor-Critic (A2C) (Kang et al., 2018), Soft Actor-Critic (SAC)
(Haarnoja et al., 2018), Proximal Policy Optimization (PPO) (Schulman et al., 2017), Deep
Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016; Silver et al., 2014), and Twin
Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018), amongst others.

1.3 | Artificial Intelligence for Portfolio Selection
In past studies, portfolio optimisation has been approached as a stock price prediction
problem (Ravikumar and Saraf, 2020). Those interested in finding a machine learn-
ing based solution to this problem have attempted to do so using supervised machine
learning algorithms (Kumar et al., 2018; Ravikumar and Saraf, 2020), and specifically
artificial neural networks (ANN) (Song et al., 2018) to perform regression and classifi-
cation. These studies aim to increase the predictive power further with each iteration

3
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(Song et al., 2018). Unfortunately, the stock market is very dynamic and chaotic, making
it unpredictable (Song et al., 2018). Due to this, many search for alternative strategies
that do not attempt to predict price movements with the use of historical market data
(Heaton et al., 2017; Niaki and Hoseinzade, 2013). Instead, many strategies make use of
RL.

1.3.1 | Related Works
In recent studies, RL has shown potential as a model-free machine-learning solution to
the financial portfolio management problem (Jiang and Liang, 2018). Moreover, Khushi
and Meng (2019) claim that financial traders’ interest in RL had been inspired by the
AlphaGo program (Silver et al., 2016), which defeated the best Go board game player
Lee Sedol in 2016. Several studies, such as the ones seen in (Jiang et al., 2017), (Jiang
and Liang, 2018), and (Liang et al., 2018) have set the current benchmark for this kind
of study, making use of Deep Reinforcement Learning (DRL). A number of these stud-
ies, such as (Jiang and Liang, 2018) and Hegde et al. (2019), make use of RL methods
introduced by the works done by Silver et al. (2014) and Lillicrap et al. (2016), which
saw the proposal and creation of the underlying DDPG framework. This was designed
to operate over continuous action spaces (Lillicrap et al., 2016). The approaches seen in
these papers differ from previous successful attempts, such as the ones seen in (Cum-
ming, 2015) and (Deng et al., 2017), as the RL algorithms from the latter output discrete
trading signals on singular assets. Further recent studies in this field, such as the ones
done by Hegde et al. (2019), Zhang et al. (2020), Kanwar (2019), and Gran (2019) have
expanded on top of their work, with more risk-averse approaches (Hegde et al., 2019;
Zhang et al., 2020), focus on asset correlation (Zhang et al., 2020), genetic algorithms
to perform pre-training (Gran, 2019), varieties in neural networks (Kanwar, 2019), and
sentiment analysis (Gran, 2019).

1.3.2 | Motivation
The works observed do not identify a superior DRL framework for portfolio optimisa-
tion. This is partly due to the lack of a standard stock trading environment, which is
required to compare portfolio optimisation model performance accurately. The agents
found in these RL based approaches make use of combined features including Open,
Close, High, Low, and Volume to make portfolio trading decisions (Hegde et al., 2019).
However, more complex features could be introduced to enhance performance, such
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as technical indicators 1 (Huang et al., 2016; Li and Hoi, 2012). Additionally, no state
format has been identified as the best option in the literature observed. Furthermore,
OLPS algorithms such as EG and OLMAR observe trading strategies, including Follow-
the-Winner and Follow-the-Loser with Mean Reversion (Li and Hoi, 2012). This is made
possible with internal functions and calculations, which could potentially benefit a DRL
framework for portfolio optimisation with their inclusion within the state observed by
the agent. An additional recent related study by Yang et al. (2020) combines three trad-
ing agents with different DRL algorithms in an ensemble algorithm, which is able to
adjust to different market situations. Alternative factors could be used as the differing
element between the combined DRL algorithms, such as the state format, which could
lead to different trading behaviours and results (Hegde et al., 2019). Additionally, en-
semble DRL algorithms have been scarcely studied on the portfolio selection problem.

1.4 | Aim & Objectives
This study aims to investigate whether recent advancements in state-of-the-art DRL lead
to improvements in solving the portfolio selection problem when compared to standard
OLPS algorithms. To address this aim, we identify the following research objectives:

1. Investigate whether recent advances in DRL can lead to improved investment per-
formance when compared to OLPS algorithms.

2. Investigate how OLPS features can be utilised to improve DRL market state rep-
resentation, leading to increased investment performance.

3. Explore possible investment performance improvements through the use of DRL
ensemble strategies.

1.4.1 | Scope
This study focuses on portfolio optimisation via daily stock trading on datasets consist-
ing of actual close price data from stock exchanges, mainly NYSE and S&P500. Higher
frequency trading rates, such as hourly and minute, are beyond the scope of this re-
search. Throughout the study, we follow the below two assumptions:

� Zero Slippage: All market assets are liquid enough to make every trading at the
last price immediately possible when an order is placed.

1https://www.tradingtechnologies.com/xtrader-help/x-study/technical-indicator-definitions/list-
of-technical-indicators/
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� Zero impact on market: In financial markets, market impact is the effect that a
market participant has when buying or selling an asset (Hegde et al., 2019; Vo-
giatzis, 2019; Zhang et al., 2020). This is typically a concern for large investors,
such as financial institutions. The investments done by our trading agents are as-
sumed to be done in an independent or personal scope, and not by large investors.
Therefore, it is assumed that the trading done by our agents does not impact the
market.
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1.5 | Document Structure
The current chapter introduced the research area by providing reliable contextual back-
ground information. Below are the upcoming chapters with their descriptions.

� Chapter 2 - Background & Literature Review
The Literature Review chapter provides an overview of the published literature
with regards to portfolio selection, applications of machine learning in portfo-
lio management, reinforcement learning frameworks, deep learning, and appli-
cations of deep reinforcement learning in portfolio management.

� Chapter 3 - Methodology
The Methodology chapter presents an in-depth description of the framework pro-
posed and the experiments within the study. The chapter starts with a detailed
description of the stock data used in our study and its pre-processing prior to its
use. This is followed by an in-depth description of the custom stock trading envi-
ronment and the elements within, such as the state, actions, rewards, transaction
costs and window lengths. Next, the internal elements of the proposed algorithms
are described, including the ANN (Predictor) format and the DRL frameworks.
This also includes an in-depth explanation of the internal elements of the models
used in our experiments.

� Chapter 4 - Results & Evaluation
The Results & Evaluation chapter describes the experiments performed in our
work. For each experiment, the results are tabulated and visualised. Some experi-
ments also include statistical tests to solidify the findings. The results are followed
by discussion and evaluation.

� Chapter 5 - Conclusion
The concluding chapter addresses the research questions with respect to the re-
sults obtained. Additionally, possible improvements and future work are pre-
sented.
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2

Background & Literature Review

2.1 | The Stock Market, Trading and Portfolios
The stock market is a means through which individuals can invest their money in stocks.
When the term “stock market“ is mentioned, one usually refers to one of the most famil-
iar stock market indexes, such as Standard & Poor’s 500 and Dow Jones Industrial Average.
In brief, a stock or share is a financial instrument which represents ownership in a com-
pany with a corresponding value which is proportionate to that company’s assets and
earnings. Therefore, through investing money on stocks, a disciplined individual may
build up one’s net worth. This is done by buying and selling stocks strategically. Tradi-
tionally, experienced traders may invest on a list of stocks, called a portfolio, and have
the wealth invested within be dynamically allocated (Hayes et al., 2021).

2.2 | Portfolio Selection
PS is a perennial financial engineering problem that requires determining a strategy of
dynamically allocating wealth among a set of assets to maximise the long-term return
Li et al. (2012). A set of assets may also be called a universe of assets. Throughout
these strategies, weights are set and shifted within a portfolio vector, which represents
the allocation of wealth. Additionally, each strategy may shift these weights within
the portfolio vector as it sees fit. In fact, whilst some strategies make use of the abil-
ity to dynamically allocate weights in batches, others opt to set static portfolio vector
weights. Thus, having a single period or batch. The two major schools for investigating
the PS problem are Mean Variance Theory (Markowitz, 1952) originating from the finance
community, and Capital Growth Theory (Cover, 1996; Kelly, 1956) originating from infor-
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mation theory (Li and Hoi, 2014).

2.2.1 | Portfolio Selection Theories

The Mean Variance Theory for PS by Markowitz (1952) mathematically formulates the
portfolio allocation problem on a single-period (batch) portfolio selection basis. It aims
to find a portfolio vector w in a universe of M assets, which is both Greedy and Risk-
Averting. The model gives the optimal portfolio vector w, which minimises volatility
for a given returns level. This typically determines the optimal portfolios subject to the
risk-return profile of the investor in question (Li and Hoi, 2014). The Capital Growth
Theory, on the other hand, focuses on multiple-period or sequential/online portfolio
selection aiming to maximise the expected growth rate or log return (Cover, 1996; Kelly,
1956).

The Mean Variance model, as described above, has proved to be useful in the past
despite the drawbacks pointed out by experts such as finance practitioners (Fagiuoli
et al., 2007). These drawbacks, as Fagiuoli et al. (2007) indicate, include the distribu-
tional assumptions concerning the behaviour of stock prices and the arbitrariness that
the selection of a distribution class may cause. Models within the Capital Growth The-
ory, such as the one by Cover (1996), address these issues using OLPS algorithms. Such
an approach manages to obtain portfolios based completely on the sequence of past
prices, with little or no statistical processing. Further progress within this school of PS
continued to enhance these approaches, and today we can find a variety of state-of-
the-art PS strategies and approaches powered by machine learning algorithms (Li and
Hoi, 2014). These PS approaches are classified into four tiers that are ’Follow-the-Winner’,
’Follow-the-Loser’, ’Pattern-Matching Approaches’, and ’Meta-Learning Algorithms’.

2.3 | Online Portfolio Selection Algorithms
Throughout our study, we aim to use a number of standard benchmarks in the form of
online portfolio selection (OLPS) approaches to evaluate the performance of our DRL
models. This is in line with related studies such as those done by Patel (2018), Vogiatzis
(2019), Li and Peng (2019), Ye et al. (2020), Kanwar (2019), and Jiang and Liang (2018).
In this section, these algorithms are identified and described.
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2.3.1 | Problem Setting
OLPS algorithms typically model the PS problem as a financial market with m assets
and a series of n trading steps, each consisting of wealth distributed over all the assets.
The price relative vector, consisting of m dimensions, represents the portfolio price change
for each trading step. This is defined as xt ∈ Rm

+, t = 1, ..., n, where the tth price relative
vector consists of the ratio of tth closing prices to the previous (t− 1)th. Therefore, the
investment in an asset i during step t is increased (multiplied) by a factor of xt,i Li and
Hoi (2014). Naturally, the investment for the asset would decrease if the factor is less
than 1. The portfolio vector represents the allocation of investment wealth throughout
the trading steps, and is denoted as bt, for the tth portfolio. Therefore, bt,i represents
the ratio of wealth assigned to the ith asset. No negative entries are allowed in the
capital investment, as it is assumed that a portfolio is self-financed Li and Hoi (2014). A
portfolio strategy for n periods can be denoted as: bn

1 = b1, ..., bn. At any period t, the
capital is adjusted according to portfolio bt at the opening time. Then the position is held
until the closing time is met. Therefore the portfolio value, when excluding transaction
costs, increases by a factor of:

bT
t xt =

m

∑
i=1

bt,ixt,i (2.1)

Due to the multiplicative increase of portfolio wealth, from period 1 to n, a portfolio
strategy bn

1 increases the initial wealth, S0, by a factor of ∏n
t=1 b>xt. Therefore, the cu-

mulative wealth and exponential growth rate are formulated as follows, respectively:

Sn(bn
1 ) = S0

n

∏
t=1

b>xt = S0

n

∏
t=1

m

∑
i=1

bt,ixt,i (2.2)

Wn(bn
1 ) =

1
n

log Sn(bn
1 ) =

1
n

n

∑
t=1

log bt ẋt (2.3)

The portfolio managers’ goal is to produce a portfolio strategy bn
1 , that is computed in a

sequential fashion in order to achieve certain targets, such as maximising the portfolio
cumulative wealth Sn (Li and Hoi, 2014).

2.3.2 | OLPS used as baselines in Recent Literature
To evaluate the performance of their DRL portfolio optimisation models, a number of
recent related studies implement OLPS algorithms and execute them on their portfolio
management environment. This allowed them to compare their results on a number
of criteria. Notably, Patel (2018) makes use of Online Moving Average Reversion (OL-
MAR), and Online Newton Step (ONS). Vogiatzis (2019) makes use of an equal-weighted
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portfolio, reminiscent of Uniform Constant Rebalanced Portfolios (UCRP). Kanwar (2019)
also makes use of UCRP. Li and Peng (2019) make use of Passive Aggressive Mean Re-
version (PAMR), OLMAR, and Weighted Moving Average Mean Reversion (WMAMR). Ye
et al. (2020) make use of OLMAR and WMAMR. Jiang and Liang (2018) make use of
long list of baselines, including UCRP, OLMAR, PAMR, WMAMR, Robust Median Rever-
sion (RMR), ONS, Universal Portfolios (UP), and Exponential Gradient (EG). All of these
OLPS baselines are discussed in the following sections in this chapter. Additionally, we
also include the Best Constant Rebalanced Portfolio (BCRP) which is a constant rebalanced
portfolio achieving the highest wealth in hindsight.

2.3.3 | Online Portfolio Selection Baselines
The first pair of OLPS algorithms discussed are Uniform Constant Rebalanced Portfolio
(UCRP) and Best Constant Rebalanced Portfolio (BCRP).

2.3.3.1 | Uniform Constant Rebalanced Portfolios (UCRP)

Constant Rebalanced Portfolios (CRP) is a strategy that utilises fixed proportions on asset
weights and rebalances the portfolio wealth at the beginning of every period based on
that proportion. As Li and Hoi (2014) indicate, the portfolio strategy can be represented
as bn

1 = {b, b, ...}. The cumulative portfolio wealth achieved by a CRP strategy after n
periods is therefore defined as:

Sn(CRP(b)) =
n

∏
t=1

b>xt (2.4)

A CRP strategy with fixed proportions where b = ( 1
m , ..., 1

m ) is called Uniform Constant
Rebalanced Portfolios (UCRP).

2.3.3.2 | Best Constant Rebalanced Portfolio (BCRP)

Utilising a hindsight strategy, it is possible to calculate an optimal CRP. This is what is
known as the Best Constant Rebalanced Portfolio (BCRP) (Li and Hoi, 2014).

b∗ = arg max
bn∈4m

log Sn(CRP(b)) = arg max
b∈4m

n

∑
t=1

log(b>xt) (2.5)

The final cumulative portfolio wealth and corresponding exponential growth rate achieved
by BCRP is defined as:

Sn(BCRP) = max
b∈4m

Sn(CRP(b)) = Sn(CRP(b∗)) (2.6)

12



Chapter 2. Background & Literature Review 2.3. Online Portfolio Selection Algorithms

Wn(BCRP) =
1
n

log Sn(BCRP) =
1
n

log Sn(CRP(b∗)) (2.7)

2.3.4 | Follow the winner
The ’Follow-the-Winner’ PS approach aims to asymptotically achieve the same growth
rate as that of an optimal strategy, often based on the Capital Growth Theory. This is
characterised by increasing the relative weights of more successful assets at set periods
(Li and Hoi, 2014).

2.3.4.1 | Exponential Gradient (EG)

One strategy considered in this field is Exponential Gradient (EG), proposed by Helmbold
et al. (1996, 1998) based on the algorithm previously proposed for mixture estimation
problem (Helmbold et al., 1997). This strategy focuses on the following optimisation
problem:

bt+1 = arg max
b∈4m

η log b · xt − R(b, bt) (2.8)

where R(b, bt) denotes a regularisation term and η > 0 is the learning rate. One straight-
forward interpretation of the optimisation is to track the stock with the best performance
in last period but keep the new portfolio close to the previous portfolio. This is obtained
using the regularisation term R(b, bt). The one key parameter for EG, the learning rate,
has to be small to achieve the desired performance. However, as η −→ 0, its update
approaches uniform portfolio. Due to this the EG reduces to UCRP (Li and Hoi, 2014).

2.3.4.2 | Universal Portfolios (UP)

Another strategy belonging to this field is Universal Portfolios (UP) proposed by Cover
(1996). The strategy is coined the name µ-Weighted Universal Portfolio, µ denoting the
distribution on the space of valid portfolio4m. As Li et al. (2012) describe, this strategy
can be interpreted as a historical performance weighted average of all valid constant
rebalanced portfolios.

bt+1 =

∫
4m

bSt(b)dµ(b)∫
4m

St(b)dµ(b)
(2.9)

At the beginning of period (t+ 1), one CRP manager’s portfolio value is equal to St(b)dµ(b).
The final portfolio value is the weighted average of CRP managers’ wealth (Cover,
1996).

Sn(UP) =
∫
4m

Sn(b)sµ(b) (2.10)
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2.3.5 | Follow the loser
’Follow-the-Loser’ approaches are associated with the use of a mean-reversion strategy,
in which wealth is transferred from winning assets to losers. Although contradictory,
oftentimes this approach achieves significantly better performance than the former (Li
and Hoi, 2014). Some strategies that follow this principle include Passive Aggressive
Mean Reversion (PAMR) (Li et al., 2012), Online Moving Average Reversion (OLMAR) (Li
and Hoi, 2012), Weighted Moving Average Mean Reversion (WMAMR) (Gao and Zhang,
2013), and Robust Median Reversion (RMR) (Huang et al., 2016).

2.3.5.1 | Passive Aggressive Mean Reversion (PAMR)

The main concept behind PAMR is the design of a loss function which reflects the mean
reversion property (Li et al., 2012). Therefore, the loss will linearly increase if the ex-
pected return based on last price relative is larger than a threshold. Otherwise, the loss
is zero. In particular, the ε-insensitive loss function for the tth period is defined as,

`ε(b; xt) =

0 b · xt ≤ ε

b · xt − ε otherwise
(2.11)

where 0 ≤ ε ≤ 1 is a sensitivity parameter to control the mean reversion threshold
(Li et al., 2012). The next portfolio weights are obtained via the following optimisation
problem, which aims to reduce the loss.

bt+1 = arg min
b∈4m

1
2
||b− bt||2 s.t. `ε(b; xt) = 0 (2.12)

The base idea of the strategy described is to exploit the single-period mean reversion.
Due to this, PAMR suffers from drawbacks in risk management stemming from the
possible absence of single period mean reversion (Li and Hoi, 2012).

2.3.5.2 | Online Moving Average Reversion (OLMAR)

Whilst PAMR implicitly assumes single-period mean reversion, OLMAR makes use of a
multiple-period mean reversion in the form of Moving Average Reversion (Li and Hoi,
2012). The single period prediction method could possibly cause failure in certain cases
(Li et al., 2012). The inclusion of simple moving average proved to solve this issue (Li
and Hoi, 2012). The corresponding next price relative is therefore calculated as follows,

x̂t+1(w) =
MAt(w)

pt
=

1
w

(
1 +

1
xt

+ ... +
1

�w−2
i=0 xt−i

)
(2.13)
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where p is the price vector that corresponds to the related x, w is the window size and
� denotes element-wise product (Li and Hoi, 2012).

2.3.5.3 | Weighted Moving Average Mean Reversion (WMAMR)

WMAMR is an OLPS approach created by Gao and Zhang (2013), that exploits the prop-
erty of mean reversion during the recent window of time instead of single period mean
reversion seen in PAMR. Due to this, WMAMR is very similar to OLMAR conceptually,
but WMAMR also aims to reduce computational complexity. Gao and Zhang (2013) do
this by making use of the weighted arithmetic average of stock price relative. This is
defined as:

x̃t+1 =
w

∑
i=1

ωixt−i+1 (2.14)

where (ω1, ..., ωw) is a weighted vector. The optimisation problem proposed in this ap-
proach is an approximate solution of Equation 2.12 using standard techniques from con-
vex analysis:

bt+1 = bt − τt(x̃t − ¯̃xt · 1) (2.15)

where ¯̃xt =
x̃t·1
m is the mean of the tth stock price relative and denotes the market return,

and τt is computed as:

τt = max
{

0,
`1,ε

||x̃t − ¯̃xt · 1||2

}
(2.16)

2.3.5.4 | Robust Median Reversion (RMR)

RMR was created by Huang et al. (2016) to reduce estimation errors found in alternate
mean reversion strategies, caused by noise in the data. RMR explicitly estimates next
price vector via robust L1-median estimator at the end of tth period, that is, p̂t+1 =

L1medt+1(w) = µt+1, where w is a window size, and µ is calculated by solving Fermat-
Weber problem (Weber, 1929):

µt+1 = arg min
µ

w−1

∑
i=0
||pt−i − µ|| (2.17)

L1-median is the point with minimal sum Euclidean distance to k given price vectors.
Therefore, the expected price relative with the estimator described becomes:

x̂t+1(w) =
L1medt+1(w)

pt
=

µt+1

pt
(2.18)

Then RMR follows the similar portfolio optimisation method as OLMAR to learn an
optimal portfolio (Li et al., 2012).

15



Chapter 2. Background & Literature Review 2.4. Reinforcement Learning

2.3.6 | Meta-Learning
Whilst the previously discussed approaches focus on a single strategy, Meta-Learning
Algorithms use a combinatorial approach, where multiple strategies are amalgamated
(Li and Hoi, 2014).

2.3.6.1 | Online Newton Step (ONS)

One example of a Meta-Learning approach is Online Newton Step (ONS), created by
Agarwal et al. (2006). The algorithm takes three parameters, β and η for theoretical
analysis, and δ as a heuristic tuning parameter. A uniform portfolio p1 = 1

n 1 is utilised
on the first period. For the rest of the periods, a Newton-based strategy is put to play:

pt =
At−1

∏
Sn

(δA−1
t−1bt−1) (2.19)

where:

bt−1 =

(
1 +

1
β

) t−1

∑
r=1
5[logτ(pτ · rτ)], (2.20)

At−1 =
t−1

∑
r=1
−52 [log(pτ · rτ)] + In, (2.21)

and ∏At−1
Sn

is the projection in the norm induced by At−1. n is the number of stocks. t is
the trading period (t = 1, ..., T). rt is the price relative vector for a trading period. pt is the
portfolio on day t, taking the form of a distribution on the n stocks. This is a point in the
n-dimensional simplex Sn.

2.4 | Reinforcement Learning
‘RL is the learning what to do - how to map situations to actions - so as to
maximise a numerical reward signal‘ (Sutton and Barto, 1999)

Reinforcement learning makes use of evaluative feedback, which tells one how well they
achieved your goal (Sutton and Barto, 1999). In contrast, the feedback received in su-
pervised learning is instructive telling one how to achieve their goal (Sutton and Barto,
1999). The two most important distinguishing features of RL are:

� Trial-and-error: The learner must discover which actions generate the greatest re-
wards by trying them.
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� Delayed reward: Actions completed by the learner, in some cases, might not nec-
essarily have an immediate reward but a delayed one, achieved in future steps
(Sutton and Barto, 1999).

RL aims to maximise a reward signal instead of finding hidden structures in unlabelled
data (Sutton and Barto, 1999). RL algorithms have been successfully applied in a variety
of applications, such as video games (Mnih et al., 2015, 2016), board games (Lillicrap
et al., 2016), and robotics (Henderson et al., 2018).

2.4.1 | Markov Decision Process
Reinforcement Learning is typically modelled as a Markov Decision Process (MDP).
An MDP is a directed graph with state nodes, S, action nodes A, and directed edges
connecting states to actions and actions to states (Greaves, 2017). To understand the role
of the state and action nodes, we borrow a figure by Greaves (2017) providing a basic
example of an MDP (Figure 2.1).

Figure 2.1: A simple MDP (Greaves, 2017).

Starting from Do not understand state, one has two possible actions. These are Study or
Don’t Study. The Don’t Study option, when chosen, has a 100% chance to send one back
to the initial state. On the other hand, the study state, has only a 20% chance of leading
one back to the initial state, and an 80% chance leading towards the Understand state.
The goal of RL is to learn how to spend more and more time within the most valuable
states. For valuable states, rewards are included in state transitions MDP (Figure 2.2)
(Greaves, 2017).
In Figure 2.2, negative rewards are received when transitioning to the Hungry state,
and a considerable negative reward is received when transitioning to the Starving state.
Transitioning into the Full state, however, grants a positive reward.
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Figure 2.2: A simple MDP with rewards (Greaves, 2017).

2.4.2 | Bellman Equation
The Bellman equation is a central element in RL algorithms, allowing for optimal policies
to be found and the value function to be measured Sutton and Barto (1999). The value
function measures how good it is for the agent to be in the current state s. According to
the Bellman equation, the value function is composed of the immediate reward (Rt+1)
and discounted value of successor states (Bellman, 1954). The Bellman equation for
value function is therefore:

v(s) = E
[
Rt+1 + γv(St+1)|St = s

]
(2.22)

where St is the current state, St+1 is the state the agent is moving to, and γ is the discount
value (0 ≤ γ ≤ 1). Given that multiple possible state transitions could be present, the
probability p is included in the equation. Therefore, v(s) is the value of the current
state, which is equal to the summation of the immediate reward, and the value of the
next state v(s′) which is discounted by γ and multiplied by its transition probability p.

A policy is a function which defines the probability distribution over actions for each
state. Therefore, π(a|s) is the probability of the agent taking action a, given policy π.
Furthermore, the state-action value function or Q-Function, measures how good it is for
an action a to be taken on the current state s, given a policy π. This is defined as:

qπ(s, a) = E
[
Rt+1 + γqπ(St+1, At+1)

∣∣St = a, At = a
]

(2.23)

From the above equation for the state-action value function, we can see that it is com-
posed of the immediate reward given on performing a certain action from state s to go to
state s′, added with the discounted value of the state-action value of the s′ with respect
to the action a taken from that state on-wards.
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2.4.3 | Key concepts and terminology
Whereas MDP assumes that a model of the environment is known, RL allows for learn-
ing by experience without the need of knowing the model. The main characteristics of
RL are the environment and the agent that interacts with it. At each step of interaction,
the learning agent senses the state of its environment and must be able to take actions
that affect the state (Kanwar, 2019). In addition, the agent perceives a numerical reward
signal from the environment that represents how good or bad the current environment
state is based on explicit goals (Sutton and Barto, 1999). Figure 2.3 depicts this agent-
environment interaction. At some time step t, the agent is in state st and takes an action

Figure 2.3: RL Setting (Sutton and Barto, 1999).

at. The environment iterates one step forward and replies, giving a new state st+1 and a
reward rt+1 (Sutton and Barto, 1999).

2.4.3.1 | State

A state in RL conveys the current situation of the environment to the agent, allowing
it to choose an action based on it. States can take various forms, consisting from low-
level readings to high-level abstract ones (Sutton and Barto, 1999). The state space, on
the other hand, is the set of all possible states that can be presented to the agent.

2.4.3.2 | Reward and return

RL agents learn to maximise cumulative future reward, which is known as Return R
(Greaves, 2017). Rt is the return from the current time step, defined as:

Rt = rt+1 + rt+2 + rt+3 + rt+4 + ... =
∞

∑
k=0

rt+k+1 (2.24)

However, if we had an infinite series with the equation above, we would end up with
an infinite return. Therefore, this equation would only be considered if we expect the
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series to be episodic, always terminating (Greaves, 2017). Due to this, future cumulative
discounted reward (Equation 2.25) is more commonly used than future cumulative reward.

Rt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + ... =
∞

∑
k=0

γkrt+k+1 (2.25)

where γ is the discount value (0 ≤ γ ≤ 1). According to Greaves (2017), two benefits of
defining return this way are that:

� the return is defined with an asymptotic upper bound, and

� imminent rewards are given greater weight than those received further in the fu-
ture. This is adjusted with the γ value.

2.4.3.3 | Action spaces

Different problems have different environments, and in turn, these allow for various
forms of actions (Kanwar, 2019). The action space is the set of all valid actions in a given
environment. For example, a board game such as Go has a finite set of actions based
on the game rules. This is what is known as a discrete action space. In contrast, other
environments, such as those used for OLPS, have continuous action spaces.

2.4.3.4 | Policies

The policy π determines the behaviour of the RL agent and the action it takes at any
point in time (Sutton and Barto, 1999). Formulated as a function, it takes a state s as
input and returns an action a. Therefore, π(s) −→ a. Our goal in reinforcement learning
is to learn an optimal policy, π∗, which tells us how to maximise return in every state
(Sutton and Barto, 1999).

2.4.3.5 | Exploration and exploitation trade-off

One unique challenge not present in other kinds of machine learning is the trade-off
between exploration and exploitation when taking this action. The dilemma is caused
because pursuing exploration or exploitation exclusively would surely fail at the task.
The agent must explore and try various actions whilst progressively favour those that
appear to provide the greatest reward and value (Sutton and Barto, 1999).

2.4.4 | A Taxonomy of Reinforcement Learning Algorithms
RL algorithms are mainly classified by the concept of providing the agent with access
to a model of the environment. These are called model-free and model-based RL (Liang
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Figure 2.4: Taxonomy of RL Algorithms Kanwar (2019)

et al., 2018). This can be seen in the first branch in Figure 2.4. In this work, we are mainly
concerned with model-free RL due to the dynamic nature of our domain. The behaviour
of the agent is defined by its policy. Two main forms of algorithms are described as On-
Policy and Off-Policy, creating two varieties of model-free RL. Policy Optimisation, and
Q-learning are two approaches that represent and train agents with model-free RL, and
are almost always done on-policy and off-policy, respectively (Kanwar, 2019).

2.4.4.1 | Policy Optimisation

Methods in this family represent a policy explicitly as πθ(a|s). They optimise the pa-
rameters θ either directly by gradient ascent on the performance objective J(πθ), or
indirectly, by maximising local approximations of J(πθ) (Kanwar, 2019). An example
of a performance objective is to maximise the expected return, J(πθ) = E

r∼πθ

[R(r)].

Since these are on-policy, each update only uses data collected while acting according
to the most recent version of the policy. In most cases, approximator Vφ(s) for the on
policy value function Vπ(s) is learned to discover how to update the policy Kanwar
(2019). Algorithms in this model-free, on-policy branch of RL include Actor Critic Meth-
ods (A2C/A3C) (Kang et al., 2018), which performs gradient ascent to directly maximise
performance, and Proximal Policy optimisation (Schulman et al., 2017), whose updates in-
directly maximise performance, by instead maximising a surrogate objective function
that gives a conservative estimate for how much J(πθ) will change as a result of the
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update (Kanwar, 2019).

2.4.4.2 | Q-learning

In Q-learning, on the other hand, an agent learns optimal policy with the help of a
greedy policy and behaves using the policies of other agents. The updated policy is
different from the behaviour policy, making Q-Learning off-policy (Sutton and Barto,
1999). An approximator Qθ(s, a) for the optimal action-value function, Q∗(s, a), is learned
using an objective function based on the Bellman equation (Bellman, 1954). An example
of a Q-Learning method is Deep Q-Network.

2.4.4.3 | Interpolating Between Policy Optimisation and Q-Learning

These are standard approaches discussed in papers, but alternate and combinatorial
methods exist. These algorithms attempt to balance the trade-off between the strengths
and weaknesses of both branches (Kanwar, 2019). Two such algorithms are DDPG (Sil-
ver et al., 2014) and TD3 (Fujimoto et al., 2018).

2.5 | Deep Reinforcement Learning
DRL is the combination of RL with Deep Learning from Deep Artificial Neural Net-
works (DANNs), extending to tasks with high-dimensional input and action spaces
(Khadka et al., 2019). Tasks with these qualities would consist of a large state space,
making approaches such as Q-learning not viable. This is resolved with a function ap-
proximator by using DANNs. These are discussed in Section 2.6. DANNs are able to
handle more complex environments due to the inclusion of additional hidden layers
within the ANN, and hence when applied to RL, this allows it to be applied to larger
problems (Henderson et al., 2018). This is visualised in Figure 2.5. Deep learning (DL)
has witnessed its rapid progress in speech recognition (Noda et al., 2015) and image
identification (Liu et al., 2020), and has shown its capability to capture complex, non-
linear patterns (Liang et al., 2018). Despite these being very powerful algorithms, they
are not without their challenges. Khadka et al. (2019) describe three major challenges
found when applying such algorithms to a real-world problem. First, in many real-
life scenarios, rewards are an uncommon occurrence. This is often referred to as the
temporal credit assignment problem (Sutton and Barto, 1999). Also, a lack of diverse
exploration done with a DRL algorithm may cause premature converging, and finally,
such methods tend to be sensitive to the choice of their hyperparameters (Henderson
et al., 2018).
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Figure 2.5: DRL Setting from Hu and Lin (2019).

2.5.1 | Deep Deterministic Policy Gradient (DDPG)

DDPG and its variants have been frequently used for this problem domain in recent
literature (Gran, 2019; Hegde et al., 2019; Kanwar, 2019; Zhang et al., 2020). DDPG is
an algorithm devised by Google DeepMind (Lillicrap et al., 2016; Silver et al., 2014)
to tackle the continuous action space problem. It is a policy gradient based algorithm
which makes use of a stochastic behaviour policy to aid exploration but estimates a de-
terministic target policy. This, as Lillicrap et al. (2016) describe, facilitates the learning
process. The algorithm concurrently learns a Q-function and a policy, as off-policy data
and the Bellman equation are used to learn the Q-function, and in turn, the Q-function
is used to learn the policy. In their second experiment concerned with continuous re-
inforcement learning, Silver et al. (2014) compare the deterministic approach against its
stochastic counterpart using standard reinforcement learning benchmark environments
of the time (mountain car, pendulum and 2D puddle world). Likewise, in (Lillicrap
et al., 2016), their DDPG approach is implemented on standard reinforcement learning
benchmark environments to be adequately compared to other approaches. In contin-
uous spaces, actions are real-valued vectors (Kanwar, 2019). Implementing Q-learning
for such an action space is intractable when the said action space is large, due to the
"curse of dimensionality", which implies that with a fixed number of training samples,
predictive power first increases steadily along with the number of dimensions or fea-
tures used. However, beyond a certain number of dimensions, predictive power instead
starts deteriorating (Liang et al., 2018; Trunk, 1979). Overestimation bias is a property
of Q-learning in which the maximisation of a noisy value estimate induces a consistent
overestimation (Thrun and Schwartz, 1993).

The creation of DDPG was inspired by the advancements in Deep Q-network (DQN)
methodologies, and thus is closely connected to DQN. If the optimal action-value func-
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tion Q∗(s, a) is known, with any given state the best action a∗(s) can be found.

a∗(s) = arg max
a

Q∗(s, a) (2.26)

To compute the max over actions maxa Q∗(s, a) in a continuous action space, the func-
tion Q∗(s, a) is presumed to be differentiable with respect to he action argument. This
way an efficient, gradient-based learning rule for a policy µ(s) can be set up making use
of this approximation (Kanwar, 2019).

max
a

Q(s, a) ≈ Q(s, µ(s)) (2.27)

The Bellman equation for the optimal action-value function Q∗(s, a) is defined as:

Q∗(s, a) = E
s′∼P

[r(s, a) + γ max
a′

Q∗(s′, a′)] (2.28)

where s′ ∼ P is the next state s′ sampled from the environment from a distribution
P(.|s, a). Equation (2.28) is the starting point for learning an approximator Q∗(s, a). Let
us consider a scenario with a Predictor in the form of a neural network Qφ(s, a), where
φ are its parameters and a collected set of transitions D consisting of (s, a, r, s′, d). Here,
d is an indicator on whether s’ is terminal with a Boolean, 0 or 1 signal. A mean-squared
Bellman error (MSBE) function tells us roughly how closely Qφ comes to satisfying the
Bellman equation. The aim is to minimise this MSBE during training.

L(φ, D) = E
(s,a,r,s′,d)∼D

[(
Qφ(s, a)−

(
r + γ(1− d)max

a′
Qφ(s′, a′)

))2]
(2.29)

2.5.1.1 | Experience replay

As in DQN, DDPG makes use of a replay buffer. These models train using mini-batches
to sample experience to update neural network parameters and use a Replay Buffer.
The frameworks cannot optimise a sequential decision process in an on-policy way. In-
stead, data has to be independently distributed. The replay buffer is a finite-sized cache
on which tuples, consisting of this state, action, reward and the next state, are stored
(Lillicrap et al., 2016). When full, the oldest samples are discarded. The actor and critic
are updated at each timestep by sampling a mini-batch uniformly from the buffer.

2.5.1.2 | Target networks

The aim of minimising the MSBE loss, is to make the Q-function be more like the target.

r + γ(1− d)max
a′

Qφ(s′, a′) (2.30)
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The target depends on the same parameters we are trying to train, φ, which makes
MSBE minimisation unstable. A solution to this is to utilise a set of parameters. These
come close to φ but with a time delay via a target network. The parameters of the target
network are denoted as φtarg. In DDPG, the target network is updated once per main
network update by Polyak averaging (Polyak and Juditsky, 1992).

φtarg ← pφtarg + (1− p)φ (2.31)

where p is a hyperparameter between 0 and 1, but is usually set close to 1. Therefore,
the formula for calculating MSBE loss L(φ, D) in Figure (2.29) can be adjusted:

E
(s,a,r,s′,d)∼D

[(
Qφ(s, a)−

(
r + γ(1− d)Qφtarg(s

′, µθtarg(s
′))
))2]

(2.32)

where µθtarg is the target policy.

2.5.1.3 | Exploration vs. Exploitation

From the policy learning side, DDPG aims to learn a deterministic policy µθ(s) which
gives the action that maximises Qφ(s, a). Due to the action space being continuous and
the Q-function is differentiable with respect to action, one can simply perform gradient
ascent.

max
θ

E
s∼D

[
Qφ(s, µθ(s))

]
(2.33)

where the Q-function parameters are treated as constants.
Noise is added to the actions at training time to enhance the DDPG policy explo-

ration. The Ornstein-Uhlenbeck method (Uhlenbeck and Ornstein, 1930) is generally
the chosen one to generate noise in literature (Lillicrap et al., 2016). The pseudocode for
the DDPG framework is defined in Algorithm 1.

2.5.2 | Overestimation Bias
If the target being estimated (Equation 2.30) is susceptible to error ε, the maximum over
the value along with its error will be of a greater value than the true maximum (Thrun
and Schwartz, 1993). Due to this, even initially, value updates resulting in consistent
overestimation bias can be caused by a zero-mean error. This would then be propa-
gated onward through the Bellman equation. This is problematic as errors induced by
function approximation are unavoidable. Despite the minimal nature that the overes-
timation may have, two concerns are raised by the presence of error (Fujimoto et al.,
2018). These are the potential of overestimation developing into more significant bias as
training episodes go by, and poor policy updates due to inaccurate value estimates.
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Algorithm 1 DDPG (Lillicrap et al., 2016; Silver et al., 2014)

1: Randomly initialise critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ and
θµ.

2: Initialise target network Q′ and µ′ with weights θQ′ ← θQ, θµ′ ← θµ

3: Initialise replay buffer R
4: for episode = 1, M do
5: Initialise a random process N for action exploration
6: Receive initial observation state s1
7: for t=1, T do
8: Select action at = µ(st|θµ) + Nt according to the current policy and explo-

ration noise
9: Execute action at and observe reward rt and observe new state st+1

10: Store transition (st, at, rt, st+1) in R
11: Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
12: Set yi = ri + γQ′(si+1, µ′(si+1|θµ′)|θQ′)
13: Update critic by minimising the loss: L = 1

N ∑i(yi −Q(si, ai|θQ))2

14: Update the actor policy using the sampled policy gradient:
15: 5θµ J ∼ 1

N ∑i5aQ(s, a|θQ)|s=si ,a=µ(si)5θµ µ(s|θµ)|si

16: Update the target networks:
17: θQ′ ← rθQ + (1− r)θQ′

18: θµ′ ← rθµ + (1− r)θµ′

19: end for
20: end for

2.5.3 | Twin Delayed Deep Deterministic Policy Gradient (TD3)
TD3 (Fujimoto et al., 2018) is a DRL model which combines Policy gradient, Actor-
Critics, and continuous Double Deep Q-Learning (Dankwa and Zheng, 2019). TD3
builds on top of Double Q-Learning (as seen in (Patel, 2018)) to reduce overestimation
bias in Deep Q-Learning. Fujimoto et al. (2018) perform an experiment to prove that the
theoretical overestimation occurs in practice when training DDPG models, and that al-
though Double Q-Learning is more effective than conventional Q-Learning, it still does
not eliminate overestimation bias. In their approach, they overcome this by making use
of a novel method, Clipped Double Q-learning Van Hasselt (2010), to replace the critic in
the actor-critic framework. This method is found to decrease significantly the overesti-
mation done by the critic (Fujimoto et al., 2018). Fujimoto et al. (2018) introduce a new
DRL framework, TD3, utilising this alternate method described, along with Delayed Pol-
icy Updates and Target Policy Smoothing Regularisation. The proposed TD3 framework
is compared with a variety of alternate frameworks, including DDPG, on a number of
OpenAI gym environments. The results acquired can be seen in Figure 2.6 and Table 2.1.
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Figure 2.6: Learning curves achieved by the DRL models during training on OpenAI
gym continuous control tasks. The shaded regions represent half a standard deviation
of the average evaluation over ten trials (Fujimoto et al., 2018). The ’our DDPG’ frame-
work is a separate implementation of DDPG by Fujimoto et al. (2018) in which the critic
receives both the state and action as input to the first layer.

Environment TD3 DDPG Our DDPG PPO TRPO ACKTR SAC
(Fujimoto) (Fujimoto)

HalfCheetah 9636.95 ± 859.065 3305.60 8577.29 1795.43 -15.57 1450.46 2347.19
Hopper 3564.07 ± 114.74 2020.46 1860.02 2164.70 2471.30 2428.39 2996.66
Walker2d 4682.82 ± 539.64 1843.85 3098.11 3317.69 2321.47 1216.70 1283.67
Ant 4372.44 ± 1000.33 1005.30 888.77 1083.20 -75.85 1821.94 655.35
Reacher -3.60 ± 0.56 -6.51 -4.01 -6.18 -111.43 -4.26 -4.44
InvPendulum 1000.00 ± 0.00 1000.00 1000.00 1000.00 985.40 1000.00 1000.00
InvDouble-
Pendulum 9337.47 ± 14.96 9355.52 8369.95 8977.94 205.85 9081.92 8487.15

Table 2.1: TD3 results obtained by Fujimoto et al. (2018). The table consists of the max-
imum average return over 10 trials of 1 million time steps. ± corresponds to a single
standard deviation over trials (Fujimoto et al., 2018).

Further Studies done by Dankwa and Zheng (2019) compare TD3 to DDPG, Proximal
Policy Optimisation (PPO), Trust Region Policy Optimisation (TRPO), Actor-Critic us-
ing Kronecker-factored Trust Region (ACKTR) and Soft Actor-Critic (SAC) on the Mu-
JoCo pybullet continuous control environment. The TD3 model achieved a higher Aver-
age Reward when compared to the other state-of-the-art models (Dankwa and Zheng,
2019). Many have opted for this framework over others in various other domains re-
quiring continuous control, including Li and Yu (2020) and MacHalek et al. (2020). Li
and Yu (2020) utilise TD3 in their framework to potentially improve both control per-
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formance and economy in a power grid with multiple continuous power disturbances.
MacHalek et al. (2020) consider DDPG, TD3 and PPO techniques for dynamic economic
optimisation of a continuously stirred tank reactor. In their results, all of the techniques
mentioned above effectively optimise the system, but only TD3 demonstrated conver-
gence to a near-optimal solution in the training curves.

2.5.3.1 | Clipped Double Q-Learning for Actor-Critic

As Fujimoto et al. (2018) indicate, several approaches have been proposed to reduce
overestimation bias but are found to be ineffective in an actor-critic setting. A variant of
Double Q-learning (Van Hasselt, 2010), Clipped Double Q-learning, is introduced by Fuji-
moto et al. (2018) to replace the critic in any actor-critic method. In Double Q-learning,
two separate value estimates are maintained. Each of these is used to update the other.
With independent value estimates, unbiased estimates of the actions selected using the
opposite value estimate can be made (Fujimoto et al., 2018). Double DQN, created by
Van Hasselt et al. (2016), makes use of the target network as one of the two value es-
timates, to then obtain a policy by greedy maximisation of the current value network
instead of the target network. Therefore, in an actor-critic setting, analogous updates in
the learning target make use of the current policy rather than the target policy:

y = r + γQθ′(s′, πφ(s′)) (2.34)

where r is the reward received, s′ is the new state of the environment, γ is a discount
factor determining the priority of short-term rewards, πφ is the optimal policy with
parameters φ, and Qθ′ is the function approximator with parameters θ. In their study,
Fujimoto et al. (2018) find that within their actor-critic model, the current and target
networks were too similar and thus did not offer much improvement.

The original Double Q-learning formulation consists of a pair of actors (πφ1 , πφ2) and
critics (Qθ1 , Qθ2), where πφ1 is optimised with respect to Qθ1 and πφ2 with respect to Qθ2 :

y1 = r + γQθ′2
(s′, πφ1(s

′))

y2 = r + γQθ′1
(s′, πφ2(s

′))
(2.35)

In (Fujimoto et al., 2018), Double Q-learning is found to be more effective than Double
DQN but does not eliminate the overestimation bias. Moreover, Fujimoto et al. (2018)
note that the critics are not entirely independent, as the learning targets use the opposite
critic and the same replay buffer. This, in turn, may cause the overestimation to be
exaggerated in certain areas of the state space.
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Clipped Double learning addresses this problem with an upper-bound on the less bi-
ased value estimate Qθ2 by the biased estimate Qθ1 . Therefore the minimum between
the two estimates is chosen to give the target update:

y1 = r + γ min
i=1,2

Qθ′i
(s′, πφ1(s

′)) (2.36)

This way, the value target cannot introduce any additional overestimation over the stan-
dard Q-learning target. In turn, it may induce some element of underestimation bias,
which is preferable to overestimation bias. This is due to underestimated actions not
explicitly propagated through the policy update.

2.5.3.2 | Delayed Policy Updates

The work done by Fujimoto et al. (2018) shows how the growth error discussed can
be reduced with a stable target. The learning behaviour with and without the target
networks is examined on both the critic and the actor. The results suggest that failure
may occur in the interplay of the updates done by the actor and critic. A value estimate
would deviate because of overestimation with a poor policy, and in turn, the policy
would become poor due to inaccurate value estimates (Fujimoto et al., 2018). Due to
this, Fujimoto et al. (2018) suggests that the policy network would be updated at a lower
frequency than that of the value network to first minimise error before introducing a
policy update. This is done with a modification which allows the update of the policy
and target networks to be done only after a fixed number of updates d to the critic,
and updating the target networks slowly θ′ ← rθ + (1− r)θ′. By delaying the policy
updates, repeating updates with respect to an unchanged critic are avoided.

2.5.3.3 | Target Policy Smoothing Regularisation

Deterministic policies are known to occasionally overfit to narrow peaks in the value
estimate, due to their high susceptibility to inaccuracies caused by function approxi-
mation error. Regularisation can be used to reduce the target variance induced by the
approximation error. Fujimoto et al. (2018) introduces a regularisation strategy within
the TD3 framework, called target policy smoothing. Target policy smoothing is very
similar to the learning update from SARSA (Sutton and Barto, 1999), and enforces the
idea that similar actions should have similar value. By modifying the training proce-
dure, the relationship between actions with similarities can be created. Fujimoto et al.
(2018) propose that fitting the value of a small area around the target action would have
the benefit of smoothing the value estimate by bootstrapping similar state-action value
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estimates.
y = r + Eε[Qθ′(s′, πφ′(s′) + ε)] (2.37)

This expectation over actions can be approximated in practice, with the addition of ran-
dom noise to the target policy and averaging over mini-batches. The modified target
update is as below:

y = r + γQθ′(s′, πφ′(s′) + ε),
ε ∼ clip(N(0, σ),−c, c)

(2.38)

where the added noise is clipped to keep the target in a small range. The full pseudocode
for TD3 is available in Algorithm 2.

Algorithm 2 TD3 (Fujimoto et al., 2018)

1: Initialise critic networks Qθ1 , Qθ2 , and actor network πφ with random parameters
θ1, θ2, φ

2: Initialise target networks θ′1 ← θ1, θ′2 ← θ2, φ′ ← φ
3: Initialise replay buffer B
4: for t = 1 to T do
5: Select action with exploration noise a ∼ π(s) + ε, ε ∼ N(0, σ) and observe re-

ward r and new state s′

6: Store transition tuple (s, a, r, s′) in B
7: Sample mini-batch of N transition (s, a, r, s′) from B
8: ã← πφ′(s) + ε, ε ∼ clip (N(0, σ̃),−c, c)
9: y← r + γ mini=1,2 Qθ′i

(s′, ã
10: Update critics θi ← minθi N−1 ∑(y−Qθi(s, a))2

11: if t mod d then
12: Update φ by the deterministic policy gradient:
13: 5φ J(φ) = N−1 ∑5aQθ1(s, a)|a=πφ(s)5φ πφ(s)
14: Update target networks:
15: θ′i ← rθi + (1− r)θ′i
16: φ′ ← rφ + (1− r)φ′

17: end if
18: end for
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2.6 | Deep Learning & Function Approximators

2.6.1 | Background on Neural Networks
An ANN consists of simple processing units called neurons, and the weighted connec-
tions between them (wij, where i and j are neurons). Data is transferred between neurons
through these connections, with the corresponding connecting weight being either ex-
citatory or inhibitory (Patterson and Gibson, 2017). A neuron j receives the outputs
(oi, ..., oin ) of other neurons (i1, i2, ..., in) which are connected to it, and are passed to the
propagation function. This transforms them according to the connecting weights wij into
the network input net j. This can be further processed by the activation function. The
weighted sum is an example of one such propagation function:

netj = ∑
i∈I

(oi · wij) (2.39)

Figure 2.7: Data processing of a neuron. The activation function of a neuron implies the
threshold value. (Kriesel, 2007)

The reactions of the neurons to the input values depend on the activation state (aj on
neuron j), which indicates the extent of the neuron’s activity. This is a result of the
activation function. A threshold value Θj is uniquely assigned to a neuron j that marks
the position of the maximum gradient value of the activation function. The activation
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function is defined as:

aj(t) = fact(netj(t), aj(t− 1), Θj) (2.40)

The activation function transforms the network input netj as well as the previous activa-
tion state aj(t− 1) into a new activation state aj(t) (Kriesel, 2007). Unlike the threshold
values, the activation function is often defined globally for all neurons in a layer. Some
examples of activation functions include Sigmoid, Tanh, ReLU, and Softmax (Kriesel,
2007). The activation state may then be processed by an output function. The output
function of a neuron j calculates the values which are transferred to the other neurons
connected to j:

fout(aj) = oj (2.41)

The output function is generally defined globally, and is often set to the identity, which
implies that fout(aj) = aj, so oj = aj.

Neural networks may be designed in various ways using the previously described
neural network elements. Kriesel (2007) describes some of the usual topologies of neural
networks, including Feedforward, Recurrent and Completely linked networks.

2.6.1.1 | Recurrent Networks

The process of a neuron influencing itself is called Recurrence. Recurrent networks do
not necessarily have the input and output neurons explicitly defined. This is why the
neurons are numbered in Figure 2.8 which depicts such a network. The recurrences
present in the network may be direct by having neurons connected to themselves, or indi-
rect by allowing connections directed towards the input layer. Additionally, recurrences
may also be lateral by connecting neurons within the same layer. In such a case, each
neuron generally inhibits the other neurons in the corresponding layer and strengthens
itself, resulting in a winner-takes-all scheme in which only the strongest neuron becomes
active.

2.6.2 | Deep Learning Networks
As Patterson and Gibson (2017) describe, the facets that differentiate deep learning net-
works from the ’canonical’ feedforward multilayer networks consist of:

� Increased number of neurons, to express more complex models.

� More complex connections between neurons, using recurrence and locally con-
nected patches.
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Figure 2.8: Recurring network example from (Kriesel, 2007) with direct recurrence.

2.6.3 | Major Architectures of Deep Networks
Emmert-Streib et al. (2020) review a number of major architectures of deep networks.
These include Deep Feedforward Neural Networks (D-FFNN), Convolutional Neural
Networks (CNNs), Deep Belief Networks (DBNs), Autoencoders (AEs), and Long Short-
Term Memory (LSTM). The latter is a variant of a RNN (briefly described in section
2.6.1.1) created to enhance the handling of long-term dependencies (Hochreiter and
Schmidhuber, 1997). This architecture has proved to be useful for sequential modelling
(Patterson and Gibson, 2017).

2.6.3.1 | Deep Networks in related studies

Due to the complex and non-stationary nature of asset prices, related studies make
use of Deep Network architectures such as D-FFNN (Kanwar, 2019), RNN (Jiang et al.,
2017), CNN (Jiang et al., 2017; Kanwar, 2019; Vogiatzis, 2019) and LSTM (Hegde et al.,
2019; Jiang et al., 2017; Patel, 2018; Zhang et al., 2020), to extract patterns. The latter two
architectures have been most prevalent throughout recent studies, with LSTM having
the most consistent success. On the other hand, although CNN has been successful in
(Jiang et al., 2017), another more recent study by Kanwar (2019) found the performance
of their implementation to be inconsistent. The success of the LSTM architecture in this
domain may be attributed to their ability of sequential modelling and handling of long-
term dependencies (Patterson and Gibson, 2017), and reoccurring patterns in portfolio
assets Li et al. (2012).

2.6.4 | Long Short-Term Memory Neural Networks
The main appeal of RNNs is their ability to connect previous information to the present
task using recurrence (Olah, 2015). LSTMs were built to enhance this ability to handle
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long-term dependencies, which the traditional RNN had lacked (Hochreiter, 1991).

Figure 2.9: The repeating module in a standard RNN contains a single layer (Olah, 2015).

When unrolled, all RNNs take the form of a chain of repeating modules. In standard
RNNs, this recurring module will have a very simple structure, such as a single tanh
layer as depicted in Figure 2.9 (Olah, 2015). In the diagram, A represents a chunk of
the neural network, the corresponding x and h are its input and output, respectively.
LSTMs possess this chain-like structure, but with an enhanced repeating module that
consists of four neural network layers as depicted in Figure 2.10 (Olah, 2015).
An entire vector is carried along each line, linking one node to another, from the output
of the former to the input of the latter. In Figure 2.10, wherever the lines merge, the
vectors are concatenated, and wherever the lines split, the vectors are being copied. The
pink circles inside the middle module are pointwise operations, such as vector addition
and vector multiplication. The yellow boxes, on the other hand, are learned neural
network layers (Olah, 2015).

2.6.4.1 | The Cell State

The cell state acts as a transport highway that flows relative information straight down
the entire chain with only a few linear interactions. This is depicted in Figure 2.11 as a
horizontal line running through the top. One may think of this as the “memory“ of the
network, as it allows information from earlier time steps to make its way to later time
steps.

2.6.4.2 | Gates

The sigmoid functions (σ) in the neural net layer return values between zero and one,
making their neural net layers act as gates that allow or deny information passing into
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Figure 2.10: An LSTM repeating module, consisting of four layers (Olah, 2015).

Figure 2.11: LSTM Cell State (Olah, 2015).

the cell state. Three of such gates are present in an LSTM. These gates are the Forget gate,
Input gate, and Output gate (Olah, 2015). An example of a gate is shown in Figure 2.12.

Figure 2.12: LSTM Gate (Olah, 2015).
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� Forget Gate: Decides what data should be kept or discarded. The result of this
gate is called the forget vector.

� Input Gate: Updates the cell state. This is done by splitting the previous hidden
state and the current input to send one copy to a sigmoid function, which decides
what data is to be updated, and send the second copy to a tanh function, which
normalises the values (−1 <= x <= 1) to regulate the network. The output
of each is multiplied so that the sigmoid function filters the output of the tanh
function. The new cell state is calculated by being multiplied with the forget vector
and then being added with the result from the input gate.

� Output Gate: Sets up what the next hidden state will be. This is done by passing
the previous hidden state and the current input into a sigmoid function. The new
cell state is also passed through a tanh function. The results of the two are mul-
tiplied to calculate the new hidden state. The cell state and the new hidden state
are then passed on to the next time step.

2.7 | Ensemble Reinforcement Learning
An ensemble strategy combines a set of models that aim to solve the same original task
to obtain an optimised model with more accurate and robust estimates or decisions
than can be obtained from a singular model (Rokach, 2006). The idea of building such
a model is not a new one. Ensemble methods could be traced back to as early as 1977
with Tukeys Twicing, which consisted of an ensemble of two linear regression models
(Buhlmann and Yu, 2003).

Combined with RL, ensemble models may be utilised to combine function approx-
imators and create a singular policy. Alternatively, different RL algorithms that learn
separate value functions may have their derived policies combined in a final policy for
the agent (Wiering and van Hasselt, 2008). In their paper, Wiering and van Hasselt
(2008) identify a number of ensemble methods that combine multiple RL algorithms
in a single agent, including Majority Voting, Rank Voting, Boltzmann Multiplication,
and Boltzmann Addition. Majority Voting is one of the simplest ensemble models as it
combines the best action of each algorithm and bases its final decision on the number
of times each algorithm prefers an action. On the other hand, Rank Voting lets each al-
gorithm rank the different actions and combines these rankings to select a final action.
Finally, in Boltzmann Multiplication, Boltzmann exploration (Wiering and van Hasselt,
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2008) is used for each algorithm, and the Boltzmann probabilities for each action com-
puted by the algorithms are multiplied. Similarly, Boltzmann Addition uses Boltzmann
exploration, but the probabilities calculated are added instead of being multiplied.

2.8 | Machine Learning for Portfolio Management
The traditional PS approaches and strategies previously discussed make use of hand-
crafted features, such as moving averages and other technical indicators (Li and Hoi,
2012), which may perform unsatisfactorily due to poor representation abilities (Deng
et al., 2017). Additionally, they assume no transaction cost. This introduces biases
into the estimation of accumulative returns (Ormos and Urbán, 2013). In recent years,
DANNs have shown strong representation abilities in modelling sequence data (Sutskever
et al., 2014). Although extracting sequential price patterns and asset correlations using
such techniques is non-trivial (Zhang et al., 2020), many studies have applied them to
the finance sector such as (Zhang et al., 2020),(Jiang et al., 2017), and (Hegde et al., 2019).

There are a variety of deep machine-learning approaches to financial market trading,
with their goals set to predicting price movements or trends using historical market
data as seen in (Heaton et al., 2017) and (Niaki and Hoseinzade, 2013). With historic
asset close prices as its input, an ANN can output a vector consisting of a prediction
of the next period asset prices. The trading agent is to then act upon this prediction.
Therefore, the problem is a supervised learning or regression one. The unstationary
nature of the financial market makes market prices challenging to predict, impacting the
accuracy of such systems (Jiang et al., 2017). An example of neural network models in
related projects can be seen in (Song et al., 2018), where the five different neural network
models implemented prove to be successful at extracting meaningful information from
past prices. The five neural network models consisted of a backpropagation network,
radial basis function network and a general regression network.

In recent work, portfolio optimisation and stock trading have been attempted with
various ML strategies. These include Deep Learning (Cao and Cao, 2020), DRL (Hegde
et al., 2019; Jiang and Liang, 2018; Li and Peng, 2019), Evolutionary Algorithms (Esta-
layo et al., 2019) and their variations (Hu and Lin, 2019; Ye et al., 2020). Recent studies
such as (Zhang et al., 2020),(Jiang et al., 2017), and (Hegde et al., 2019), utilising DRL
in financial applications have moved away from looking at a discrete action space and
on to a continuous one. Many of these studies make use of DRL frameworks such as
DDPG which provides a model-free ML based approach allowing for continuous states
and action spaces (Gran, 2019).
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2.8.1 | Deep Reinforcement Learning in Portfolio Optimisation
Sato (2019) examines existing model-free RL approaches applied to the portfolio optimi-
sation problem in literature. Sato (2019) also identifies the "Bellman’s curse of dimension-
ality " as a disadvantage present in value-based RL methods such as Q-Learning, when
the state and action spaces are large. This disadvantage causes the exploration done by
the agent to be inefficient. This issue is not present in policy-based RL methods, and
thus they can be applied directly to large continuous domains. However, approximat-
ing the optimal policy with an ANN is difficult and could lead to sub-optimal solutions
mainly due to its instability, sample inefficiency, and sensitivity on the selection of hy-
perparameter values (Sato, 2019).

In the work done by (Silver et al., 2014) and (Lillicrap et al., 2016) DPG and DDPG are
found to significantly outperform their counterparts in high-dimensional action spaces.
These were tested on reinforcement learning benchmark environments, made available
by OpenAI gym MuJoCo (Lillicrap et al., 2016). Some examples of these environments
include, Cartpole, Cheetah and Hopper. In a similar fashion to these examples, the OLPS
problem has a continuous action space. According to Hegde et al. (2019), alternative
DRL methods suffer from challenges of stability and do not lend themselves well to
such a continuous action space. Jiang and Liang (2018) make use of Deterministic Pol-
icy Gradient (DPG) inspired by the work of Silver et al. (2014). In their implementation,
Jiang and Liang (2018) avoid the Q-function estimation and instead use a direct reward
function due to the fact that training two neural networks may be difficult and some-
times even unstable (Jiang and Liang, 2018). Further recent studies in this field, such
as the ones done by Hegde et al. (2019), Zhang et al. (2020), Kanwar (2019), and Gran
(2019) have expanded on top of their work, with more risk-averse approaches (Hegde
et al., 2019; Zhang et al., 2020), focus on asset correlation (Zhang et al., 2020), genetic
algorithms to perform pre-training (Gran, 2019), varieties in neural networks (Kanwar,
2019), and sentiment analysis (Gran, 2019).

Recent related work has been inspired by the research done by Jiang et al. (2017)
which provided a detailed paper and open source code 1. Jiang et al. (2017) presents
a deep reinforcement learning solution to the portfolio management problem. Three
different model varieties of the framework are evaluated. These models vary by the
ANN/Predictor format, which included CNN, RNN and LSTM. These models are eval-
uated along with various online portfolio selection strategies on cryptocurrency market
data with an intra-day trading period of 30 minutes. In all experiments, the profitability
surpasses all those from the traditional portfolio-selection models.

1https://github.com/ZhengyaoJiang/PGPortfolio
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Hegde et al. (2019), inspired by the work of Jiang and Liang (2018) and Lillicrap et al.
(2016), make use of full actor-critic DDPG on S&P500 stocks instead of cryptocurrency
assets. Hegde et al. (2019) make use of this framework to construct a risk-aware portfolio
with higher returns and lower risk compared to a baseline Markowitz approach or to
buy and hold strategies (Hegde et al., 2019). This was mainly achieved by introducing
a cost-sensitive reward in the form of Sortino Ratio (Equation 2.42).

SortinoRatio =
Rp − r f

αd
(2.42)

where Rp is the portfolio return, r f is the risk free rate, and αd is the downside standard
deviation.

In more recent work, Zhang et al. (2020) introduce a DRL model consisting of a
risk-sensitive reward to constrain risk costs. The risk-sensitive reward by defining the
empirical variance of log-return on sampled portfolio data (σ2(r̂t) where r̂2 is the log
return on the t-th period) as the risk penalty. The reward function is defined as follows:

R =
1
T

T

∑
t=1

r̂t − λσ2(r̂t) (2.43)

where λ ≥ 0 is the trade-off hyperparameter, r̂2 is the log return on the t-th period, and
T is the total number of sampled portfolio data. Furthermore, Zhang et al. (2020) include
an asset correlation component in their solution by splitting sequential price pattern and
asset correlation into two different streams in the architecture. Whilst initially consid-
ering using DDPG, Zhang et al. (2020) opt out of using the framework in question due
to the state-action values estimated via Q-network. Zhang et al. (2020) claim that this is
often hard to learn and might fail to converge. Due to this, Policy Gradient framework
is used. Zhang et al. (2020) evaluate their Cost-Sensitive DRL-based PS models, against
a variety of OLPS on custom cryptocurrency datasets. The proposed framework is seen
beating all of the benchmarks used in the study in terms of

� Accumulated Portfolio Value (APV) (Equation 2.44)

APV =
pt

p0
(2.44)

where pt is the final portfolio value and p0 is the initial investment.

� Sharpe Ratio (Equation 2.45)

SharpeRatio =
Rp − r f

α
(2.45)

where Rp is the portfolio return, r f is the risk free rate, and α is the standard devi-
ation.
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� Calmar Ratio (Equation 2.46)

CalmarRatio =
Sn

MDD
(2.46)

where Sn is the accumulated profit, and MDD is the biggest loss from a peak to a
through, known as Maximum Drawdown

MDD =
ThroughValue− PeakValue

PeakValue
(2.47)

To enhance the learning process of their proposed model, Gran (2019) include a pre-
training element using a genetic algorithm which periodically performs selection and
mutation during the training process. Initially, the individuals’ respective positions are
random. Then, for each quarter in the DDPG model training data set, the genetic base
decides what portfolio to hold and perform reproduction with genetic mutation. The
fitness function utilised in the genetic algorithm in question does not comply with the
original objective function but instead aims to help the model obtain a good balance be-
tween exploration and exploitation (Gran, 2019). Their proposed solution also includes
sentiment analysis via Google search data acquired via Google Trends (Gran, 2019). The
solution is evaluated against a Buy and Hold strategy on various datasets acquired from
real stock trading data.

2.8.1.1 | Drawbacks

One of the general issues when implementing RL algorithms is to handle the explore-
exploit dilemma (Sutton and Barto, 1999). Policy Gradient (PG) approaches are known
to have overfitting and converging properties. To overcome overfitting and convergence
to local optimum policies, in (Hegde et al., 2019) the agents’ weights were randomly ini-
tialised at the beginning of each training iteration/epoch. In some studies such as the
one by Kanwar (2019), where PG and DDPG frameworks are compared using D-FFNN
and CNN, the two frameworks were found to be unstable and sensitive to hyperparam-
eters. For example, the learning rate chosen made a great difference in the result and
determined the optimisation. This could also be related to the ’vanishing gradient prob-
lem’ encountered when training the two ANNs described with gradient-based methods
(Kanwar, 2019). Patel (2018) extends DDPG with Double Deep Q-Networks in the critic
function to reduce the overestimation of action-values, and in the future work section
of his paper, explains how his work may be expanded in various ways, including using
Dueling Networks to obtain more accurate critic estimates. This is reminiscent of one of
the enhancements introduced in TD3 (Fujimoto et al., 2018).
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2.8.2 | Ensemble Deep Reinforcement Learning in Portfolio
Optimisation

The study done by Yang et al. (2020) employs an ensemble strategy for automated stock
trading with three different trading agents. Each of these trading agents consists of
a distinct actor-critic based algorithm. These are Proximal Policy Optimisation (PPO),
Advantage Actor-Critic (A2C), and DDPG. The ensemble strategy aims to inherit and
integrate the best features of the three algorithms, thereby robustly adjusting to different
market situations (Yang et al., 2020). The proposed ensemble strategy by Yang et al.
(2020) first trains the three agents, then validates all agents via Sharpe Ratio (Equation
2.45) to find the best model, and finally, the best agent is used for trading.

Figure 2.13: Overview of reinforcement learning-based stock trading strategy by Yang
et al. (2020).

41



Chapter 2. Background & Literature Review 2.9. Conclusion

2.9 | Conclusion
The literature reviewed in the initial phase of our study would suggest that applying
the DDPG framework on our problem domain could be an ideal starting point (Jiang
et al., 2017). Many recent studies, such as the one done by Gran (2019) have applied
such an approach whilst including new innovative elements. All the studies discussed
apply this framework in DRL models on custom stock trading environments using real
stock trading data. They do so using a variety of DANN architectures, with LSTM
showing the most promise. Findings in research done by Fujimoto et al. (2018) show
that the DDPG framework has a successor, TD3, which has been scarcely applied on
the PS domain. The reduction of overestimation bias provided by the framework could
allow for more optimised policies that grant greater long term return (Fujimoto et al.,
2018). Additionally, the agents found in recent related studies make use of combined
features within the state, including Open, Close, High, Low, and Volume (Hegde et al.,
2019). However, more complex features could be introduced to enhance performance,
such as stock movement prediction indicators used in OLPS algorithms (Huang et al.,
2016; Li and Hoi, 2012). Ensemble strategies on RL have been studied (Wiering and van
Hasselt, 2008), and also applied on the PS domain (Yang et al., 2020), albeit very scarcely.
The aim behind the ensemble algorithm proposed by Yang et al. (2020) is to integrate a
number of DRL frameworks to adjust to different market situations. However, alterna-
tive factors could be used to create an ensemble model that reaches this goal, such as
differing state formats.

Therefore, we deduce that it is worth investigating TD3, complex features within the
RL state format, and an ensemble RL approach consisting of models with differing state
formats to solve the portfolio selection problem. In line with related studies such as
those done by Patel (2018), Vogiatzis (2019), Li and Peng (2019), Ye et al. (2020), Kanwar
(2019), and Jiang and Liang (2018) we evaluate the performance of the DRL models
created in our experiments against those of standard OLPS algorithms.
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Methodology

In this chapter, we present our implementations of DDPG and TD3 DRL frameworks
applied to the portfolio selection domain. Our implementations of these DRL frame-
works are based on the corresponding seminal papers, including (Lillicrap et al., 2016)
and (Fujimoto et al., 2018). The DDPG and TD3 models proposed in these studies are
reapplied to interact with a portfolio selection environment, and with an LSTM ANN
predictor. The two frameworks are implemented with similar internal functionality and
parameters, providing a level playing field to allow various experiments. We base the
implementation of our DRL frameworks on the original papers (Fujimoto et al., 2018;
Lillicrap et al., 2016), rather than more recent implementations where they are applied
on the portfolio selection (Hegde et al., 2019; Jiang and Liang, 2018), due to difficulties
in DRL framework replication. Additionally, no related studies using the TD3 frame-
work were observed during our research. Islam et al. (2017) note the difficulty in the
replication of DRL frameworks, and thus the difficulty of benchmarking against previ-
ous studies. This is due to the fact that performance is highly dependent on the choice
of hyperparameters and the stochasticity of the environment (Islam et al., 2017). Unfor-
tunately, recent studies such as (Zhang et al., 2020) and (Hu and Lin, 2019) do not make
the hyperparameters used in their study publicly available. Due to this, multiple pa-
pers, such as (Lillicrap et al., 2016) and (Fujimoto et al., 2018) opt-out of replicating the
work from previous papers and instead utilise standard OpenAI gym environments 1

allowing for comparison of results. Throughout our research, no standard stock trading
or portfolio selection environment has been identified. Due to this, we implement a cus-
tom portfolio selection environment, in line with other work Hegde et al. (2019); Jiang
et al. (2017). With a custom portfolio selection environment, the results obtained cannot
be directly compared against recent related studies. Although this made it difficult to

1https://gym.openai.com/
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compare results with studies such as (Zhang et al., 2020) and (Hu and Lin, 2019), we
aimed to use standard models described in Section 2.3 as benchmarks to validate our
results. All the standard models are tabulated along with their references in Table 3.3.
In this chapter, we discuss and describe all the elements leading to the implementation
of the custom environment to allow for its reproduction.

As discussed in Section 2.3.2, various observed studies related to our problem do-
main, such as (Patel, 2018), (Vogiatzis, 2019), (Li and Peng, 2019), (Ye et al., 2020), (Kan-
war, 2019), and (Jiang and Liang, 2018) make use of standard state-of-the-art OLPS al-
gorithms as benchmarks for their solutions. OLPS algorithms are less sensitive to pa-
rameters making them good options as benchmarks which could be applied to custom
portfolio management environments.

To address the aim of our work, we identify the following research objectives with their
corresponding experiments:

1. Investigate whether recent advances in DRL can lead to improved investment per-
formance when compared to OLPS algorithms.
Experiment 1: Evaluation of DDPG and TD3 based models.

2. Investigate how OLPS features can be utilised to improve DRL market state rep-
resentation, leading to increased investment performance.
Experiment 2: Evaluation of enhancements in State format.

3. Explore possible investment performance improvements through the use of DRL
ensemble strategies.
Experiment 3: Evaluation of Ensemble strategy.

In this chapter, the data used in the experiments, the experiment environment, the DRL
frameworks and the experiments are discussed in detail.

3.1 | Stock Trading Data used in Experiments
OLPS algorithms are typically evaluated on a variety of standard stock trading data,
such as NYSE(O), NYSE(N), SP500 and DJIA (Cover, 1996; Fagiuoli et al., 2007; Li et al.,
2012). These consist of actual daily closing prices of a variety of stocks in a specific
period. These datasets are publicly available (Li and Hoi, 2014) 2.

2http://www.mysmu.edu.sg/faculty/chhoi/olps/datasets.html
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In this work, we make use of the newest standard NYSE-based dataset NYSE(N), as
it consists of enough steps to allow for training and to test our models. Alternatively,
for the SP500 market, a custom dataset is created similarly to other related work such
as (Nazir, 2019), with more recent data gathered from yahoo finance 3. This allows us to
see how our models and the benchmarks perform in the current market and curb poten-
tial dataset selection and data-snooping biases introduced in OLPS algorithms (Nazir,
2019). The number of assets or stocks within the NYSE(N) dataset is 23, whilst the SP500
consists of 25. The assets chosen for the SP500 dataset were selected according to market
capitalisation and liquidity. All the datasets used in this work are described in Table 3.1.
Whilst the OLPS algorithms observed do not require an initial training phase, the DRL
models implemented require training to learn policies. Therefore, datasets are split in
a 6:1 ratio for training and testing, respectively. Throughout the observed literature, no
ratio is identified as a standard or the best. Our selected ratio allows for a great number
of training steps, whilst still leaving an adequate number of testing steps. The number
of steps kept for testing on both datasets is greater than those found in other work such
as (Hegde et al., 2019) and (Vogiatzis, 2019), but less than others such as (Zhang et al.,
2020) and (Kanwar, 2019). The portfolio values of the OLPS algorithms discussed in
Section 2.1 on both datasets are visualised in Figures 3.1, and 3.2.

Datasets #Asset Training Data Testing Data
Data Range Steps Data Range Steps

NYSE(N) 23 07/01/1985 to 02/11/2006 5507 03/11/2006 to 29/06/2010 917
S&P500 25 06/01/1995 to 25/01/2017 5552 26/01/2017 to 29/09/2020 925

Table 3.1: Dataset Statistics.

Due to the standard datasets discussed consisting of solely close prices, we format the
input dataset to include the previous close price beside the current one. This is done to
facilitate the generation of the state features and the calculation of returns.

3.1.1 | Dataset Stock Composition
� As defined in the benchmarks dataset web-page 4, the NYSE(N) dataset consists

of: ’ahp’, ’alcoa’, ’amer_brands’, ’coke’, ’comm_metals’, ’dow_chem’, ’Dupont’,
’ford’, ’ge’, ’gm’, ’hp’, ’ibm’, ’ingersoll’, ’jnj’, ’kimb-clark’, ’kin_ark’, ’Kodak’, ’merck’,
’mmm’, ’morris’, ’p_and_g’, ’schlum’, and ’sher_will’.

3https://finance.yahoo.com/
4http://www.mysmu.edu.sg/faculty/chhoi/olps/datasets.html
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� The SP500 dataset consits of: ’AAPL’, ’MSFT’, ’JNJ’, ’JPM’, ’PG’, ’UNH’, ’HD’,
’DIS’, ’VZ’, ’CMCSA’, ’ADBE’, ’PFE’, ’BAC’, ’INTC’, ’T’, ’WMT’, ’MRK’, ’KO’,
’PEP’, ’ABT’, ’TMO’, ’CSCO’, ’CVX’, ’NKE’, and ’XOM’.

Figure 3.1: NYSE(N) OLPS portfolios. Figure 3.2: SP500 OLPS portfolios.

3.2 | Experiment Environment
A portfolio consists of a number of assets, and throughout our study we make use of
solely their close prices. This is due to the absence of open, high and low prices in
standard OLPS datasets. Our models are given the opportunity to change portfolio
weights after each market open day t. This may be called a step, time step or period
according to context. The close prices formed into a price vector for day t are denoted as
vt. The price relative vector is calculated using the price vector provided at day t (vt), and
the one from the previous day (vt−1):

yt =

(
1,

v1,t

v1,t−1
,

v2,t

v2,t−1
, ...,

vn,t

vn,t−1

)
(3.1)

where v1,t is the closing price of the first asset in the vector for day t, and n is the number
of assets. The first element in the price vector v0,t and price relative vector and y0,t are
kept constantly as 1 as to provide an option not to trade any asset whilst keeping the
trading currency. This is in line with other work such as (Jiang et al., 2017). The price
relative vector can be used to calculate change in total portfolio value (p) in a period. For
example, given that pt−1 is the portfolio value at the beginning of period t, without
taking transaction cost into consideration, pt is calculated as follows:

pt = pt−1yt • wt−1 (3.2)
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where wt−1 is the portfolio weight vector at the beginning of period t. Therefore, wt,i

is the weight of the ith asset at time t. The initial portfolio weight vector w0 is set to
(1, 0, ..., 0), and the elements in the portfolio weight vector at any period wt, always sum
up to one (Equation 3.3).

∑
i

wt,i = 1, ∀t (3.3)

Therefore, the rate of return for period t is

ρt :=
pt

pt−1
− 1 = yt • wt−1 − 1, (3.4)

and the corresponding logarithmic rate of return is

rt := ln
pt

pt−1
= lnyt • wt−1, (3.5)

Hence, assuming no transaction cost, the final portfolio value is

p f = p0exp
( t f +1

∑
t=1

rt

)
= p0

t f +1

∏
t=1

yt • wt−1, (3.6)

where p0 is the initial investment amount. This is set to 1 throughout all our experi-
ments.

3.2.1 | State and Action Representation
Open, Close, High, Low, Volume are some of the features that may be combined in the
state (Hegde et al., 2019; Zhang et al., 2020). Our models initially make use of only close
prices, and at any period, a state is generated using the dataset with a defined window
length. The window length is a modular parameter denoting the number of past time
steps considered relevant at each period and thus affects the size of each generated state.
Our preliminary experiments aim to train and evaluate our models utilising various
window lengths. These include 3, 7, 11 and 14, in line with Hegde et al. (2019).

Each value in the state corresponds to the normalised log return, Rt,i of an asset, i, on
a specific day, t. Rt,i is defined as:

Rt,i = log
(

Closet,i

Closet−1,i

)
(3.7)

where Closet,i is the asset’s close price for day t, and Closet−1,i is its close price of the
previous day, t − 1. The log return data within the state is normalised using z-score
normalisation value−µ

σ across all assets, where value is the log return of an asset on day
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t. µ and σ are the mean and standard deviation of the log return of all assets on day t,
respectively.

In most related studies, such as (Hegde et al., 2019), (Zhang et al., 2020), (Kanwar,
2019), (Patel, 2018), (Gran, 2019), and (Vogiatzis, 2019) an action takes the form of a new
weight vector prediction for allocation of capital. We also formulate the actions within
our solution is this manner.

Action = αt = wt = (w1, ..., wn) (3.8)

3.2.2 | Transaction Costs
Transaction costs are expenses incurred when buying or selling a good or service. These
are applied whenever the weights allocated to the assets change. The portfolio vector at
the beginning of period t is wt−1. Due to price movements, at the end of the period the
portfolio weight vector evolves into

w′t =
yt � wt−1

yt • wt−1
, (3.9)

where � is the element-wise multiplication. Before the next period starts, w′t is to be
transformed into wt by reallocating the portfolio weights. The transaction remainder factor
is the factor by which the portfolio value shrinks due to this reallocation procedure
µt.µt ∈ (0, 1]. In our work we borrow the equation used to calculate µt from (Jiang and
Liang, 2018)

µt = c
m

∑
i=1
|w′t,i − wt,i|, (3.10)

where c is the transaction cost rate. Throughout all our experiments, c is set as 0.25%,
which is a commonly used transaction cost rate found in work done by Jiang and Liang
(2018), Kanwar (2019), Vogiatzis (2019), and Hegde et al. (2019).

3.2.3 | Exploration and the Reward Function
The aim of the agent is to maximise the final portfolio value p f at the end of the t f +

1 period. Due to the agent not having control over the choice of the initial portfolio
weights p0, and the number of total time steps t f , this job is equivalent to maximising
the average logarithmic accumulated return R (Jiang and Liang, 2018):

R(s1, a1, ..., st f , at f , st f +1) :=
1
t f

ln
p f

p0
=

1
t f

t f +1

∑
t=1

ln(µtyt · wt−1) =
1
t f

t f +1

∑
t=1

rt (3.11)
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In Equation (3.11), weight wt−1 is given by action at−1 (Equation 3.8), yt is the price rela-
tive vector on period t (Equation 3.1), st is the state variable, µt is the transaction remainder
factor (Equation 3.10), and rt is the immediate reward.

3.3 | Deep Reinforcement Learning Frameworks
In this work we build our implementations of the DDPG (Lillicrap et al., 2016; Silver
et al., 2014) and TD3 (Fujimoto et al., 2018) DRL frameworks, following their relevant
literature closely, along with use of published code 5. Due to the latter being based on
the former, the frameworks have many commonalities which include Experience Replay,
Target Networks and Exploration vs. Exploitation. Due to this, the enhancements found in
TD3 presented by Fujimoto et al. (2018) were able to be applied on top of a primarily
implemented DDPG framework.

3.3.1 | Deep Neural Network Topology
Extracting patterns from a portfolio series is non-trivial due to the non-stationary prop-
erty of asset prices. Due to this, we propose a Predictor with a Long short-term memory
(LSTM) framework in line with related work done by Hegde et al. (2019), Zhang et al.
(2020), and Patel (2018). Both the actor and critic networks, for both our DDPG and TD3
frameworks, use the same configuration.

3.3.1.1 | Actor Network

For the actor network, the input layer is defined by the dimensions of the observation of
State s, and therefore the size of the window and the number of assets in our portfolio.
Additional features may be added within the state for each asset increasing the window
size dimension. This is reshaped for input into an LSTM layer, which is followed by a
hidden layer. The actors’ output layer is a Softmax layer with dimensions corresponding
to the number of assets, so as to hold the portfolio weight vector, which is used as an
action by the agent. The actual output is then bound to have all the values within the
action array sum up to 1.

3.3.1.2 | Critic Network

The critic network consists of identical construction, except for the input and output lay-
ers. The critic network’s input layer consists of the input taken from the observation and

5https://github.com/sfujim/TD3
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Figure 3.3: Actor network architecture. Figure 3.4: Critic network architecture.

the action from the actor network. The action is shown in Figure 3.4 as a 1, as the actions
throughout our study consist of a single step. On the other hand, the output layer for
the critic network predicts a single output which would be the predicted reward. Due
to the Clipped Double Q-Learning feature in TD3, two critics are created, each following
this exact structure. Figures 3.3 and 3.4 visualise the two LSTM networks, where a is the
number of assets, w is the window length, and f is the number of technical indicator
values or features.

3.3.1.3 | Actor and Critic learning rates

Even though the actor and critic learning rates are modular in our implementation as
parameters, these are kept constant throughout our experiments. These are set to a
learning rate of 10−4 and 10−3 for the actor and critic respectively, based on (Lillicrap
et al., 2016). Additionally, from the critic side, the Discount factor (γ) is set to 0.99, and
the Target network update ratio (τ) is set to 0.001. This is also in line with (Lillicrap et al.,
2016). The full list of parameters is available in Table 3.2.
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3.3.2 | Noise Generation Functions
One distinct difference in implementation between the two frameworks is the noise
added to the actions to aid exploration. Whilst DDPG makes use of Ornstein-Uhlenbeck
(Lillicrap et al., 2016; Uhlenbeck and Ornstein, 1930), TD3 opts for uncorrelated noise
for exploration, as Fujimoto et al. (2018) claim that the former method offered no per-
formance benefits. The Ornstein-Uhlenbeck method generates noise correlated with
the previously generated noise to prevent the noise from cancelling out or ’freezing’
the overall dynamics (Uhlenbeck and Ornstein, 1930). Some studies, such as (Kanwar,
2019) do divert away from using the Ornstein-Uhlenbeck on the DDPG framework, but
the results obtained do not clearly show that this modification has positive or negative
effects.

Our implementation of the DDPG framework encompasses the Ornstein-Uhlenbeck
method to adhere to the original literature (Lillicrap et al., 2016). Even though the
two frameworks use two different noise generation methods, the parameters chosen
for each were chosen so as not to cause any intentional advantage or disadvantage to
either framework. The parameters chosen for each method is also based on the imple-
mentations in the original literature (Fujimoto et al., 2018; Lillicrap et al., 2016). These
parameters can be seen in Table 3.2.

3.3.3 | Training Process
The datasets are split in a 6:1 ratio for training and testing, respectively. Training is done
over 400 episodes or epochs, each consisting of 1000 steps. At the start of each episode,
the agent is placed at a random point within the training subset. Any starting point
chosen must allow for the training steps to be completed. ANN training is done with
a mini-batch of 64, sampled uniformly from a replay buffer consisting of the agents’
history. This is a common procedure in both the original DDPG and TD3 implemen-
tation, as it uses hardware and resources more efficiently at the computer-architecture
level (Patterson and Gibson, 2017). The mini-batch size parameter used throughout our
experiments is in line with (Lillicrap et al., 2016).

3.3.4 | Value Function Threshold
The greater our models are trained and optimised, the greater their chance of overfit-
ting to the training data. If so, the learned policy would perform poorly in the testing
phase due to possible noise or random fluctuations being picked up during training.
To address this issue, we include a threshold reward value parameter that would allow
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the training phase to end before the defined number of episodes. Therefore training
ends when 10 episode rewards exceed the threshold amount in succession, or the total
number of episodes defined (400) is reached. This threshold value is coined as the value
function threshold. Whilst the number of successive and excessive rewards is set to 10
in our implementation, the value function threshold is implemented as an adjustable
parameter to allow for optimisation (Table 3.2).

Figure 3.5: Rolling Episode Reward by OLPS Algorithms.

To help us choose the threshold reward value in our experiments, we can first ex-
amine the performance done by the benchmark OLPS algorithms. Figure 3.5 visualises
the rolling episode reward value achieved by the OLPS algorithms on the NYSE(N) in-
sample/training dataset with a window of 1000 steps. The RMR algorithm achieves the
greatest episode reward value of approximately 1.1 average logarithmic accumulated
return. Naturally, the threshold reward value for our models must exceed this value if
we aim for our models to perform better overall. Additionally, if the threshold is set too
low, the training of the models may end too quickly without converging to an optimal
policy. In our experiments on the NYSE(N) dataset, the threshold value is set to 3 aver-
age logarithmic accumulated return to strike a balance. It was observed that models that
trained excessively above this threshold had suffered decreased performance during the
testing phase. The value function threshold during experiments on the SP500 dataset was
set to 2, as the OLPS algorithms performed poorer than on the NYSE(N) dataset. These
parameters are listed in Table 3.2.
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3.4 | Parameters
The following list includes brief discussions on individual hyperparameters tested and
used within our experiments. These are summarised in Table 3.2.

� Episodes and Max Step: A variety of episode numbers were considered and tested
in initial runs with the DDPG DRL algorithm. These included 100, 200, 400, 600,
and 800 episodes. Training with 400 was found to allow stable convergence with-
out overfitting. (Section 3.3.3)

� Window length: The window lengths used in our work are the same ones used by
Hegde et al. (2019). Larger window lengths were also considered, such as 16, but
were found to have adverse performance effects. (Section 3.2.1)

� Value function threshold: The value function threshold used for the two datasets
were based on the performance of the baseline algorithms on the corresponding
training subsets. (Section 3.3.4).

� Max step: A variety of values could be used in this configurable parameter but
is best balanced with the number of episodes to allow for convergence without
overfitting.

� Buffer and Batch size: ANN training is done with a mini-batch of 64, sampled uni-
formly from a replay buffer consisting of the agents’ history. The mini-batch pa-
rameters used throughout our experiments are in line with (Lillicrap et al., 2016).
(Section 3.3.3)

� τ (tau) and γ (gamma): The target network update ratio and reward discounting factor
are both in line with the original DDPG implementation by Lillicrap et al. (2016).
(Section 3.3.1.3)

� Actor and Critic learning rate (α, β) A variety of actor and critic learning rate
combinations were considered in initial testing, including: actor: 1x10−4 and critic:
1x10−4, actor: 1x10−4 and critic: 1x10−3, and actor: 1x10−3 and critic: 1x10−3.
The combination selected was found to provide optimal results. This is also the
configuration chosen by Lillicrap et al. (2016) in the seminal paper proposing the
DDPG framework. The configuration selected is used throughout all experiments.
(Section 3.3.1.3)
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� DDPG Parameters: The parameters selected are taken directly from the seminal
paper to provide optimal performance (Lillicrap et al., 2016). Better parameters for
our environment and individual datasets could be identified with several trials.

� TD3 Parameters: The parameters selected are taken directly from the seminal pa-
per to provide optimal performance (Fujimoto et al., 2018). Better parameters for
our environment and individual datasets could be identified with several trials.

� Ensemble Parameters: To encapsulate the window lengths used by the internal
DRL models, a larger ensemble window length was chosen. Our experiments use a
window length of 21, which is approximately a month in market open days. Alter-
nate, possibly larger window lengths could be used. The action length parameter
is set as 1 to fit our problem setting, which consists of daily trading.

Hyperparameter Value Description
Window length 3, 7, 11, and 14 Window or observation size
Value function threshold 3 for NYSE(N), 2 for SP500 Reward threshold used to stop training
Max Step 1000 Number of steps completed in episode
Buffer size 105 Size of replay buffer
Batch size 64 Mini-batch size during training
τ (tau) 0.001 Target network update ratio
γ (gamma) 0.99 Reward discounting factor
Actor learning rate (α) 1x10−4 Actor learning rate
Critic learning rate (β) 1x10−3 Critic learning rate
Seed 1338 Random seed number
(DDPG parameters)
σ (sigma) 0.2 Ornstein-Uhlenbeck parameter
θ (theta) 0.15 Ornstein-Uhlenbeck parameter
dt 0.002 Ornstein-Uhlenbeck parameter
(TD3 parameters)
Policy noise 0.2 Exploration noise
Noise clip 0.5 Maximum value of the Gaussian noise
Policy frequency 2 Number of iterations to wait before

the policy network updates
(Ensemble parameters)
Window length 21 Window or observation size
Action length 1 Steps taken with action

Table 3.2: Hyperparameter summary.
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3.5 | Experiment 1: EvaluationofDDPGandTD3based
models

The first experiment aims to address the first objective, by investigating how DRL-based
portfolio optimisation models using the DDPG and TD3 frameworks perform compared
to each other and OLPS algorithm benchmarks. In this experiment we test the hypoth-
esis of whether:

� The portfolio optimisation models using the TD3 DRL framework provide im-
proved results over the ones using DDPG.

Additionally throughout all experiments we test the hypothesis of whether:

� The results obtained by our DRL portfolio optimisation models exceed those of
the benchmarks.

In the first experiment, models are trained and tested on the two datasets, using
the defined window lengths. The training performance of each model is observed. In
line with a number of recent related papers such as (Hegde et al., 2019), (Gran, 2019),
(Zhang et al., 2020), and (Vogiatzis, 2019), we make use of a series of criteria to evaluate
the performance of our DRL models. These are:

� Average Daily Yield, which is simply the mean of all the returns obtained.

� Sharpe Ratio, which is a measure created by the Nobel Prize winner Sharpe (1994),
to help investors compare the return of an investment with its risk. (Equation
2.45).

� Sortino Ratio, which is a risk-aware measure that is very similar to Sharpe ratio. The
sole difference is that it penalises only downside volatility (Equation 2.42) (Sortino
and Price, 1994).

� Maximum Drawdown (MDD), which is the maximum loss from a peak to a trough
of a portfolio, before a new peak is attained (Equation 2.47).

� Final Portfolio Value, which consists of the wealth an agent has after the last step of
the test dataset has been completed.

We evaluate the models against each other and against the baselines identified. The
model with the best performing window in-sample for each framework is selected for
comparison. The best performing framework is then passed on to the next experiment.
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3.6 | Experiment 2: Evaluationof Enhancements in State
Format

The second experiment aims to address the second objective, which is to investigate
the effect of including functionality from OLPS algorithms in the state representations
of our DRL-base portfolio optimisation models. In the second experiment, we test the
hypothesis of whether:

� The enhancement within the state format positively affects the performance of the
DRL-based portfolio optimisation models.

The models are trained, tested and evaluated on both the two datasets using the same
evaluation criteria used in the previous experiment. The models with differing state for-
mats are evaluated against each other, along with the benchmarks and OLPS algorithms
identified. The model with the best performing in-sample window for each state format
is selected for comparison. The best performing state format is then used in the next
experiment.

3.6.1 | Motivation
Our models may be improved in a variety of ways. Without any external components,
the three essential elements of the RL framework are the State, Action, and Reward. The
form of the Action, which is a list of weights assigned to portfolio assets, is essential, and
this structure is to remain in any future model. The forms of the State and Reward, on
the other hand, can be adjusted in ways that could introduce improvements. For exam-
ple, Hegde et al. (2019) introduce a risk-aware reward function using Sortino Ratio to
improve their model. We would be inclined to try such a reward function, but altering
the reward function also implies a shift in the optimisation target. Such a reward func-
tion is viable for experiments such as the one by Hegde et al. (2019) as they make use of
a Mean Variance Theory benchmark, which aim to reduce risk whilst maximising cumu-
lative wealth. On the other hand, PS strategies belonging in the Capital Growth Theory
school, such as the OLPS benchmarks used, are less risk-averse (Li et al., 2012). The
state format, consisting solely of log returns within a window limit, may be considered
primitive and might not consist of enough information to make accurate decisions.
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3.6.2 | Learning from OLPS algorithms to enhance state represen-
tation

The starting point chosen in our study to improve the state is the manipulation of the
stock close prices done by the OLPS benchmarks. Two of the best performing OLPS
models that consist of a data processing phase in the previous experiment are OLMAR
and RMR (Figure 3.1). This is noted by their performance throughout the whole datasets
in terms of rolling episode reward. This can be visually seen in figure 3.5, where we
show the rolling episode reward achieved by the OLPS portfolios on the NYSE(N)
dataset. These models are classified as ’Follow the Loser’ algorithms, making use of
Mean Reversion strategies. The OLMAR step process starts by calculating the next price
relative for the portfolio assets (Li and Hoi, 2014). A simple moving average function,
MAt =

1
w ∑t

i=t−w−+1 pi is adopted to make this calculation. The corresponding price rel-
ative is defined in Equation 2.13. Then, Passive Aggressive online learning from PAMR
is adopted to learn a portfolio (Li and Hoi, 2014).

RMR builds on top of OLMAR with an updated equation aiming to reduce estima-
tion errors caused by noises and outliers in the data (Huang et al., 2016). This is done via
robust L1-median estimator. RMR explicitly estimates the next price vector via robust
L1-median estimator at the end of tth period, that is, p̂t+1 = L1medt+1(w) = µt+1, where
w is the window size, and µ is calculated by solving Fermat-Weber problem (Weber, 1929)
defined in Equation 2.17. L1-median is the point with minimal sum Euclidean distance
to k given price vectors. Therefore, the expected price relative with the estimator is de-
fined in Equation 2.18. Then RMR follows the similar portfolio optimisation method as
OLMAR to learn an optimal portfolio (Li and Hoi, 2014).

3.7 | Experiment 3: Evaluation of Ensemble Strategy
The third experiment aims to address the third objective, which is to investigate whether
the combination of multiple DRL-models with differing state formats into one ensemble
model improves overall performance. In the third experiment, we test the hypothesis of
whether:

� The combination of multiple DRL-models with differing state formats into one
ensemble model improves portfolio optimisation performance.

The ensemble models are compared with all the previously highlighted models along
with the OLPS algorithm baselines on the two test datasets. The evaluation and com-
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parison of models are made in terms of average daily yield, Sharpe ratio, Sortino ratio,
and maximum drawdown evaluation criteria.

3.7.1 | Motivation
The behavioural effect of the DRL window length parameter raises a question about the
possibility of an aggregated, optimised model and its’ potential. The act of utilising all
four models in one optimised model is formulated into an ensemble model, aiming to
inherit and integrate the best features of our models, which may have non-correlating
periods during testing due to differences in the state format (Yang et al., 2020). This lack
of correlation suggests that the models behave differently in different market situations.
At any point in time, evaluating a window of past performances by the different models
may identify the best way forward.

Unlike Yang et al. (2020), we do not train the models concurrently but separately
to allow individual evaluation of performance. These agents are picked and combined
into an optimised ensemble model. In our ensemble strategy, the actions created for
each agent are all passed in the environment. During this process, the corresponding
returns are recorded. We implement the ensemble strategy on top of the enhancements
previously identified, using the four window lengths. This is created to address the
fourth research question and the third objective in our work. We, therefore, create an
ensemble of the models created in the previous experiment. We make use of the Aver-

Figure 3.6: Overview of the ensemble deep reinforcement learning-based stock trading
strategy proposed.
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age Return of an observation window (w) as the selection criteria. The similar ensemble
model by Yang et al. (2020) in contrast, makes use of Sharpe Ratio (Equation 2.45) as its’
selection criteria. In our experiment, a selection criterion based solely on average return
is more befitting due to the OLPS algorithms used as benchmarks which belong to the
Capital Growth Theory school of PS.

3.7.2 | Execution process
The algorithm created uses two parameters: the window length w and action length n.
The window length refers to the number of past steps our ensemble algorithm considers
when calculating the performance of each of the DRL agents and make its’ portfolio
choice. On the other hand, the action length refers to the number of steps the portfolio
choice taken stands. In our experiment, w is set to 21, approximately a month in trading
days. Furthermore, n is set to 1 to have a portfolio choice be made at every step in the
out-of-sample dataset. For the first w days, the model that performs the best in-sample
is selected. Then, through the remainder of the steps, the average return of each of the
DRL models within the previous 21 days is calculated, and the action belonging to the
best performing model is selected passed through the environment for 1 step.

3.8 | Benchmarks and OLPS algorithm Parameters
In this work we evaluate our DRL models against a number of benchmarks and OLPS
algorithms, which are summarised in Table 3.3. The default parameters or those sug-
gested by their corresponding studies were used for each of the algorithms. The param-
eters chosen for each are displayed in Table 3.4.

Table 3.3: Benchmarks and OLPS algorithms along with references

Classification Strategy References

Benchmark Constant Rebalanced Portfolios Kelly (1956)
Benchmark Best Constant Rebalanced Portfolios Cover (1996)
Follow-the-Winner Exponential Gradient Helmbold et al. (1996, 1998)
Follow the Winner Universal Portfolios Cover (1996)
Follow-the-Loser Passive Aggressive Mean Reversion Li et al. (2012)
Follow-the-Loser Online Moving Average Reversion Li and Hoi (2012)
Follow-the-Loser Weighted Moving Average Mean Reversion Gao and Zhang (2013)
Follow-the-Loser Robust Median Reversion Huang et al. (2016)
Meta-Learning Online Newton Step Agarwal et al. (2006)
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Table 3.4: Benchmarks and OLPS algorithm Parameters

Strategy Parameter Value
Constant Rebalanced Portfolios None

Best Constant Rebalanced Portfolios None
Exponential Gradient η: Learning Rate 0.05
Universal Portfolios eval_points: Number of evaluated points 100

leverage: Maximum leverage used 1
Passive Aggressive Mean Reversion ε: Control Parameter 0.5
Online Moving Average Reversion w: Window 5

ε: Control Parameter 10
Weighted Moving Average Mean Reversion w:Window 5

ε: Control Parameter 0.5
Robust Median Reversion w: Window 5

ε: Control Parameter 10
τ: Precision for finding median 0.001

Online Newton Step δ 0.125
β 1
η 0

3.9 | Hardware Requirements
Although the minimum hardware requirements have not been identified for this soft-
ware, we recommend:

� A core i5 processor, or an equivalent Central Processing Unit,

� Ubuntu 20 Operating system. (One may use Virtual Box to emulate this),

� 4 GB of Random-access Memory

By making use of a Graphics Processing Unit, one is able to speed up some of the pro-
cessing that happens throughout the application. This is not a requirement, and is not
possible when using Virtual Box.

3.10 | Software and Libraries
Python was the language chosen to develop our solution, perform our experiments and
create visualisations. This is motivated by the multitude of readily available libraries,
such as Tensorflow and Keras that provide a solid a backbone to ML related projects. Both
of these libraries were utilised with versions 1.15.0, and 2.3.1 respectively. Additional
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scientific libraries such as numpy, scipy, pandas are utilised. The visualisations were cre-
ated with the help of matplotlib and seaborn libraries.

Our implementation of the stock trading environment and the DDPG models are
heavily based, and extend on the work done by Jiang et al. (2017), which is kept publicly
available 6, and by further work completed in studies motivated by the work of Jiang
and Liang (2018) and Lillicrap et al. (2016) 7. Fujimoto et al. (2018) also made their state
of the art DRL framework (TD3) available 8. We re-implement this framework with
the libraries of our choice onto our problem domain. All the OLPS algorithms used as
baselines in our work are available online under an MIT licence 9. A number of these
algorithms were re-implemented to allow their implementation into our experiments.

Table 3.5 below shows the main packages used throughout our study. The anaconda
environment used is to be exported and made available to restore.

Table 3.5: Main packages used throughout study.

Package Version Description
numpy 1.18.1 Array processing for numbers, strings, records, and objects
matplotlib 3.1.3 Publication quality figures in python
pandas 0.25.1 High-performance, easy-to-use data structures and data analysis tools
tensorflow 1.15.0 Machine learning library
keras 2.3.1 Deep learning library for tensorflow
tflearn 0.3.2 Modular and transparent deep learning library built on top of Tensorflow
hdf5 1.10.4 Library and file format for storing and managing data
gym 0.17.1 A toolkit for developing and comparing reinforcement learning algorithms
yfinance 0.1.54 Yahoo! Finance market data downloader
fix-yahoo-finance 0.1.30 Fix for Pandas Datareader’s ’get_data_yahoo()’

6https://github.com/ZhengyaoJiang/PGPortfolio
7https://github.com/bassemfg/ddpg-rl-portfolio-management, https://github.com/liangzp/

Reinforcement-learning-in-portfolio-management
8https://github.com/sfujim/TD3
9https://github.com/Marigold/universal-portfolios
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4

Results & Evaluation

In this chapter, we present the results and evaluation of the experiments defined in the
previous chapter. The objectives defined, along with their corresponding experiments,
are the following:

1. Investigate whether recent advances in DRL can lead to improved investment per-
formance when compared to OLPS algorithms.
Experiment 1: Evaluation of DDPG and TD3 based models.

2. Investigate how OLPS features can be utilised to improve DRL market state rep-
resentation, leading to increased investment performance.
Experiment 2: Evaluation of enhancements in State format.

3. Explore possible investment performance improvements through the use of DRL
ensemble strategies.
Experiment 3: Evaluation of Ensemble strategy.

Please refer to Section 4.2 to view the results of Experiment 1, Section 4.3. to view
the results of Experiment 2, and Section 4.4 to view the results of Experiment 3. The
results are discussed and evaluated in Section 4.5.

4.1 | Use of Benchmarks in Literature
Within our study we make use of a number of standard benchmark algorithms. These
are briefly described in Section 2.3, and the full list of benchmark algorithms is avail-
able in Table 3.3. The algorithms are made publicly available by Li and Hoi (2012)1. To

1https://github.com/OLPS/OLPS/tree/master/Strategy
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be used in our study, the OLPS algorithms were modified to be able to function with
our custom portfolio environment. After modifying them accordingly, each of the algo-
rithms were tested on a number of full standard datasets used in (Li and Hoi, 2012) such
as the NYSE(N) dataset (Figure 3.1). Only the algorithms with adequately replicated re-
sults were included.

A variety of related papers make use of one or more of the benchmarks described
and utilised in our study. They make use of these benchmarks in a similar way, but
all use their own datasets and environments, with different training to testing ratios
and hyperparameters. Patel (2018) makes use of OLMAR and ONS, Li and Peng (2019)
make user of CRP, PAMR, OLMAR and WMAMR, Ye et al. (2020) make use of CRP,
OLMAR and WMAMR, and Jiang and Liang (2018) make use of CRP, OLMAR, PAMR,
WMAMR, RMR, ONS, UP and EG. In all these studies, the writers manage to create
solutions that beat all their benchmarks.

4.2 | Experiment 1 Results
In our first experiment, we address our first objective by implementing the portfolio op-
timisation models using both the DDPG and TD3 frameworks with the window lengths
defined in Section 3.2.1. This provided us with four models for each framework, which
we train and test one-by-one on the NYSE(N) and SP500 datasets in a 6:1 training to test-
ing ratio. This ratio was found through testing prior to the start of the experiment, to
provide an adequate number of steps in the training phase in order to allow the agents
to train appropriately. The selected ratio and number of steps is similar to other studies
such as the ones done by Vogiatzis (2019) and Kanwar (2019). The model names are
formulated using the RL algorithm (e.g. DDPG), the window length (e.g. 3), and the
Neural Network format (e.g. lstm). Therefore, the models evaluated consist of:

� DDPG-3-lstm

� DDPG-7-lstm

� DDPG-11-lstm

� DDPG-14-lstm

� TD3-3-lstm

� TD3-7-lstm

� TD3-11-lstm

� TD3-14-lstm

By the end of this experiment we aim to choose the best performing models to be in-
cluded in the next experiment. We hypothesise that the performance of our DRL mod-
els exceeds that of the OLPS benchmarks identified in Section 2.3, and that the portfolio
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optimisation models using the TD3 DRL framework provide improved results over the
ones using DDPG.

4.2.1 | Training Results
With the use of tensorboard, we were able to keep track of the performance of each of
our models throughout the training phase. This data obtained whilst training on the
NYSE(N) dataset was compiled and then visualised in Figure 4.1. Whilst performing
this test, the value function threshold was excluded to evaluate the performance through
the full training process consisting of 400 episodes. In the rest of the tests, the value
function threshold is set accordingly (Table 3.2). The results obtained showcase the
superiority of the TD3 framework, as all the models with the TD3 framework have
steeper learning curves from those using the DDPG framework. To aid the visibility of
the learning curves for the DDPG models, these are visualised separately in Figure 4.2.

Figure 4.1: Learning curves for each of the framework and window length combination
models. The solid lines represent the moving average reward on a 10 epoch window,
whereas the shaded lines are the actual reward values obtained for each epoch.

Even though TD3-3-lstm is seen converging quicker than all the other models, the
TD3-14-lstm achieved a greater level of optimisation by the end of the episodes. The
fast convergence of TD3-3-lstm could be attributed to the smaller state size. Although
the TD3-7-lstm and TD-11-lstm do not reach the same level of reward values, they still
outperform all the DDPG based models. By observing the learning curves obtained by
the DDPG models in Figure 4.2, we can confirm that DDPG-7-lstm achieves the best
reward values among the DDPG based models by the end of the training episodes.
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Figure 4.2: Learning curves for the DDPG framework and window length combination
models. The solid lines represent the moving average reward on a 10 epoch window,
whereas the shaded lines are the actual reward values obtained for each epoch.

4.2.2 | NYSE(N) Testing Results
The trained policy of each model is evaluated on the remaining 1

6 of the NYSE(N) dataset
from 03/11/2006 to 29/06/2010. This dataset proved to be a difficult test for our mod-
els due to the “Great Recession“ stock market crash of 2008 2. The training subset does
consist of another crash in 1987, which could help train our models accordingly. To com-
pare the performance of the two frameworks, we observe the models with the greatest
in-sample performance for each corresponding framework. These are DDPG-7-lstm and
TD3-14-lstm. The corresponding portfolio values are visualised in Figure 4.3, along with
those obtained by the OLPS algorithms. The results obtained are shown in Table 4.1.
To review the robustness of our models, following the approach done by Hegde et al.
(2019), we calculate the mean and standard deviation of the evaluation results obtained
across all window sizes (Table 4.2).

2https://www.thestreet.com/markets/history-of-stock-market-crashes-14702941
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Figure 4.3: Portfolio values for DDPG-7-lstm and TD3-14-lstm models on the NYSE(N)
test dataset along with OLPS algorithms.

Average Daily Sharpe Sortino Maximum Final Portfolio
Model Yield (%) Ratio (%) Ratio (%) Drawdown (%) Value

DDPG-7-lstm 0.071 2.062 2.760 69.351 1.151
TD3-14-lstm 0.059 2.382 3.301 52.122 1.305

Market Value (UCRP) 0.015 0.768 0.982 63.279 0.97
BCRP 0.114 3.737 5.803 73.208 1.876
OLMAR 0.22 3.414 4.678 91.443 1.206
PAMR 0.182 3.666 5.072 79.034 1.797
RMR 0.210 3.26 4.527 91.612 1.104
WMAMR 0.024 0.377 0.478 94.642 0.206
EG 0.013 0.711 0.907 63.122 0.962
ONS 0.006 0.076 0.085 96.181 0.072
UP 0.013 0.695 0.89 63.674 0.958

Table 4.1: The evaluation criteria results for DDPG-7-lstm and TD3-14-lstm models on
the NYSE(N) test dataset along with OLPS algorithms. The best value for each criteria
is bold.

Average Daily Sharpe Sortino Maximum Final Portfolio
Model Yield (%) Ratio (%) Ratio (%) Drawdown (%) Value

DDPG models 0.039± 0.049 1.164± 1.255 1.577± 1.703 73.992± 20.141 0.887± 0.338
TD3 models 0.032± 0.063 1.401± 2.225 2.08± 3.218 70.764± 18.387 1.027± 0.718

Table 4.2: Result comparison of DDPG and TD3 models on the NYSE(N) test dataset
over all window sizes.
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4.2.2.1 | Additional Visualisations

To investigate the diversification factor of the portfolios generated, pie charts of the
average weight allocated to each asset are visualised in Figure 4.4. Furthermore, plots
of the main selected assets for each step, superimposed over the portfolio value graph,
are displayed in Figure 4.5. Due to the continuous action space, the points within the
plot were created by selecting the asset with the greatest weight for each step. These are
accompanied by a plot of the normalised values of the corresponding assets. Although
this information is not tied to the defined aims and objectives, it allows for more insight
into the behaviours of the two models. Additionally, this could also help justify their
performance.
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(a) DDPG-7-lstm

(b) TD3-14-lstm

Figure 4.4: Pie charts visualising the average allocation of portfolio weights on the
NYSE(N) test dataset.
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(a) DDPG-7-lstm

(b) TD3-14-lstm

Figure 4.5: Plots of the main stocks picked by the agents on the NYSE(N) test dataset,
superimposed on the portfolio value graph, and the corresponding asset values nor-
malised to the same starting point.
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4.2.3 | SP500 Testing Results
To compare the performance of the two DRL frameworks on the SP500 dataset, we use
the best performing models on the in-sample dataset for each corresponding frame-
work. In this case, both models consisted of a window length of 11. Therefore, the
models selected are DDPG-11-lstm and TD3-11-lstm. The portfolio values are visualised
in Figure 4.6, along with those obtained by the OLPS algorithms. Additionally, the eval-
uation criteria results obtained by the two identified models are shown in Table 4.3. Fi-
nally, the mean and standard deviation of the evaluation criteria results obtained across
all window sizes are shown in Table 4.4.

Figure 4.6: Portfolio values for DDPG-11-lstm and TD3-11-lstm models on the SP500 test
dataset along with OLPS algorithms.

71



Chapter 4. Results & Evaluation 4.3. Experiment 2 Results

Average Daily Sharpe Sortino Maximum Final Portfolio
Model Yield (%) Ratio (%) Ratio (%) Drawdown (%) Value

DDPG-11-lstm 0.31 21.21 35.0 21.945 15.985
TD3-11-lstm 0.331 24.852 43.255 12.265 19.412

Market Value (UCRP) 0.017 2.312 2.815 17.072 1.14
BCRP 0.07 4.211 5.625 33.206 1.671
OLMAR 0.145 9.702 13.834 32.493 3.481
PAMR 0.146 10.508 15.173 24.744 3.506
RMR 0.144 9.725 14.117 24.196 3.451
WMAMR 0.086 5.803 8.109 26.658 2.023
EG 0.017 2.346 2.852 17.111 1.143
ONS -0.044 -4.256 -5.281 41.92 0.633
UP 0.018 2.506 3.046 16.63 1.154

Table 4.3: The evaluation criteria results for DDPG-11-lstm and TD3-11-lstm models on
the SP500 test dataset along with OLPS algorithms. The best value for each criteria is
bold.

Average Daily Sharpe Sortino Maximum Final Portfolio
Model Yield (%) Ratio (%) Ratio (%) Drawdown (%) Value

DDPG models 0.085± 0.17 5.558± 11.799 9.125± 18.683 35.468± 20.746 4.903± 7.412
TD3 models 0.078± 0.169 5.812± 12.713 10.317± 21.975 31.984± 13.616 5.515± 9.266

Table 4.4: Result comparison of DDPG and TD3 models on the SP500 test dataset over
all window sizes.

4.3 | Experiment 2 Results
In the second experiment, we address our second objective by including the results from
the enhanced moving average equation used in RMR within the State format of our DRL
models, along with the windowed normalised logarithmic returns used in the previous
experiment. This is applied on models with all the window lengths, but only using the
TD3 framework. TD3 is the chosen DRL framework due to its performance in the pre-
vious experiment. Therefore, four new models are trained, tested and evaluated on the
NYSE(N) and SP500 datasets. Likewise, the four new model names are created using
the RL algorithm (e.g. DDPG), the window length (e.g. 3), and the Neural Network for-
mat (e.g. lstm). These also include a tag referring to the enhancement (e.g. rmr). These
models consist of TD3-3-lstm-rmr, TD3-7-lstm-rmr, TD3-11-lstm-rmr, and TD3-14-lstm-
rmr. We hypothesise that the inclusion of stock movement prediction indicators within
the state format has a positive effect on the performance of the DRL-based portfolio
optimisation models.
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4.3.1 | NYSE(N) Testing Results
To compare the performance of the two state formats on the NYSE(N) dataset, the best
model in the previous experiment (TD3-14-lstm) is compared against its counterpart,
which makes use of the enhanced state format (TD3-14-lstm-rmr). The portfolio values
are visualised in Figure 4.7, along with those obtained by the OLPS algorithms. Ad-
ditionally, the results obtained are shown in Table 4.5. Finally, the mean and standard
deviation of the evaluation criteria results obtained across the window sizes are shown
in Table 4.6. The models with window lengths of 11 were excluded in this table due
to poor performance. Despite the increased volatility in TD3-14-lstm-rmr granting it a
worse maximum drawdown score, the model achieves greater results on the rest of the
evaluation criteria.

Figure 4.7: Portfolio values for TD3-14-lstm and TD3-14-lstm-rmr on the NYSE(N) test
dataset along with benchmark OLPS algorithms.

Average Daily Sharpe Sortino Maximum Final Portfolio
Model Yield (%) Ratio (%) Ratio (%) Drawdown (%) Value

TD3-14-lstm 0.059 2.382 3.301 52.122 1.305
TD3-14-lstm-rmr 0.151 3.584 5.264 79.801 1.838

Table 4.5: The evaluation criteria results for TD3-14-lstm and TD3-14-lstm-rmr models
on the NYSE(N) test dataset along with benchmark OLPS algorithms. The best value
for each criteria is bold.
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Average Daily Sharpe Sortino Maximum Final Portfolio
Model Yield (%) Ratio (%) Ratio (%) Drawdown (%) Value

TD3 models 0.04± 0.075 1.778± 2.565 2.664± 3.67 69.712± 22.371 1.166± 0.812
TD3-rmr models 0.15± 0.046 4.565± 2.01 6.95± 3.653 58.511± 23.606 2.559± 1.401

Table 4.6: Result comparison of TD3 and TD3-rmr models on the NYSE(N) test dataset.
(Excluding window 11 due to poor performance)

4.3.1.1 | Further statistical testing

To further evaluate the performance of our models and compare against the OLPS
benchmark algorithms, we calculate the rolling window values for each evaluation cri-
teria with a window of 60 days/steps. Sixty steps in our dataset are approximately a
quarter of a year (3 months) in trading days. This allows us to test the stability of our
models on the test datasets and evaluate if the results obtained are achieved by chance
or possibly by great performance in short intermittent periods. Naturally, from an in-
vestor perspective, stable performance is key (Markowitz, 1952). We visualise a number
of these results in Figure 4.8 and use the mean and standard deviation of the acquired
data in t-tests to compare the enhanced model (TD3-14-lstm-rmr) with the correspond-
ing model from the previous experiment (TD3-14-lstm) and against all benchmarks. The
t-test results obtained are shown in Table 4.7.
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(a) Average Daily Yield

(b) Sharpe Ratio

Figure 4.8: Rolling window analysis on the NYSE(N) dataset, comparing the perfor-
mance of TD3-14-lstm and TD3-14-lstm-rmr with two of the best performing bench-
marks.
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Table 4.7: T-test results between the rolling evaluation criteria results obtained by TD3-14-lstm-rmr and the benchmark OLPS
algorithms on NYSE(N) dataset.

Model Average Daily Yield Sharpe Ratio Sortino Ratio Maximum Drawdown
t-stat p-value t-stat p-value t-stat p-value t-stat p-value

CRP 8.181 5.196e-16 4.237 2.375e-05 9.254 5.822e-20 18.643 3.617e-71
BCRP 2.356 1.855e-02 1.793 7.319e-02 3.475 5.233e-04 6.903 6.987e-12

OLMAR -2.068 3.876e-02 5.612 2.311e-08 1.143 2.531e-01 -12.047 3.207e-32
PAMR -0.806 4.206e-01 3.289 1.025e-03 3.269 1.101e-03 -3.290 1.02e-03
RMR -1.816 6.956e-02 5.231 1.878e-07 1.232 2.181e-01 -11.686 1.763e-30

WMAMR 4.358 1.385e-05 7.484 1.109e-13 3.589 3.401e-04 -11.439 2.572e-29
EG 8.255 2.88e-16 4.294 1.846e-05 9.370 2.053e-20 18.779 4.237e-72

ONS 6.888 7.758e-12 8.164 5.961e-16 11.142 6.048e-28 -8.305 1.907e-16
UP 8.186 5.015e-16 4.146 3.531e-05 9.204 9.100e-20 18.806 2.755e-72

TD3-14-lstm 8.186 1.425e-08 6.436 1.561e-10 5.160 2.733e-07 17.193 1.543e-6176
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4.3.2 | SP500 Testing Results
To compare the performance of the two state formats on the SP500 dataset, we use the
best performing models on the in-sample dataset for each state format. These are TD3-
11-lstm and TD3-3-lstm-rmr. The portfolio values are visualised in Figure 4.7, along with
those obtained by the OLPS algorithms. Additionally, the results obtained are shown
in Table 4.8. Finally, the mean and standard deviation of the evaluation criteria results
obtained across the window sizes are shown in Table 4.9.

Figure 4.9: Portfolio values for TD3-11-lstm and TD3-3-lstm-rmr models on the S&P500
test dataset along with OLPS algorithms.

Average Daily Sharpe Sortino Maximum Final Portfolio
Model Yield (%) Ratio (%) Ratio (%) Drawdown (%) Value

TD3-3-lstm-rmr 0.379 30.306 49.204 10.848 30.843
TD3-11-lstm 0.331 24.852 43.255 12.265 19.412

Market Value (UCRP) 0.017 2.312 2.815 17.072 1.140
BCRP 0.070 4.211 5.625 33.206 1.671
OLMAR 0.145 9.702 13.834 32.493 3.481
PAMR 0.146 10.508 15.173 24.744 3.506
RMR 0.144 9.725 14.117 24.196 3.451
WMAMR 0.086 5.803 8.109 26.658 2.023
EG 0.017 2.346 2.852 17.111 1.143
ONS -0.044 -4.256 -5.281 41.920 0.633
UP 0.018 2.506 3.046 16.63 1.154

Table 4.8: The evaluation criteria results for TD3-11-lstm and TD3-3-lstm-rmr models on
the S&P500 test dataset along with OLPS algorithms. The best value for each criteria is
bold.
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Average Daily Sharpe Sortino Maximum Final Portfolio
Model Yield (%) Ratio (%) Ratio (%) Drawdown (%) Value

TD3 models 0.078± 0.169 5.812± 12.713 10.317± 21.975 31.984± 13.616 5.515± 9.265
TD3-rmr models 0.251± 0.142 18.853± 10.1 29.754± 16.981 18.365± 5.983 15.263± 13.481

Table 4.9: Result comparison of TD3 and TD3-rmr models on the S&P500 test dataset.

Both TD3-11-lstm and TD3-3-lstm-rmr achieve greater overall results than the OLPS
algorithms. Additionally, TD3-3-lstm-rmr beats TD3-11-lstm on all evaluation criteria.
The statistical analysis done for the NYSE(N) dataset is excluded for the SP500 dataset,
due to the conclusive results currently obtained.

4.4 | Experiment 3 Results
In the third experiment, we address the third objective by combining the four models
trained in the previous experiment (TD3-3-lstm-rmr, TD3-7-lstm-rmr, TD3-11-lstm-rmr,
and TD3-14-lstm-rmr) into one via an ensemble strategy. The proposed ensemble algo-
rithm makes use of a window or observation length w to make use of the best perform-
ing agent in terms of average return at each step. Throughout our experiment, w is set to
21, which is approximately one month in trading days. We hypothesise that the com-
bination of multiple DRL-models with differing state formats into one ensemble model
improves portfolio optimisation performance.

4.4.1 | NYSE(N) Testing Results
The portfolio values achieved by the ensemble model are visualised along with its’ par-
ent models and benchmark OLPS algorithms in Figure 4.10. The daily portfolio choices
are visualised in Figure 4.11. This is accompanied by a plot of the portfolio values from
the parent DRL models for reference. The evaluation criteria for the portfolio results
obtained are available in Table 4.10. The ensemble model achieves a greater average
daily yield, Sharpe ratio, Sortino ratio and final portfolio value than all our DRL mod-
els and OLPS algorithms, although the TD3-3-lstm-rmr model had a better maximum
drawdown score.
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Figure 4.10: Portfolio values for the ensemble model along with our DRL models from
the previous experiment, along with OLPS algorithms on the NYSE(N) test dataset.

Average Daily Sharpe Sortino Maximum Final Portfolio
Model Yield (%) Ratio (%) Ratio (%) Drawdown (%) Value

Ensemble 0.276 7.387 12.703 47.108 6.810

TD3-3-lstm-rmr 0.195 6.877 11.145 33.125 4.174
TD3-7-lstm-rmr 0.103 3.233 4.448 62.606 1.670
TD3-11-lstm-rmr -0.066 -1.611 -2.035 92.460 0.250
TD3-14-lstm-rmr 0.151 3.584 5.264 79.801 1.838

Market Value (UCRP) 0.015 0.768 0.982 63.279 0.970
BCRP 0.114 3.737 5.803 73.208 1.876
OLMAR 0.220 3.414 4.678 91.443 1.206
PAMR 0.182 3.666 5.072 79.034 1.797
RMR 0.210 3.260 4.527 91.612 1.104
WMAMR 0.024 0.377 0.478 94.642 0.206
EG 0.013 0.711 0.907 63.122 0.962
ONS 0.006 0.076 0.085 96.181 0.072
UP 0.013 0.696 0.892 63.490 0.958

Table 4.10: The evaluation criteria results for each model on the NYSE(N) test dataset.
The best value for each criteria is bold.
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Figure 4.11: Plots of the portfolio choices made by the ensemble agent on the NYSE(N)
test dataset, superimposed on the ensemble portfolio value graph, with the correspond-
ing portfolio values normalised to the same starting point.

4.4.1.1 | Further statistical testing

To further evaluate the performance of our ensemble model, along with our DRL models
and the OLPS algorithms, we calculate the rolling window values for each evaluation
criteria with a window of 60 days/steps. We visualise a number of these results in
Figure 4.12 and use the mean and standard deviation of the acquired data in t-tests to
compare the portfolio generated by the ensemble agent against the parent DRL models
and the benchmark OLPS algorithms.
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(a) Sortino Ratio

(b) Maximum Drawdown

Figure 4.12: Rolling window analysis on the NYSE(N) dataset, comparing the perfor-
mance of the ensemble model with two of the best performing benchmarks, and one of
the best performing DRL models.
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Table 4.11: T-test results between the rolling evaluation criteria results obtained by our ensemble model, and that of the models
created in the previous experiment along with the benchmark and OLPS algorithms on the NYSE(N) test dataset.

Model Average Daily Yield Sharpe Ratio Sortino Ratio Maximum Drawdown
t-stat p-value t-stat p-value t-stat p-value t-stat p-value

CRP 17.23 8.745e-62 5.704 1.363e-08 13.23 3.002e-38 13.63 2.353e-40
BCRP 7.942 3.45e-15 3.087 0.002053 6.74 2.111e-11 -0.7948 0.4268

OLMAR 1.303 0.1926 7.167 1.105e-12 3.504 0.0004698 -20.64 2.859e-85
PAMR 3.689 0.0002314 4.806 1.665e-06 6.7 2.761e-11 -12.05 3.251e-32
RMR 1.562 0.1185 6.767 1.762e-11 3.646 0.0002733 -20.09 2.529e-81

WMAMR 9.119 1.934e-19 9.215 8.271e-20 6.402 1.949e-10 -19.85 1.302e-79
EG 17.34 1.799e-62 5.764 9.631e-09 13.36 6.382e-39 13.81 2.529e-41

ONS 13.27 1.912e-38 10.09 2.464e-23 15.25 1.534e-49 -15.01 4.294e-48
UP 17.19 1.559e-61 5.652 1.832e-08 13.22 3.439e-38 13.49 1.277e-39

TD3-3-lstm-rmr 5.147 2.933e-07 -0.1003 0.9201 -0.08957 0.9286 13.22 3.61e-38
TD3-7-lstm-rmr 9.717 8.442e-22 6.217 6.246e-10 7.93 3.78e-15 8.535 2.882e-17

TD3-11-lstm-rmr 15.78 1.074e-52 13.07 2.099e-37 14.34 2.756e-44 -12.04 3.294e-32
TD3-14-lstm-rmr 4.781 1.885e-06 1.269 0.2046 3.208 0.001357 -8.66 1.015e-17
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4.4.2 | SP500 Testing Results
An ensemble model is similarly created for the SP500 dataset, using TD3-3-lstm-rmr,
TD3-7-lstm-rmr, TD3-11-lstm-rmr, and TD3-14-lstm-rmr. The portfolio values achieved
by the ensemble model are visualised along with the parent models and benchmark
OLPS algorithms in Figure 4.13. Furthermore, the daily portfolio choices are visualised
in Figure 4.14. This is accompanied by a plot of the portfolio values from the parent
DRL models for reference. The evaluation criteria for the portfolio results obtained are
available Table 4.12.

Figure 4.13: Portfolio values for the ensemble model along with our DRL models from
the previous experiment and the ones acquired by OLPS algorithms on the SP500 test
dataset.
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Average Daily Sharpe Sortino Maximum Final Portfolio
Model Yield (%) Ratio (%) Ratio (%) Drawdown (%) Value

Ensemble 0.268 19.775 29.750 15.724 10.917

TD3-3-lstm-rmr 0.379 30.306 49.204 10.848 30.843
TD3-7-lstm-rmr 0.346 22.460 35.208 18.581 21.913
TD3-11-lstm-rmr 0.211 16.246 25.876 18.537 6.513
TD3-14-lstm-rmr 0.069 6.401 8.730 25.494 1.785

Market Value (UCRP) 0.017 2.312 2.815 17.072 1.140
BCRP 0.070 4.211 5.625 33.206 1.671
OLMAR 0.145 9.702 13.834 32.493 3.481
PAMR 0.146 10.508 15.173 24.744 3.506
RMR 0.144 9.725 14.117 24.196 3.451
WMAMR 0.086 5.803 8.109 26.658 2.023
EG 0.017 2.346 2.852 17.111 1.143
ONS -0.044 -4.256 -5.281 41.920 0.633
UP 0.018 2.506 3.046 16.63 1.154

Table 4.12: The evaluation criteria results for each model on the SP500 test dataset. The
best value for each criteria is bold.

Figure 4.14: Plots of the portfolio choices made by the ensemble agent on the SP500 test
dataset, superimposed on the ensemble portfolio value graph, with the corresponding
portfolio values normalised to the same starting point.
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4.4.2.1 | Further statistical testing

To further evaluate the performance of our ensemble model, along with our DRL models
and the OLPS algorithms, we calculate the rolling window values for each evaluation
criteria with a window of 60 days/steps. Finally, we visualise a number of these results
in Figure 4.12 and use the mean and standard deviation of the acquired data in t-tests
to compare the portfolio generated by the ensemble agent against all benchmark OLPS
algorithms.
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(a) Sharpe Ratio

(b) Sortino Ratio

Figure 4.15: Rolling window analysis on the SP500 dataset, comparing the performance
of the ensemble model with two of the best performing benchmarks, and two of the best
performing DRL models.
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Table 4.13: T-test results between the rolling evaluation criteria results obtained by our ensemble model and the benchmark
OLPS algorithms on the SP500 test dataset.

Model Average Daily Yield Sharpe Ratio Sortino Ratio Maximum Drawdown
t-stat p-value t-stat p-value t-stat p-value t-stat p-value

CRP 36.62 2.911e-221 25.38 3.751e-122 24.17 2.055e-112 11.54 8.312e-30
BCRP 23.3 1.661e-105 29.63 2.872e-158 27.45 1.756e-139 -12.19 6.149e-33

OLMAR 10.14 1.492e-23 17.46 2.58e-63 13.73 6.167e-41 -9.972 7.55e-23
PAMR 9.904 1.446e-22 17.49 1.622e-63 17.15 2.682e-61 -9.148 1.49e-19
RMR 11.59 4.927e-30 16.91 8.884e-60 12.44 3.568e-34 -11.91 1.467e-31

WMAMR 18.89 6.552e-73 25.78 1.736e-125 21.78 8.713e-94 -14.16 2.747e-43
EG 36.56 9.441e-221 25.37 4.154e-122 24.22 8.896e-113 11.52 1.023e-29

ONS 42.74 3.294e-278 39.48 7.878e-248 33.7 1.529e-194 -2.371 0.01782
UP 36.46 9.234e-220 25 4.472e-119 23.77 3.198e-109 11.68 1.745e-30

TD3-3-lstm-rmr -10.66 8.831e-26 -18.63 3.972e-71 -14.28 6.044e-44 13 4.787e-37
TD3-7-lstm-rmr -6.77 1.723e-11 -3.438 0.000598 -3.479 0.0005156 0.7714 0.4406
TD3-11-lstm-rmr 5.756 1.008e-08 9.091 2.456e-19 7.774 1.252e-14 0.6315 0.5278
TD3-14-lstm-rmr 23.96 9.908e-111 23.02 2.464e-103 21.86 2.09e-94 -1.424 0.1545
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4.5 | Evaluation & Discussion
In this section, we evaluate the results obtained in our experiments with regards to the
research objectives and corresponding hypotheses defined.

4.5.1 | Experiment 1
The first experiment addressed the first research objective, which involved investigat-
ing how the DRL-based portfolio optimisation models perform compared to OLPS algo-
rithm benchmarks, and whether models using the TD3 framework perform better than
those with DDPG. Below, we highlight each hypothesis pertaining to this experiment
and evaluate the results obtained.

� Hypothesis: The portfolio optimisation models using the TD3 DRL framework
provide improved results over the ones using DDPG.

The training results obtained (Figure 4.1) show the TD3 frameworks’ superiority
in the training phase over the DDPG framework. This was expected, as the re-
sults obtained by Fujimoto et al. (2018) on openAI Gym environments had shown
similar results. When applying the models with the best in-sample performance
for each framework on the test datasets, the TD3 based models were found to
achieve greater results. This is true for both the NYSE(N) dataset, where the TD3
based model outperforms the DDPG based one on most of the evaluation criteria
(Table 4.1), and the SP500 dataset, where the TD3 based model outperforms the
DDPG based one on all criteria (Table 4.3). Additionally, through further analysis
of the generated portfolios, the TD3 based portfolio was found to be more diver-
sified, and consisted of more frequent weight shifts (Figures 4.4 and 4.5). Based
on these results obtained, we conclude that the models using the TD3 framework
do, in fact, perform better than those with DDPG. Despite this, within the result
comparisons which take all the trained models into consideration (Tables 4.2 and
4.4), the standard deviation scores on certain evaluation criteria shed light on the
inconsistent outcomes achieved on different window lengths. The enhancement
in the state format discussed and evaluated within the second experiment could
address this inconsistency between performances on different window lengths.

� Hypothesis: The results obtained by our DRL portfolio optimisation models ex-
ceed those of the benchmarks.

This hypothesis fails on the NYSE(N) dataset due to BCRP achieving the overall
best Sharpe ratio, Sortino ratio and final portfolio value, and OLMAR achieving
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the overall best average daily yield. Despite this, TD3-14-lstm does achieve the
best maximum drawdown due to the superior performance during the crash pe-
riod in the test dataset (Table 4.1). On the other hand, the results obtained on the
SP500 dataset, shown in Table 4.8, indicates that the TD3-11-lstm outperformed all
the benchmarks on all the evaluation criteria observed. The difference in bench-
mark performance between datasets could be attributed to possible dataset bias
on the NYSE(N) dataset (Nazir, 2019). This is due to the dataset being a standard
one used in numerous studies. The recurring use of the same standard dataset
could possibly cause the algorithms to be tailored towards the dataset itself rather
than the problem in general. Dataset bias on these datasets is not proven, and the
NYSE(N) dataset, along with others, still is considered a fair testing dataset (Li
and Hoi, 2014). This hypothesis is to be revisited on the other experiments.

4.5.2 | Experiment 2
The second experiment attempted to improve the TD3 model from the first experiment
to address the second research objective, which involves investigating whether the in-
clusion of the enhanced moving average equation used in RMR within the state format
has a positive effect on the performance of the DRL-based portfolio optimisation mod-
els. Below, we highlight each hypothesis pertaining to this experiment and evaluate the
results obtained.

� Hypothesis: The enhancement within the state format positively affects the per-
formance of the DRL-based portfolio optimisation models.

The adjustment in the state format was found to improve the winning model from
the first experiment on the NYSE(N) dataset, as the portfolio generated achieved
significantly greater rolling values of average daily yield, Sharpe ratio and Sortino
ratio than its’ predecessor on the NYSE(N) dataset (Tables 4.5 and 4.7). Con-
versely, the predecessor still had a greater rolling maximum drawdown value.
Furthermore, on the SP500 dataset, the TD3-3-lstm-rmr model outperformed the
TD3-11-lstm model on all the evaluation criteria observed. Based on these results
obtained, we conclude that the enhancement within the state format did, in fact,
have a positive effect on the performance of the DRL-based portfolio optimisation
models. Additionally, the result comparisons which take all the trained models
into consideration (Tables 4.6 and 4.9), show a light decrease in the inconsistency
previously discussed in the first experiment.
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� Hypothesis: The results obtained by our DRL portfolio optimisation models ex-
ceed those of the benchmarks.

The models with the improved state format generally outperform all the bench-
marks on most evaluation criteria, as seen in Tables 4.7 and 4.8.

4.5.3 | Experiment 3
The third and final experiment introduces the ensemble framework that made use of
the trained models from the second experiment to create a further optimised portfolio.
This is done to address the third research objective, which involves investigating if the
combination of multiple DRL-models into one ensemble model improves the overall
performance. The ensemble model is tested on both the NYSE(N) and SP500 datasets,
as visualised in Figures 4.10 and 4.13.

� Hypothesis: The combination of multiple DRL-models with differing state for-
mats into one ensemble model improves portfolio optimisation performance.

On the NYSE(N) dataset, the ensemble portfolio surpassed all other models and
benchmarks tested, except for TD3-3-lstm-rmr on the maximum drawdown cri-
terion (Tables 4.10 and 4.11). Figure 4.11 serves as a proof of concept, showing
the decisions being made daily by the ensemble algorithm. An area worth high-
lighting is the conversion of the light bump felt by the TD3-11-lstm-rmr around
19/08/2009 into a peak in the ensemble portfolio. Despite the ensemble algorithm
not being as successful on the SP500 dataset as on the NYSE(N) dataset, it still per-
formed exceptionally well, as it outperforms all the OLPS algorithms, along with
two of the DRL models created in the second experiment (Table 4.13).

� Hypothesis: The results obtained by our DRL portfolio optimisation models ex-
ceed those of the benchmarks.

The ensemble models generally outperform all the benchmarks on most evalua-
tion criteria, as seen in Tables 4.11 and 4.13.

90



5

Conclusion & Future Work

In this work, we have implemented an ensemble strategy for portfolio optimisation,
using deep reinforcement agents trained with state formats consisting of different ob-
servation windows. These agents are built with the state-of-the-art TD3 DRL frame-
work, proven to perform successfully in problem domains consisting of continuous ac-
tion spaces. Our models are tested on two identified datasets, NYSE(N) and SP500.
Before implementing the ensemble framework, agents created with the TD3 framework
were compared with those created using its’ predecessor, DDPG, which could be seen
implemented in multiple solutions found in recent related literature. These agents used
states with four different observation window sizes identified in the literature observed.
The performance of these agents is also compared against portfolio selection OLPS al-
gorithms. The results acquired suggested that the TD3-based models had acquired an
enhanced portfolio performance on the NYSE(N) and SP500 datasets. After an inves-
tigation on possible improvements on our models, we optimised the agents by imple-
menting an enhanced state format, using an enhanced moving average function found
in the RMR OLPS algorithm. This adjustment was proven to enhance the performance
on the TD3-14-lstm model on the NYSE(N) dataset, and had a similarly successful results
on the SP500 dataset. These enhanced models were trained and used in our ensemble
algorithm to be tested on the two datasets. The ensemble strategy was found to en-
hance performance in terms of Average daily yield, Sharpe Ratio and Sortino Ratio on
the NYSE(N) dataset, but failed to beat all our previous models on the SP500 dataset.
Despite this, the ensemble models consistently achieved greater overall evaluation cri-
teria results than the benchmarks and OLPS algorithms.
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5.1 | Revisiting Aim and Objectives
Three objectives have been defined in Chapter 1, including the following:

1. Investigate whether recent advances in DRL can lead to improved investment
performance when compared to OLPS algorithms.

In the first experiment, we compared the TD3 against its predecessor, DDPG, in a
portfolio optimisation setting using the NYSE(N) and SP500 datasets. The experi-
ment addressed the first objective and tested the hypotheses of whether:

� The portfolio optimisation models using the TD3 DRL framework provide
improved results over the ones using DDPG.

� The results obtained by our DRL portfolio optimisation models exceeds those
of the benchmarks.

The results acquired suggest that the TD3-based models observed achieved better
portfolio performance on both datasets. This is possibly attributed to the enhanced
learning speed and further optimisation that the TD3 framework provided. The
results obtained are shown in Tables 4.1 and 4.3. Based on these results obtained,
we conclude that the corresponding hypothesis has been achieved and that, there-
fore, the portfolio optimisation models using the TD3 DRL framework provide
improved results over the ones using DDPG. On the other hand, the models ob-
served in the first experiment fail to consistently provide evaluation criteria scores
greater than those from the benchmarks defined. Due to this, the second hypoth-
esis fails.

2. Investigate how OLPS features can be utilised to improve DRL market state
representation, leading to increased investment performance.

The experiment in the second experiment addressed the second objective and
tested the hypotheses of whether:

� The enhancement within the state format positively affects the performance
of the DRL-based portfolio optimisation models.

� The results obtained by our DRL portfolio optimisation models exceeds those
of the benchmarks.

The inclusion of the enhanced moving average function from RMR within the
session state was found to have a positive effect on the TD3-14-lstm-rmr and TD3-
3-lstm-rmr models on the NYSE(N) and SP500 datasets respectively. The models
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obtain greater overall evaluation criteria results than their counterparts missing
the enhancement in the state format. This can be observed in Tables 4.7 and 4.8.
Based on these results obtained, we conclude that the corresponding hypothesis
has been achieved and that, therefore, the enhancement within the state format
positively affects the performance of the DRL-based portfolio optimisation mod-
els. Furthermore, the models observed were found to achieve better overall eval-
uation criteria results than all the benchmarks and OLPS algorithms. Therefore,
we conclude that the second hypothesis has been achieved and that hence, the
results obtained by our DRL portfolio optimisation models exceed those of the
benchmarks.

3. Explore possible investment performance improvements through the use of
DRL ensemble strategies.

In our paper, we are able to see the potential of the proposed ensemble DRL model
to perform more profitable daily trades by selecting agents based on their perfor-
mance in the current market. The third experiment addressed the third objective
and tested the hypotheses of whether:

� The combination of multiple DRL-models with differing state formats into
one ensemble model improves portfolio optimisation performance.

� The results obtained by our DRL portfolio optimisation models exceeds those
of the benchmarks.

The proposed ensemble DRL model fails to consistently achieve better results than
the previous models observed, as TD3-3-lstm-rmr and TD3-7-lstm-rmr achieved
better overall results than the ensemble model on the SP500 test dataset. This
can be observed in Tables 4.11 and 4.13. Therefore, the first hypothesis fails. The
ensemble models achieved better overall evaluation criteria results than all the
benchmark OLPS algorithms on both datasets. Therefore, we conclude that the
second hypothesis has been achieved and that hence, the results obtained by our
DRL portfolio optimisation models do, in fact, exceed those of the benchmarks.

5.2 | Contributions
The main contributions of this work, achieved with the completion of the highlighted
objectives, include addressing three gaps found in literature by:
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� Applying the TD3 DRL framework on the portfolio optimisation domain. Many
of the existing literature opted for the use of its predecessor, DDPG, as discussed
in Sections 1.3.1 and 2.5.1, and thus, we compare our implementation using the
TD3 algorithm against an implementation using the DDPG algorithm. We make
use of our implementation using the DDPG algorithm, and not extend one of the
studies in recent literature observed due to the lack of a standard stock trading en-
vironment, which is required to accurately compare the performance of portfolio
optimisation models (as discussed in Section 1.3.2).

� Applying OLPS functionality within the DRL state format, in our proposed DRL
models. No state format has been identified as the best for this problem domain
in literature observed, as discussed in Section 1.3.2. Additionally, none of the
observed recent literature has attempted to use functions from OLPS algorithms
within the state format to aid the DRL agent.

� Creating an ensemble portfolio optimisation model, with state format being the
differing element between the combined DRL algorithms within. In contrast, liter-
ature observed had used DRL framework as the differing element. Additionally,
DRL ensemble algorithms have been scarcely studied on the portfolio selection
problem.

All the software developed for this work has been open-sourced and made publicly
available on GitHub 1.

5.3 | Critique and Limitations
Whilst training all the models discussed, it was observed that the models using the
TD3 DRL framework had required an increased training time. The increased train-
ing time could be attributed to the increased complexity in the critic network. This
is counteracted by the value function threshold, as the TD3 based models managed to
converge to an optimal result with less episodes than the DDPG models. In the second
experiment, even though the inclusion of the RMR enhanced moving average function
provided greater performance on some window-lengths, the TD3-11-lstm-rmr model
under-performed on the NYSE(N) test dataset, and the TD3-14-lstm-rmr model under-
performed on the SP500 test dataset. It was noticed that these two models had possibly
converged too soon to a local optimum and reached the value function threshold in a small
number of training episodes.

1https://github.com/NigelCusc/DDPG_TD3_PortfolioOptimization_tensorflow-1.15.4
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5.4 | Future Work
In our experiments, we evaluate our models on the NYSE(N) and SP500 datasets using
real asset data from the NYSE and S&P500 stock trading markets, respectively. De-
spite these being very popular markets, others exist, such as DJIA and cryptocurrencies.
Therefore, the models observed in this work could be evaluated on additional datasets
using real asset data from alternate stock trading markets. Additionally, new agents
built using other DRL frameworks such as Proximal Policy Optimisation (PPO) and
Advantage Actor-Critic (A2C) could be included within the ensemble model.

Additionally, one known limitation of this kind of work is the limited quantity of
data available for training. A possible solution to this is to alter the environment to
allow intra-day trading. Although this would increase the number of steps, it might
still not be enough information. Another solution is to consider data augmentation
strategies to create new time-series data for portfolio optimisation agents to train on.

In this work, we focused on the Capital Growth Theory, as we evaluated our models
against OLPS algorithms instead of alternative methods based on the Mean Variance
Theory. The study can be shifted into one focused on the Mean Variance Theory with a
more risk-aware solution. This could be done by changing the reward function into a
function such as Sharpe Ratio or Sortino Ratio.

Prior to the experiments, we proposed an enhancement to the RL state format. Due
to time constraints, only one function was proposed and evaluated. Further enhance-
ments could be included in the state format, expanding on what we have done in the sec-
ond experiment. Throughout our experiments, the training performance of TD3 based
models were not affected by the size of the state vector as much as the DDPG based
models. This would suggest that the TD3 models could potentially benefit from in-
creasing the observable state size. Furthermore, alternate functions used inside OLPS
algorithms or technical indicators could be included within the state to optimise the so-
lution further. Although, greater observation state sizes could slow down the training
speed of the model.

Additionally, the models’ training performance could be enhanced further by using
a genetic algorithm in a pre-training phase, such as the one used by Gran (2019). Al-
ternatively, studies such as the ones by Khadka et al. (2019), and Pourchot and Sigaud
(2019) introduce frameworks that combine the TD3 with Evolutionary frameworks to
create Evolutionary Reinforcement Learning frameworks. However, despite these al-
gorithms showing great potential in their respective literature, they have not yet been
evaluated on our problem domain.
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5.5 | Final Remarks
At the time of this work, the TD3 DRL framework has been scarcely used in our prob-
lem domain. Throughout our experiments, the TD3-based agents with the state en-
hancement manage to achieve successful portfolios that beat the benchmarks and OLPS
algorithms identified. The TD3 framework is compared against its predecessor, DDPG,
which has been applied in various recent related studies. Ensemble algorithms have
also been scarcely applied in portfolio selection. Unlike the recent related study ob-
served, our ensemble algorithm combined DRL models with differing window lengths.
Despite the ensemble algorithm not achieving the intended goal on both datasets, they
show great potential as they consistently beat the identified benchmarks.
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Installation Instructions

Our project was created on Ubuntu 20, using Anaconda. PIP and Anaconda requirements
are available in both .txt and .yml format. You may choose one as you deem fit. These
are:

� requirements.txt - pip install –user –requirement requirements.txt

� tensor_keras_portfolio.yml - conda env create -f tensor_keras_portfolio.yml

Further information can be found in the readme file, within the Github repository.
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