
Data-Driven and
Theory-Guided
Pseudo-Spectral
Seismic Imaging Using
Deep Neural Network
Architectures

Christopher Zerafa

Supervised by Prof Pauline Galea

Co-supervised by Prof Cristiana Sebu

Department of Geosciences

Faculty of Science

University of Malta

September, 2021

A thesis submitted in partial fulfilment of the requirements for the degree
of Ph.D. in Geosciences.

Copyright ©2021 University of Malta

WWW.UM.EDU.MT

First edition, September 30, 2021

When something is important enough,
you do it even if the odds are not in your favor.

Elon Musk

iv

Acknowledgements

Writing a significant scientific thesis is hard work and it would not possible
without the support from various people. First of all, I wish to express my great-
est appreciation towards my supervisor Prof Pauline Galea and co-supervisor Prof
Cristiana Sebu for the intellectual guidance, valuable advice and help that was
given to me during my research. The thesis would not have been written without
their supervision and support.

My special appreciation to Dr. Godwin Debono who encouraged me to pursue
this work and who’s support have been invaluable.

I would like to thank Dr. Carlo Giunchi at Istituto Nazionale di Geofisica e
Vulcanologia for providing the necessary computational resources and Dr. Elena
Cuoco at EGO for the collaborations that we have had, and ones to be held.

I would like to express immense thanks to my wife Rachel, she has been ex-
tremely supportive of me throughout this entire process and has made countless
sacrifices to help me get to this point.

Last but not least, gratitude goes to to my parents, Charles and Jane, my brother
Daniel, and friends for their support and love. In more ways than one, I am here
because of them.

v

Abstract

Full Waveform Inversion seeks to achieve a high-resolution model of the sub-
surface through the application of multi-variate optimization to the seismic inverse
problem. Although now a mature technology, FWI has limitations related to the
choice of the appropriate solver for the forward problem in challenging environ-
ments requiring complex assumptions, and very wide angle and multi-azimuth
data necessary for full reconstruction are often not available.

Deep Learning techniques have emerged as excellent optimization frameworks.
These sit on a spectrum between data and theory-guided methods. Data-driven
methods impose no physical model of wave propagation and are not exposed to
modelling errors. At the opposite end of the spectrum there are deterministic mod-
els governed by the laws of physics. In between, there are theory-guided methods
which have some fixed parameters able mimic physical processes. This enables
more intelligibility as compared to purely data driven approach.

Application of seismic FWI has recently started to be investigated within Deep
Learning. This has focussed on the time-domain approach, while the pseudo-spectral
domain has not been yet explored. However, classical FWI experienced major break-
throughs when pseudo-spectral approaches were employed. This thesis addresses
the lacuna that exists in incorporating the pseudo-spectral approach within Deep
Learning. This has been done by re-formulating the pseudo-spectral FWI problem
as a Deep Learning algorithm for both a data-driven and a theory-guided pseudo-
spectral approach. A deep neural network (DNN) and recurrent neural network
(RNN) framework are derived. Either was formulated theoretically, qualitatively
assessed on synthetic data, applied to a two-dimensional Marmousi dataset and
evaluated against deterministic and time-based approaches.

Inversion of data-driven pseudo-spectral DNN was found to outperform clas-
sical FWI for deeper and over-thrust areas. This is due to the global approxima-
tor nature of the technique and hence not bound by forward-modelling physical
constraints from ray-tracing. Pseudo-spectral theory-guided FWI using RNN was
shown to be more accurate with only 0.05 error tolerance and 1.45% relative percent-
age error. Indeed, this provides more stable convergence, able to identify faults and
has more low frequency content than classical FWI. From the comparative analysis
of data-driven DNN and theory-guided RNN approaches, DNN was better per-
forming, and recovered more of the velocity contrast, whilst RNN was better at
edge definition. In general, RNN was more suited in shallow and deep sections due
to cleaner receiver residuals.

Besides showing the improved performance of FWI formulated as a Deep Learn-
ing approach, this thesis highlighted the significant potential of such methods in
other fields which have so far not been explored. New research avenues resulting
from the shift in the inversion paradigm were identified and the next steps on how
to continue developing these two frameworks presented.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aims & Objectives . 3
1.3 Document Structure . 5

2 Literature Review 7
2.1 Full Waveform Inversion . 7

2.1.1 FWI as Local Optimization . 8
2.1.2 Applications in Time and Frequency 8
2.1.3 Beyond Academic Experiments . 9

2.2 Deep Neural Networks . 12
2.2.1 Neural Networks for Inverse Problems 12
2.2.2 Evolution of Neural Networks . 13
2.2.3 Deep Neural Network Architecture Landscape 16
2.2.4 Not Just Algorithms . 18

2.3 Neural Networks in Geophysics . 19
2.3.1 Legacy Velocity Inversion . 20
2.3.2 Data-Driven Approaches to Velocity Estimation 21
2.3.3 Wave Physics as an Analogue Recurrent Neural Network 22

3 Theoretical Considerations 24
3.1 FWI as Local Optimization . 24

3.1.1 Model Update . 25
3.1.2 Regularization . 26
3.1.3 Difference between Time and Pseudo-spectral FWI 26

vi

Contents vii

3.1.4 FWI Algorithm Summary . 27
3.2 FWI as a Data-Driven DNN . 28

3.2.1 Artificial Neuron, Perceptron and Multi-Layer Perceptron 28
3.2.2 Feed-forward Architectures and Deep Networks 28
3.2.3 A Universal Approximation Framework 29
3.2.4 Back-Propagation and Learning with DNN 30
3.2.5 Optimizing the Loss Function . 32
3.2.6 Generalization of DNN for “unseen” Data 33
3.2.7 Convolutional Neural Networks . 33
3.2.8 Neural Network Architecture Types 34
3.2.9 Outline for Solving FWI with Data-Driven DNNs 35

3.3 RNN as an Analogue of FWI . 36
3.3.1 Forward Pass . 36
3.3.2 Backward Pass . 37
3.3.3 Vanishing Gradient . 38
3.3.4 Long Short-Term Memory . 38
3.3.5 Network Training . 40
3.3.6 LSTM as a Substitute for Wave Propagation 40
3.3.7 Outline for Solving FWI with a RNN 42

4 Numerical Results 43
4.1 Software Setup . 43
4.2 FWI as a Data-Driven DNN . 43

4.2.1 Train-Test Data Split . 43
4.2.2 DNN Framework . 47
4.2.3 Multi-layer Numerical Results . 48
4.2.4 Pre-Processing . 51
4.2.5 Architecture Comparison . 52
4.2.6 Architecture-Loss Combination . 56
4.2.7 Marmousi Model . 57

4.3 RNN as an Analogue of FWI . 69
4.3.1 Experiment Setup . 69
4.3.2 Forward Modelling using RNNs . 69
4.3.3 Gradient Comparison . 72
4.3.4 Hyper-Parameter Tuning . 73
4.3.5 2D Synthetic . 75

4.4 Data-Driven and Theory-Guided NN Frameworks 82

Contents viii

4.4.1 Data Volume . 82
4.4.2 Data-Driven Uplift . 82
4.4.3 Inversions . 83

4.5 Summary . 88

5 Discussion and Conclusions 90
5.1 Critique, Limitations and Future Work . 90

5.1.1 Inversion Paradigm . 90
5.1.2 Training Datasets for Real Data . 92
5.1.3 Forward Modelling and Multiples 94
5.1.4 Implications of Data Volume and Computational Power 95
5.1.5 Maturity of the Frameworks . 96
5.1.6 Other Areas of Deep Learning . 96

5.2 Conclusion . 97

Appendix A Theoretical Tools 100

Appendix B Code and Additional Results 115

Appendix C Publications and Collaborations 129

References 133

List of Figures

1.1 Horizontal slices though the Samson Dome. 2
1.2 Limitations of FWI due to poor illumination. 3

2.1 First practical application of FWI using the Marmousi model 9
2.2 Improvements in velocity model and pre-stack depth migrated images ob-

tained through FWI over the Valhall field. 10
2.3 Imaging improvements obtained through orthorhombic imaging. 11
2.4 The Single Neuron Perceptron . 14
2.5 Mark I Perceptron Machine . 14
2.6 Evolution of accuracy for the ImageNet challenge. 16
2.7 LeNet5 CNN architecture to classify handwritten characters. 17
2.8 An unrolled RNN . 18
2.9 Faster convergence of state-of-the-art Adam cost function. 19
2.10 Block diagram for RNN system by Michaels & Smith (1992) 20
2.11 Architecture for first NN application to FWI. 21
2.12 The inversion of Marmousi velocity model using RNN forward modelling. . 23

3.1 Schematic FWI workflow solved as an iterative optimization process. 27
3.2 Fully connected NN with 2 hidden layers. 29
3.3 Advantages of deep NN over shallow NN. 30
3.4 DNN schematic . 31
3.5 NN loss function without and with regularization 33
3.6 Historic overview of CNN architectures . 34
3.7 Schematic of DNN workflow . 35
3.8 Difference between MLP and RNN architectures. 36
3.9 Vanishing gradient problem for RNNs. 38

ix

List of Figures x

3.10 Comparison between RNN and LSTM blocks. 39
3.11 Recasting of forward modelling within an LSTM 41
3.12 Schematic of RNN workflow . 42

4.1 Workflow for creating a pseudo-spectral synthetic trace. 45
4.2 The overall statistics on the training and testing dataset. 46
4.3 Pseudo-spectral FWI DNN workflow. 47
4.4 DNN predictions . 49
4.5 DNN training performance metrics. 50
4.6 Comparison of velocity profiles with and without scaling. 52
4.7 Normalised comparison of DNN architectures 54
4.8 Velocity inversion for different DNN architectures and losses. 55
4.9 Marmousi-2 and modified Marmousi-2 velocity model. 58
4.10 Velocity profiles through crosslines on Marmousi-2 and modified Marmousi-2. 58
4.11 Sample velocity profile, trace and CWT generated by Marmousi generator. . . 59
4.12 Training and Validation curves for DNN training and Learning Rate values. . 60
4.13 Explained variance and R2 Score metrics calculated per epoch. 60
4.14 Evolution of network histograms. 61
4.15 Evolution of velocity profile through different epochs. 62
4.16 Evolution of trace for Xline 2000, 8000 and 12000 through the different epochs. 63
4.17 Classical FWI with Sobolev space norm regularization. 64
4.18 Velocity profiles through Xlines on Marmousi, Initial and FWI results. 65
4.19 Comparison of DNN and Classical FWI reconstructed velocity models. 66
4.20 Zoomed comparison of DNN and Classical FWI velocity and errors. 67
4.21 DNN and Classical FWI amplitude spectra. 67
4.22 Velocity profiles through Xlines for Initial, DNN and FWI results. 68
4.23 Time inversions of velocity for Initial, DNN and FWI results. 68
4.24 Direct wave forward modelling for multi-source, multi-receiver geometry. . . 71
4.25 Reflected and transmitted wave RNN forward modelling. 71
4.26 Scattering wave RNN forward modelling. 71
4.27 Gradient comparison of RNN implementation with classical approaches. . . . 72
4.28 Hyper-Parameter tuning. 73
4.29 Effect of batch-size on inversion process. 74
4.30 Synthetic 2D Marmousi models for RNN training. 75
4.31 RNN loss performance. 76
4.32 Classical FWI and RNN implementation velocity model inversion. 78
4.33 Zoomed In RNN Models . 79

List of Figures xi

4.34 RNN models velocity resolution spectra . 80
4.35 Velocity profiles for RNN and classical FWI. 80
4.36 Labelled receivers for True, FWI and RNN models. 81
4.37 Classical FWI and RNN implementation velocity model inversion. 82
4.38 Ray-tracing coverage within forward modelling 83
4.39 Pseudo-spectral NN framework comparison of velocity inversion. 84
4.40 Zoomed In pseudo-spectral NN framework comparison 85
4.41 Velocity profiles for pseudo-spectral NN framework comparison. 86
4.42 Labelled receivers for pseudo-spectral NN framework comparison. 87

5.1 Data-driven inversion for CT-scans. 91
5.2 Improved FWI result with DNN as initial model 91
5.3 Development dataset directly influences the quality of inversion. 93
5.4 Alternative representations for a trace. 94
5.5 Comparison between inversion for legacy FWI and modern FWI. 96

A.1 Space-Time FD discretization stencil for the 1D acoustic wave equation. . . . 101
A.2 Activation functions f (x) and their derivative f

′
(x). 103

A.3 All possible sub-networks produced from dropout. 106
A.4 Example of 2D convolution. 108
A.5 Example of 2D max-pooling. 108
A.6 Activation functions f (x) and their derivative f

′
(x). 113

A.7 RNNs can be represented as directed acyclic graphs 114
A.8 LSTM preserves the gradient to deeper layers of a NN. 114

B.1 Sample velocity profile through original and modified Marmousi-2 model. . . 115
B.2 Classical FWI loss update. 116
B.3 Classical FWI frequency updates. 117
B.4 Ray-tracing using fteikpy. 118
B.5 1D Direct wave forward modelling comparison. 122
B.6 1D direct, reflected and transmitted wave forward modelling comparison. . . 123
B.7 1D scattering wave forward modelling comparison. 124
B.8 Losses for different loss optimizer learning rate hyper-parameter tuning. . . . 125
B.9 Different Loss optimizer learning rate hyper-parameter tuning results. 126
B.10 Velocity model inversion update progress. 127
B.11 Receiver progress through model updates. 128

List of Tables

4.1 Synthetic data generator parameters. 46
4.2 Quantitative assessment on the impact of pre-precessing 51
4.3 Quantitative assessment for architectures. 56
4.4 Quantitative assessment for loss optimizers. 56
4.5 Quantitative assessment for architecture and loss optimizers. 57
4.6 Marmousi data generator parameters. 59
4.7 Empirical comparison of 2D wavefield components. 70
4.8 Empirical comparison of gradient calculations. 72

B.1 Repositories defining different architectures used in Section 4.2. 118
B.2 Architecture and Loss comparison - Duration 119
B.3 Architecture and Loss comparison - Training MSE. 120
B.4 Architecture and Loss comparison - Under-fitting/over-fitting 120
B.5 Architecture and Loss comparison - Inversion RMSE 121
B.6 Empirical comparison of 1D Direct wave modelling to 1D Green’s function. . 122
B.7 Empirical comparison of 1D direct, reflected and transmitted wave modelling. 123
B.8 Empirical comparison of 1D scattering wave modelling. 124

xii

List of Abbreviations

CDP Common Depth Point . 77

CNN Convolutional Neural Network . 16

CWT Continuous Wavelet Transform . 44

DNN Deep Neural Network . 4

FD Finite Difference . 125

FFT Fast Fourier Transform . 44

FWI Full Waveform Inversion . 2

LSTM Long Short-Term Memory . 18

NN Neural Network . 4

RNN Recurrent Neural Network . 16

RPE Relative Percentage Error . 70

xiii

1

Introduction

1.1 | Motivation
The seismic reflection method is by far the most widely used tool in geophysical ex-
ploration (Sheriff and Geldart, 1985). It uses artificially generated seismic waves that
excite the earth and propagate through the subsurface. They are attenuated by inter-
actions with their medium of propagation, and are partially reflected back and trans-
mitted when coming across a high contrasting acoustic impedance. The reflected data
are recorded by receivers (geophones or hydrophones) at or close to the surface. The
time required for the waves to travel through the subsurface provides a measurement
from which a subsurface model of acoustic media is determined. Geological signifi-
cance is inferred from the data either directly from the seismic reflection method, or
more commonly, through the integration of other methods such as gravitational, mag-
netics, refraction and other data sources such as well log data, vertical seismic profiles
and geological settings of the region.

The search for new petroleum resources has pushed exploration areas of ever in-
creasing complicated subsurface geology where the success of exploration wells de-
pends heavily on the imaging of seismic data sets. To be able to image this geology,
solvers have gradually moved from ray tracing algorithms to one-way wave equation
methods and to acoustic and elastic two-way wave equation methods. These imaging
techniques have until recently been largely limited to depth mapping of seismic reflec-
tions at boundaries between rock formations. The extraction of other information avail-
able in seismic data sets was compromised by prohibitive computing processing time
and as a result only a fraction of the information contained in seismic datasets could be
extracted.

The availability of super computers and Graphical Processing Units in recent years

1

Chapter 1. Introduction 1.1. Motivation

has enabled seismic processing to implement previously prohibited imaging technol-
ogy. One such technology is Full Waveform Inversion (FWI), which honours the physics
of the wave equation for both phase and amplitude (Tarantola, 1987). The technique
does not only invert for conventional depth imaging of boundaries but also rock prop-
erties such as velocity (vp - compressional and vs - shear), lithology and pore-fill thus
providing a more comprehensive geology of the subsurface (Plessix et al., 2014). The
technique has also gained popularity after it was demonstrated to produce spectacu-
lar improvements in imaging subsurface geology beneath a heterogeneous overburden
- See Figure 1.1. This is a landmark in seismic exploration and has changed the way
seismic data is used and interpreted.

(a) Velocity model from conventional methods. (b) <10Hz FWI velocity model result.

Figure 1.1: Horizontal slices though the Samson Dome in the Barent Sea at 1350m show-
ing the uplift in imaging obtained through FWI. Axis indicated extend of the horizontal
slice were not present in the original image from Morgan et al. (2013).

FWI seeks to achieve a high-resolution model of the subsurface through the appli-
cation of multivariate optimization to the seismic inverse problem (Virieux and Operto,
2009). The inversion process begins with a best-guess initial model which is iteratively
improved using a sequence of linearized local inversions to solve a fully non-linear
problem. Figure 1.1 illustrates the image uplift which is achievable with FWI. In situa-
tions of more complex structures at depth with convoluted ray-paths in the overburden,
the inversion becomes more difficult and more computationally expensive. Figure 1.2
illustrates an example of FWI on the 2004 BP synthetic data. The zoomed section (d)
illustrates a lack of resolution of FWI.

2

Chapter 1. Introduction 1.2. Aims & Objectives

(a) 2004 BP synthetic for FWI.
(b) Zoom of complexity at
depth.

(c) 2D FWI result.
(d) Zoomed section high-
lighting lack of resolution.

Figure 1.2: Limitations of FWI due to poor illumination. From Shin et al. (2010).

1.2 | Aims & Objectives
Optimization theory is fundamental to FWI since the parameters of the system under
investigation are reconstructed from indirect observations that are subject to a forward
modelling process (Tarantola, 2005). The accuracy of this forward problem depends on
the validity of physical theory that links ground-truth to the measured data (Innanen,
2014). Moreover, solving for this inverse problem involves learning the inverse mapping
from the measurements to the ground-truth which is based on a subset of degraded or
best-estimate data (Tarantola, 2005; Tikhonov and Arsenin, 1977). Thus, two limitations
within inverse theory can be identified: (i) the forward problem and (ii) the training
data.

As evidenced throughout the historic development (reviewed in §2.1), choice of the
forward problem will impact the accuracy of the FWI result. Challenging environments
require more complex assumptions to try and better explain the physical link between
data and observations, with not necessarily improved levels of accuracies (Morgan et al.,
2013). Secondly, the data being used to reconstruct the mapping of measurements for
the ground-truth are not optimal. Very wide angle and multi-azimuth data is required

3

Chapter 1. Introduction 1.2. Aims & Objectives

to enable full reconstruction of the inverse problem (Morgan et al., 2016); which is not
always available. Furthermore, pre-conditioning of data is a necessity prior to FWI to
make the inversion better posed (Kumar et al., 2012a; Mothi et al., 2013; Peng et al., 2018;
Warner et al., 2013), however if done incorrectly this can degrade the inverse process
(Lines, 2014).

Recently, deep learning techniques have emerged as excellent models and gained
great popularity for their widespread success in pattern recognition tasks (Ciresan et al.,
2011, 2012), speech recognition (Hinton et al., 2012) and computer vision (Deng and Yu,
2013; Krizhevsky et al., 2015). The use of deep neural networks to help solve inverse
problems has been explored by Elshafiey (1991), Adler and Öktem (2017), Chang et al.
(2017), Wei et al. (2017) and has achieved state-of-the-art performance in image recon-
struction (Adler et al., 2017; Kelly et al., 2017; Petersen et al., 2017), super-resolution
(Bruna et al., 2015; Galliani et al., 2017) and automatic-colourisation (Larsson et al.,
2016). These deep learning based waveform inversion processes sit on a spectrum be-
tween strongly-data and strongly-theory guided methods. Data-driven methods im-
pose no physical model of wave propagation and Neural Network (NN) weights are all
trainable. These types of approaches require relatively exhaustive training datasets and
tend to be less robust. Yet, due to the large number of degrees of freedom, they are not
exposed to modelling errors as any conventional FWI algorithm (Li et al., 2019; Wu et al.,
2018b). At the opposite end of the spectrum there are deterministic models, with bases
in classical physics. In between, there are theory-guided or physics-informed methods
which have some parameters fixed as non-trainable. If non-trainable parameters are
built to mimic a physical process, the training model space now consists of only the
parameters for that process and the number shrinks drastically. This provides robust
training and enables more intelligibility as compared to purely data driven approach
(Biswas et al., 2019).

As with most techniques, after decades of development, FWI algorithms now only
being improved incrementally, with slight modification to the underlying algorithms.
The technique hence requires a fresh injection of ideas and academic pursuits to elevate
it to the next phase of development. Application of seismic FWI has recently started to
be investigated within the deep learning field and has so far been focused only on the
time-domain approach. However, classical FWI experienced pivotal breakthroughs via
pseudo-spectral approaches which enabled the technique to go beyond academic exper-
iments and be employed on real datasets (See § 2.1.3). The main aim of the research work
presented in this thesis was to investigate whether the same advantages apply when
pseudo-spectral FWI is developed within DNN. To current knowledge, there is no prior
work investigating the pseudo-spectral inversion within Deep Neural Network (DNN)

4

Chapter 1. Introduction 1.3. Document Structure

frameworks. Specifically, my study was motivated by the following research questions:
Are pseudo-spectral approaches possible within a DNN framework? Is the shift to a
data-driven inversion detrimental? How good can theory-guided inversion be? How
do pseudo-spectral DNN compare to deterministic conventional FWI? Are there any
particular benefits of data-driven or physics-guided pseudo-spectral DNN approaches?
How do pseudo-spectral DNN compare to time-based DNN approaches? Are there
any cross-over techniques between Deep Learning and geophysics which would benefit
either field? Could this cause the new wave of evolution of the FWI framework?

Hence, the main aim of this work was to develop these two novel approaches in
the form of data-driven and theory-guided pseudo-spectral FWI, compare them to tra-
ditional approaches and investigate their limitations. To this end, the following steps
were followed:

1. Building a comprehensive literature review of DNN applications within geophysics.
This will be focussed particularly on pseudo-spectral FWI approaches and high-
lights key examples for data-driven and theory-guided approaches.

2. Re-casting FWI within a DNN framework for both a data-driven direct learned in-
version and a theory-guided temporal based DNN formulation. Both approaches
were derived theoretically and assessed on synthetic data. The assessment built
up from simple 1D experiments, extended to 2D and evaluated on the standard
Marmousi model. The results were validated against classical FWI.

3. Analysing the limitations of both approaches and discussing future potential de-
velopments.

1.3 | Document Structure
This dissertation is composed of five chapters, each of them dealing with different as-
pects of a pseudo-spectral FWI within a Deep Learning framework.

� Chapter 1 is introductory and deals with introducing the topic and sets the aims
and objectives for this work.

� Chapter 2 gives a literature review of work which highlights trends in FWI, Deep
Learning and their combined application respectively.

� Chapter 3 is sub-divided into 3 parts and provides all relevant theory for FWI via
DNNs. Part 1 illustrates the key elements within classical FWI. Part 2 presents

5

Chapter 1. Introduction 1.3. Document Structure

FWI as a data-driven DNN and Part 3 derives RNN as a physics informed frame-
work for FWI. Each of these is compared to classical FWI, with commonalities and
differences highlighted.

� Chapter 4 builds on the derived theory and evaluates each framework on synthetic
data.

� Chapter 5 critically analyses the numerical results obtained in Chapter 4 and out-
lines their limitations. Future work is presented and conclusions addressed.

6

2

Literature Review

In this chapter the main literature concerning FWI is discussed in the context of
pseudo-spectral approaches, with focus on pointing out the general research trends
in this area. NNs are then presented with respect to inverse problems, and their
development history discussed. Both these components are put together to identify
applications within geophysics, with emphasis on velocity inversion approaches.

2.1 | Full Waveform Inversion
FWI tries to derive the best velocity model and other lithologic properties (as density,
anelastic absorption and anisotropy) of the Earth’s subsurface to be consistent with
recorded data. An exhaustive search for this ideal model is almost impossible and meth-
ods for finding an optimal one describing the data space are necessary. There are two
main categories for dealing with this problem: (i) global optimization methods, and (ii)
direct solving through linearisation.

Global optimization methods try to find global minimum of the misfit function.
These are stochastic in nature and use global information about the misfit surface to
perform model updates (Sen and Stoffa, 1995; Törn and Žilinskas, 1989). Three most
well-known cases of global methods are Monte Carlo methods (Biswas and Sen, 2017;
Press, 1968), genetic algorithm (Gerstoft, 1994; Parker, 1999; Tran and Hiltunen, 2012)
and simulated annealing (Pullammanappallil and Louie, 1994; Rothman, 1985; Tran and
Hiltunen, 2011). Global optimization methods are all very dependent on a fast forward
modelling algorithm as they require large amounts of forward modelling calculations.
As computers are getting faster and better, the necessity of keeping the parametriza-
tion simple might decline. However, current solutions to the seismic inverse problem

7

Chapter 2. Literature Review 2.1. Full Waveform Inversion

have to resort to local optimization. The next section reviews direct solving through
linearisation for FWI.

2.1.1 | Formulation of FWI as Local Optimization
The concept of local optimization FWI was introduced in the 1980’s. Lailly and Bednar
(1983) and Tarantola (1984a) cast the exploding-reflector concept of Claerbout (1971,
1976) as a local optimization problem which aims to minimise in a least-squares sense
the misfit between recorded and modelled data. The problem is set in the time-domain
as follows: set a forward propagation field to model the observed data, back propagate
the residuals between the modelled and observed data, cross-correlate both fields at
each point in space to derive a correction, and do least squares minimization of the
residuals iteratively. This outline forms the basis of this technique to this day.

Gauthier et al. (1986) numerically demonstrate a local optimization FWI approach
using two-dimensional synthetic data examples. A single diffracting point on a homo-
geneous model was used to illustrate the importance of proper sampling of the sub-
surface. Furthermore, this model was used to show that the free surface adds an extra
complexity to the problem and increases the non-linearity of the inversion. FWI with or
without free-surface multiple modelling is an active area of research to this day (Bergen
et al., 2019; Komatitsch and Tromp, 2002).

2.1.2 | Applications in Time and Frequency
One of the pioneering applications of FWI was presented by Bunks et al. (1995) and
is represented in Figure 2.1. They showed better imaging using a hierarchical multi-
scale approach on the Marmousi synthetic model. This strategy initially inverts for
low-frequency components where there are fewer local minima and those that remain
are further apart from each other than for higher frequencies. However, decompos-
ing by scale did not resolve issues of source estimation, source bandwidth and noise.
The frequency-domain approach was proposed in the 1990s by Pratt and collaborators
(Pratt, 1990; Pratt and Goulty, 1991; Pratt and Worthington, 1990). The first applica-
tion was to cross-hole data utilizing a finite difference approach and an elastic wave
propagator to facilitate the modelling of multi-source data. This was extended to wide-
aperture seismic data by Pratt et al. (1996). Analytically, the time- and frequency-domain
problems are equivalent, see Virieux and Operto (2009). Early examples of pseudo-
spectral FWI include application to the Marmousi model (Sirgue and Pratt, 2004) and a
wide aperture land seismic dataset by (Operto et al., 2004).

8

Chapter 2. Literature Review 2.1. Full Waveform Inversion

(a) Section from real Marmousi velocity model. (b) Best estimate using multiscale FWI.

Figure 2.1: First practical application of FWI using the Marmousi model. This shows
significant improvements for the FWI results as presented by Bunks et al. (1995).

2.1.3 | Beyond Academic Experiments
Two-dimensional inversion was able to explain out-of-plane events by mapping them
into in-plane artefacts (Morgan et al., 2009). The technique was restricted to purely
academic pursuits (Sirgue et al., 2009) and full potential could only be realized if ex-
tended to 3D. The first 3D frequency-domain algorithms where developed by Warner
et al. (2007) on synthetic datasets, however these used low initial frequencies that are
not normally present in real data (Morgan et al., 2013). Examples of this application are
demonstrated by Sirgue et al. (2007), Ali et al. (2007) and Operto et al. (2007). Warner
et al. (2008) presented the first 3D real data application to a shallow North Sea survey.
This improved the resolution of shallow high-velocity channels that resulted in uplifts
upon migration. In Figure 2.2, Sirgue et al. (2009) demonstrated successful FWI results
for a 3D dataset of the Valhall field, Norway. They inverted wide-azimuth ocean-bottom
cable data using a sequence of low frequency bands to generate high-resolution velocity
models. The updated velocity model demonstrated a network of shallow high-velocity
channels and a gas-filled fracture extension from a gas cloud which was not previously
identifiable (Sirgue et al., 2010).

Plessix and Perkins (2010) show results from the application of full waveform inver-
sion to an ocean bottom seismometer dataset recorded in the Gulf of Mexico with near-
ideal long-offset and wide-azimuth. Their approach was anisotropic and assumed ver-
tical transversely isotropic media with fixed Thomsen’s parameters. The model had bet-
ter imaging of dips and produced flatter common image gathers in the deep part of the
model (Plessix and Perkins, 2010). Wang and Tsvankin (2016) developed 3D waveform
inversion for orthorhombic media in the acoustic approximation using pseudo-spectral

9

Chapter 2. Literature Review 2.1. Full Waveform Inversion

(a) Velocitiy model. Top: Conventional, Bottom:
FWI.

(b) Pre-stack depth migrated section. Top: Con-
ventional, Bottom: FWI.

Figure 2.2: Improvements in velocity model and pre-stack depth migrated images ob-
tained through FWI over the Valhall field. The FWI updated velocity model demon-
strated a network of shallow high-velocity channels and a gas-filled fracture extension
from a gas cloud which was not previously identifiable in conventional tomography.
The impact is evident in the migrated sections, which show more continues events in
otherwise poorly illuminated area. Adapted from Sirgue et al. (2009) and Sirgue et al.
(2010).

methods. This was found to be stable and produced kinematic accurate pure-mode
primary wavefields with an acceptable computational cost. Xie et al. (2017) applied
orthorhombic full-waveform inversion for imaging wide-azimuth ocean-bottom-cable
data. The results had better azimuthal and polar direction-dependent wave imaging
which significantly improved fault imaging - See Figure 2.3.

A re-occurring theme within this section is the creation of a better approximation to
the wavefield propagation within the subsurface; 1D to 2D to 3D discretization, acoustic
to anisotropic to elastic to orthorhombic wavefield modelling, with each additional di-
mension of information resulting in more numerical and computer intensive algorithms
(Kumar et al., 2012b). Even though computing power has increased dramatically, mak-
ing FWI more productive, the underlying algorithms are only improving incrementally.

10

Chapter 2. Literature Review 2.1. Full Waveform Inversion

Indeed, the next generation of experiments will require changes to acquisition geometry
to allow for full-bandwidth and multi-azimuth reconstruction of the wavefield (Morgan
et al., 2016).

(a) PSDM stack and CDP gather with original orthorhombic model from tomography.

(b) PSDM stack and CDP gather with orthorhombi FWI update.

Figure 2.3: Imaging improvements obtained through orthorhombic imaging. This pro-
duces sharp truncations and clearer faults as highlighted by the red dashed ovals, as
well as better focussed gathers. Adapted from Xie et al. (2017).

11

Chapter 2. Literature Review 2.2. Deep Neural Networks

2.2 | Deep Neural Networks

2.2.1 | Neural Networks for Inverse Problems
The mathematical formulation of FWI falls under the more general class of variational
inverse problems (Tanaka, 2003). The aim is to find a function which is the minimal
or the maximal value of a specified functional (Dadvand et al., 2006). Indeed, inverse
problems attempt to reconstruct an image x ∈ X ⊆ Rd from a set of measurements
y ∈ Y ⊆ Rm of the form

y = Γ(x) + ε (2.1)

where Γ : X 7→ Y, Γ ∈ Rm×d is the discrete operator and ε ∈ Y ⊆ Rm is the noise.
NN within Machine Learning can be considered to be a set of algorithms of non-linear
functional approximations under weak assumptions (Öktem and Adler, 2018). Namely,
when applied to inverse problems, Equation 2.1 can be re-phrased as the problem of
reconstructing a non-linear mapping Γ†

θ : Y 7→ X satisfying the pseudo-inverse property

Γ−1
θ (y) ≈ x (2.2)

where observations y ∈ Y are related to x ∈ X as in Equation 2.1, and θ represents the
parametrization of pseudo-inverse by the NN learning (Adler and Öktem, 2017). The
loss function defined in Equation 2.2 is dependent on the type of training data, which is
dependent on the learning approach (Adler et al., 2017). There are two main classes of
learning in Machine Learning: (i) Supervised, and (ii) Unsupervised.

In supervised learning, training data are independent distributed random pairs with
input x ∈ X and labelled output y ∈ Y (Vito et al., 2005). Estimating θ for Equation 2.2
can be formulated as minimizing a loss function J (θ) which has the following structure
(Adler and Öktem, 2017):

J (θ) := D(Γ−1
θ (y), x) (2.3)

where D is a distance function quantifying the quality of the reconstruction and Γ−1
θ :

Y 7→ X is the pseudo-inverse to be learned (Adler and Öktem, 2017). A common metric
for the distance function is the sum of squared distances, resulting in:

J (θ) :=
∣∣∣∣∣∣Γ−1

θ (y)− x
∣∣∣∣∣∣2

X
(2.4)

Approaching the inverse problem directly via this approach amounts to learn Γ−1
θ : Y 7→

X from data such that it approximates an inverse of Γ. In particular, this has successful
applications in medical imaging (Lucas et al., 2018; Xu et al., 2012), signal processing

12

Chapter 2. Literature Review 2.2. Deep Neural Networks

(Dokmanić et al., 2016; Rusu and Thompson, 2017) and regularization theory (De los
Reyes et al., 2017; Meinhardt et al., 2017; Romano et al., 2016).

In unsupervised learning, there exist no input-output labelled pairs and the training
data is solely elements of y ∈ Y. The NN is required to learn both the forward problem
and inverse problem (Andrychowicz et al., 2016). The loss functional for unsupervised
learning is given as:

J (θ) := L
(

Γ
(

Γ−1
θ (y)

)
, x
)
+ S

(
Γ−1

θ (g)
)

(2.5)

whereL : Y×X 7→ R is a suitable affine transformation of the data and S : X 7→ R is the
regularization function. Main applications of this learning are to inherent structure and
have been proven successful in exploratory data analysis applications such as clustering
(Gerdova et al., 2002; Sever, 2015) and dimension reduction (Dolenko et al., 2015).

2.2.2 | Evolution of Neural Networks
The remaining literature review is restricted to supervised learning approaches using
NN as these are more suited for velocity inversion. For a complete review, Lippmann
(1987) and Chentouf (1997) provide further detail.

2.2.2.1 | Early Neural Nets and the Perceptron

The basic ideas of NN date back to the 1940’s and were initially devised by McCulloch
and Pitts (1943) when trying to understand how to map the inner workings of a biolog-
ical brain into a machine. From a biological aspect, neurons in the brain are intercon-
nected via nerve cells that are involved in the processing and transmitting of chemical
and electrical signals (McCulloch and Pitts, 1943).

Early NNs with rudimentary architectures did not learn (McCulloch and Pitts, 1943)
and the notion of self-organized learning only came about in 1949 by Hebb (1949).
Rosenblatt (1958) extended this idea of learning and proposed the first and simplest
neural network – the McCullock-Pitts-Perceptron. As shown in Figure 2.4, this con-
sists of a single neuron with weights and an activation function. The weights are the
learned component and determine the contribution of either input x to the output y.
The activation function σ adds a non-linear transform, allowing the neuron to decide
if the input is relevant for the paired output. Without an activation function, the neu-
ron would be equivalent to a linear regressor (Minsky and Papert, 2017). Rosenblatt
(1958) used this fundamental architecture to reproduce a functional mapping that clas-
sifies patterns that are linearly separable. This machine was an analogue computer that

13

Chapter 2. Literature Review 2.2. Deep Neural Networks

was connected to a camera that used 20×20 array of cadmium sulphide photocells to
produce a 400-pixel image. Shown in Figure 2.5, the McCullock-Pitts-Perceptron had a
patch-board that allowed experimentation with different combinations of input features
wired up randomly to demonstrate the ability of the perceptron to learn (Bishop, 2006;
Hecht-Nielsen, 1990).

Figure 2.4: The Single Neuron Perceptron. The input values are multiplied by the
weights. If the weighted sum of the product satisfies the activation function, the per-
ceptron is activated and “fires” a signal. Adapted from Rosenblatt (1958).

Figure 2.5: The Mark I Perceptron Machine was
the first machine used to implement the Percep-
tron algorithm. The machine was connected to
a camera that used 20×20 array of cadmium sul-
phide photocells to produce a 400-pixel image.
To the right is a patch-board that allowed ex-
perimentation with different combinations of in-
put features. This was usually wired up ran-
domly to demonstrate the ability of the per-
ceptron to learn. Adapted from Bishop (2006);
Hecht-Nielsen (1990).

14

Chapter 2. Literature Review 2.2. Deep Neural Networks

Rosenblatt’s perceptron was the first application of supervised learning (Russell and
Norvig, 2008). However, Minsky and Papert (2017) highlight limitations to the appli-
cations of a single perceptron and that Rosenblatt’s claims that the “perceptron may
eventually be able to learn, make decisions, and translate languages” were exaggerated.
Following the publication of the book, research on perceptron-style learning machines
practically halted (Minsky and Papert, 2017).

2.2.2.2 | Back-Propagation and Hidden Layers

Efficient error back-propagation in arbitrary, sparsely connected, NN networks were
described in Linnainmaa’s master thesis (Linnainmaa, 1970). This minimizes the er-
rors through gradient descent in the parameter space (Hadamard, 1907) and allows for
explicit minimization of the cost function. Back-propagation permits NNs to learn com-
plicated multidimensional functional mappings (Dreyfus, 1973).

The back-propagation formulation lends itself from major developments in dynamic
programming throughout the 1960s and 1970s (Bryson, 1961; Kelley, 1960; Linnainmaa,
1976). A simplified derivation using the chain rule was derived by Dreyfus (1973) and
the first NN-specific application was described by Werbos (1981). It was until the mid-
1980s that Rumelhart et al. (1986) made back-propagation mainstream for NNs through
the numerical demonstration of internal representations of the hidden layer. Hidden
layers reside in-between input and output layers of the NN.

Back-propagation was no panacea and additional hidden layers did not offer em-
pirical improvements (Schmidhuber, 2015). Kolmogoro and Tikhomirov (1956), Hecht-
Nielsen (1989) and Hornik et al. (1989) pursued development of back-propagation en-
couraged by the Universal Approximation Theorem. Namely, this theorem states that
if enough hidden units are used in a NN layer, this can approximate any multivari-
ate continuous function with arbitrary accuracy (Hecht-Nielsen, 1989). Although back-
propagation theoretically allows for deep problems, it was shown to work on practical
problems (Schmidhuber, 2015).

2.2.2.3 | The Vanishing Gradient and Renaissance of Machine Learning

The major milestone in NN came about in 1991. Hochreiter’s thesis identified that deep
NNs suffer from the vanishing or exploding gradient problem (Hochreiter, 1991). Gradi-
ents computed by back-propagation become very small or very large with added layers,
causing convergence to halt or introduce unstable update steps. Solutions proposed to
address this challenge included batch normalization (Ioffe and Szegedy, 2015), Hessian-
free optimisations (Martens, 2010; Møller, 1993; Schraudolph, 2002), random weight as-

15

Chapter 2. Literature Review 2.2. Deep Neural Networks

signment (Hochreiter and Schmidhuber, 1996), universal sequential search (Levin, 1973)
and weight pruning (LeCun et al., 1990).

Prior to 2012, NN were apparently an academic pursuit. This changed when AlexNet
(Krizhevsky et al., 2012) won the ImageNet (Russakovsky et al., 2015) visual object
recognition by a considerable margin. AlexNet used a deep architecture consisting of
eight layers (Krizhevsky et al., 2015) and was the only entry employing NN in 2012. All
submissions in subsequent years were NN-based (Singh, 2015) and in 2015, NNs sur-
passed human performance in visual object recognition for the first time (Russakovsky
et al., 2015) - see Figure 2.6. AlexNet is undoubtedly a pivotal event that ignited the
renaissance in interest around deep learning.

Figure 2.6: Evolution of the accuracy for the ImageNet challenge (Krizhevsky et al.,
2012). AlexNet won ImageNet in 2012 with 16.4% error in accuracy. With each year of
the competition, the accuracy has been increasing. Sources for these accuracies are Clari-
fia (Zeiler and Fergus, 2014), VGG-16 (Simonyan et al., 2014), GoogleLeNet-19 (Szegedy
et al., 2014), ResNet-152 (He et al., 2016b), GoogleLeNet-v4 (Szegedy et al., 2016) and
SENet (Hu et al., 2017).

2.2.3 | Deep Neural Network Architecture Landscape
According to Patterson and Gibson (2017), three of the most common major architec-
tures are (i) neural network, (ii) Convolutional Neural Network (CNN), and (iii) Recurrent
Neural Network (RNN).

As introduced and discussed in § 2.2.2.1, ANNs are non-linear models inspired by
the neural architecture of the brain in biological systems. A typical neural network

16

Chapter 2. Literature Review 2.2. Deep Neural Networks

is known as a multi-layer perceptron and consists of a series of layers, composed of
neurons and their connections (Goodfellow et al., 2016).

CNNs are regularized version of MLPs with convolution operations in place of gen-
eral matrix multiplication in at least one of the layers (LeCun, 1989). These types of
networks find their motivation from work by Hubel and Wiesel in the 1950s and 1960s
(Hubel and Wiesel, 1959, 1962). Inspired by this work, Fukushima and Miyake (1982)
introduced the two basic types of layers in CNNs: convolutional layers and downsam-
pling layers. Zhou & Chellappa introduced the concept of max pooling (Zhou and Chel-
lappa, 1988) and LeCun et al. (1990) utilized back-propagation to learn the convolution
kernel coefficients directly from images of hand-written numbers. The architecture of
the NN used is know as LeNet5 and is shown in Figure 2.7. This essentially laid the
foundations for modern CNNs. LeCun et al. (2010) gives a comprehensive history up to
2010 and a more recent review is available by Khan et al. (2020).

Figure 2.7: LeNet5 - LeCun et al.’s (1990) CNN architecture used to classify handwritten
digits. LeNet-5 architecture consists of two sets of convolutional and max pooling lay-
ers, followed by a flattening convolutional layer, then two fully-connected layers and
finally a soft-max classifier.

RNNs are in the family of feed-forward neural networks that add the concept of re-
current connections or parameter sharing (Lang and Hinton, 1988). At each time-step
of sending input through a RNN, nodes receiving input along recurrent edges receive
input activations from the current input vector and from the hidden nodes in the net-
work’s previous state (Waibel et al., 1989). The output is computed from the hidden
state at the given time-step. The previous input vector at the previous time step can
influence the current output at the current time-step through the recurrent connections
(Lang et al., 1990). This is known as unrolling a RNN and is shown in Figure 2.8.

17

Chapter 2. Literature Review 2.2. Deep Neural Networks

Figure 2.8: An unrolled RNN showing the recurrent connections between RNN cells A
for some input xt and outputs value ht. From Olah (2015).

Long Short-Term Memory (LSTM) networks are the most commonly used variation
of RNNs. LSTM networks were introduced by Hochreiter and Schmidhuber (1997). The
critical component of the LSTM is the addition of memory gates or cells (Gers et al.,
1999; Graves, 2012). The contents of the memory cell are modulated by input and forget
gates. Assuming that both of these gates are closed, the contents of the memory cell
will remain unmodified between one time-step and the next. The gating structure al-
lows information to be retained across many time-steps, and consequently also allows
gradients to flow across many time-steps. This allows the LSTM model to overcome the
vanishing gradient problem that occurs with most RNN models.

2.2.4 | Not Just Algorithms
Apart from Machine Learning algorithms, re-interest in DNN has led to software ar-
chitectures that allow for quick development. The most common include Tensorflow
(Abadi et al., 2015), Keras (Chollet, 2015), PyTorch (Paszke et al., 2017), Caffe (Jia et al.,
2014)) and Deeplearning4j (Nicholson and Gibson, 2016). These types of frameworks
are facilitating interdisciplinarity between Machine Learning and geophysics. Indeed,
Richardson (2018) employed DNN architecture within Tensorflow to solve for FWI. Uti-
lizing a common DNN optimizer - Adam - it was shown how the cost function con-
verged quicker in the inversion process as compared to conventional methods in FWI
(Sharma et al., 2017). Richardson (2018) show by comparing the loss function as shown
in Figure 2.9.

18

Chapter 2. Literature Review 2.3. Neural Networks in Geophysics

Figure 2.9: State-of-the-art Adam cost function calculation converged much more
rapidly than conventional Stochastic Gradient Descent and L-BFGS-B. From Richard-
son (2018).

2.3 | Neural Networks in Geophysics
Machine Learning techniques have been utilised across different geophysical applica-
tions. Some notable examples include geo-dynamics (Shahnas et al., 2018), geology
(Reading et al., 2015), seismology (Shimshoni and Intrator, 1998), paleo-climatology
(Dowla and Rogers, 1996), climate change (Anderson and Lucas, 2018) and hydroge-
ology (Hamshaw et al., 2018). Unsupervised algorithms have also been investigated
by Köhler et al. (2010) for pattern recognitions of wavefield patterns with minimal do-
main knowledge. Other geophysical application include seismic deconvolution (Calde
On-Macías et al., 1997; Wang and Mendel, 1992), tomography (Nath et al., 1999), wave-
form recognition and first-break picking (Murat and Rudman, 1992), trace editing (Mc-
Cormack et al., 1993), electricity (Poulton et al., 1992), magnetism (Zhang and Paulson,
1997), shear-wave splitting (Dai and MacBeth, 1994), event classification (Romeo, 1994),
petrophysics (Downton and Hampson, 2018) and noise attenuation (Halpert, 2018; Li
et al., 2018b).

19

Chapter 2. Literature Review 2.3. Neural Networks in Geophysics

2.3.1 | Legacy Velocity Inversion
More specific to velocity estimation, the first published investigation for the use of NN
was a RNN by Michaels and Smith (1992). Their network architecture represented all
components in an elastic FWI experiment with a seismic source, the propagation media
and an imaging response. Figure 2.10 shows a block diagram representation for their
network. The neural column consisted of two 1-layer neuron columns, one for particle
displacement and another for particle velocity.

Figure 2.10: Block diagram for RNN system by Michaels and Smith (1992). The differ-
ence between a signal and the internal neural signals along a neural column are pro-
cessed to provide a training signal that modifies neuron weights.

Röth and Tarantola (1994) published the first application of NN which estimated
1D velocity functions from shot gathers from a single layer NN in 1994. Figure 2.11
shows their NN architecture. This accepted synthetic common shot gathers from a sin-
gle source as input and used to compute corresponding 1D large-scale velocity models.
The training set used for learning consisted of 450 synthetic models built up of eight
strata with constant layer thickness over a homogeneous half-space. Their network was
able to approximate a true velocity model sufficiently to act as a starting model for
further seismic imaging algorithms. The inferred velocity profiles of the unseen data
provided 80% accuracy levels, and although the network was stable for noise contained
data, it was not robust against strong correlated noise. Nonetheless, this investigation
sets up NN as possible candidates to solve non-trivial inverse problems.

20

Chapter 2. Literature Review 2.3. Neural Networks in Geophysics

Figure 2.11: Architecture for first NN application to FWI. This was a very shallow NN
with 1 hidden layer and non-symmetric input-output neurons. Adapted from Röth and
Tarantola (1994).

NNs are not solely limited to creating initial models to FWI. Langer et al. (1996) show
how this can invert for the governing parameters related to the seismic source and prop-
agation medium. Given the correct network topology and a large enough training sam-
ple for the learning of the inversion, Langer et al. successfully inverted for the model
parameters using a similar single hidden layer architecture as Röth & Tarantola. The
difference in approach was two-fold; the NN employed a single seismogram as input
as opposed to whole shot gather and pseudo-spectral data was used for training rather
than time waveforms directly. The use of a single waveform did allow for improved
result, however the use of pseudo-spectral data was instrumental. Transformed NN
learned inference had better accuracies than the conventional time approach. Motiva-
tion to use pseudo-spectral data followed the work of Falsaperla et al. (1996) where
they identified how the introduced sparsity within pseudo-spectral domain facilitated
the learning process for the NN and was more robust to noise.

2.3.2 | Data-Driven Approaches to Velocity Estimation
The terminology of data-driven geophysics is not a novel-one. This was first intro-
duced in the literature by Schultz et al. (1994) when estimating rock properties directly
from seismic-data through statistical techniques. However, conceptually, this is similar
to the deconvolution process within a seismic processing flow (Robinson, 1957, 1967).
Namely, a filter is derived via autocorrelations and applied as a deconvolution opera-
tor (Webster, 1978). The term has only recently found a re-invigorated interest. Some
modern applications of data-driven geophysical processes include dictionary learning

21

Chapter 2. Literature Review 2.3. Neural Networks in Geophysics

(Nazari Siahsar et al., 2017), time series analysis (Wu et al., 2018a), fault identification
(Mangalathu et al., 2020), and reservoir characterization (Schakel and Mesdag, 2014).

Twenty-one years after Michaels and Smith (1992), Lewis and Vigh (2017) employed
DNN architecture to learn prior models for seismic FWI. Their data driven approach at
estimating initial models was applied to salt body reconstruction by learning the prob-
ability of salt geo-bodies and use this to regularize the FWI objective function. Araya-
Polo et al. (2018) utilised DNN architecture and inverted for 2D high-velocity profiles.
For the training process, they generated thousands of random 2D velocity models with
up to four faults in them, at various dip angles and positions. Each model had three
to eight layers, with velocities ranging from 2000 to 4000 ms−1, with layer velocity in-
creasing with depth. The DNN architecture is not defined in their paper, however when
applied to unseen data with and without salt anomalies, their results achieved accura-
cies well above 80% for both cases. This was used to obtain a low-wavenumber starting
model then passed to traditional FWI as an initial model. Wu et al. (2018b) proposed
a convolutional-based network called “InversionNet” to directly map the raw seismic
data to the corresponding seismic velocity model for a simple fault model with flat or
curved subsurface layers. More recently, Li et al. (2019) extended this further and devel-
oped a DNN framework called “SeisInvNet” to perform the end-to-end velocity inver-
sion mapping with enhanced single-trace seismic data as the input in time domain.

2.3.3 | Wave Physics as an Analogue Recurrent Neural Network
Recently, Raissi et al. (2019) and Hughes et al. (2019) derived a function between the
physical dynamics of wave phenomena and RNNs. In their work they propose physics-
informed neural networks that are trained to solve supervised learning tasks while re-
specting the laws of physics described by general non-linear partial differential equa-
tions. Fundamental to their approach is the ability for DNNs to be universal function
approximators. Within this formulation, Raissi et al. (2019) are able to solve non-linear
problems without the need to compute a priori assumptions, perform linearisation or
employ local time-stepping. Under this new paradigm in modelling, back-propagation
is used to differentiate neural networks with respect to their input coordinates and
model parameters to obtain physics-informed neural networks. Such NNs are con-
strained to respect any symmetries, invariances, or conservation principles originating
from the physical laws that govern the observed data, as modelled by general time-
dependent and non-linear partial differential equations. In particular, following up
from this work, Sun et al. (2019) recast the forward modelling problem in FWI into a
deep learning network by recasting the acoustic wave propagation into a RNN frame-

22

Chapter 2. Literature Review 2.3. Neural Networks in Geophysics

work. Figure 2.12 shows velocity inversion results from Sun et al. (2019) applied to
the Marmousi velocity model. These theory-guided inversions still suffer from cycle-
skipping, local-minima and high computational cost (Sun et al., 2019). Recent research
suggests that Stochastic Gradient Descent algorithms have the capacity to escape local
minima to a certain extent (Sun et al., 2019).

Figure 2.12: The inversion of Marmousi velocity model using RNN forward modelling
framework with Adam algorithm optimizer. (a) True Marmousi. (b) 25th iteration. (c)
50th iteration (d) 100th iteration. From Sun et al. (2019).

23

3

Theoretical Considerations

This chapter reviews and derives the key theoretical approaches used in this disser-
tation. The first section introduces a classical FWI formulation and summarizes the
local optimization problem as a flowchart of elements. Using a combination of ANNs,
CNNs and RNNs present in DNN architectures, FWI is recast as a simulation within
a deep learning framework. The next two sections introduce the theoretical setups of
data-driven and theory-guided pseudo-spectral FWI and associated theory which can
be used to solve FWI as a Deep Learning problem. For a more in-depth assimilation,
Appendix A provides complementary material.

3.1 | FWI as Local Optimization
Lailly and Bednar (1983) and Tarantola (1984a) recast the migration imaging principle
introduced by Claerbout (1971) as a local optimization problem. For an anisotropic
medium, particle motion is based on the wave equation given by:

1
c(x)2

∂2 p(x, t)
∂t2 −∇2 p(x, t) = s(x, t), (3.1)

where p(x, t) is the pressure wavefield, c(x) is the acoustic p-wave velocity and s(x, t)
is the source. This can be expressed as a linear operator and solved numerically.

After forward modelling the physical system through the data, the objective is to
minimize the difference between the observed data and the modelled data. The dif-
ference or misfit between the two datasets is known as the misfit-, objective- or cost-
function φ. The most common cost function is given by the L2 − norm of the data resid-
uals:

φ(x) =
1
2
||yobs − ycal(x)||2D =

1
2

∆y†∆y, (3.2)

24

Chapter 3. Theoretical Considerations 3.1. FWI as Local Optimization

where D indicates the data domain given by ns sources and nr receivers, † is the trans-
pose and yobs, ycal are the observed and calculated data respectively. The misfit function
φ can be minimized with respect to the model parameters y by setting the gradient to
zero:

∇φ =
∂φ

∂y
= 0. (3.3)

To solve for the misfit function, FWI utilizes a linearised and iterative optimisation
scheme. Based on the Born approximation in scattering theory (Born and Wolf, 1980),
consider the first model calculated to be x0. After the first pass via forward modelling,
the model needs to be updated by the model parameter perturbation ∆x0. This newly
updated model is then used to calculate the next update and the procedure continues
iteratively until the computed mode is close enough to the true model based on a resid-
ual threshold criterion. At each iteration k, the misfit function φ(xk) is calculated from
model xk−1 of the previous iteration giving:

φ(xk) = φ(xk−1 + ∆xk). (3.4)

Assuming that the model perturbation is small enough with respect to the model, Equa-
tion 3.4 can be expanded via Taylor expansions up to second orders as:

φ(xk) = φ(xk−1) + δxT ∂φ

∂x
+

1
2

δxT ∂2φ

∂x2 δx. (3.5)

Taking the derivative of Equation 3.5 and minimizing to determine the model update
leads to:

∂x ≈ −H−1∇xφ, (3.6)

where H = ∂2φ
∂x2 is the Hessian matrix and ∇xφ the gradient of misfit function evaluated

at x0. The Hessian matrix is symmetric and represents the curvature trend of the misfit
function.

3.1.1 | Model Update
Several methods can be employed to solve the model update. Newton methods update
the model directly (Newton, 1687), whilst Gauss-Newton use Hessian approximations
(Tarantola, 1984b). The latter is referred to as the step-length (Menke, 1989) and Equa-
tion 3.6 becomes:

∂x ≈ −α∇xφ, (3.7)

where α is the step-length parameter and the magnitude of α is derived via first perturb-
ing the initial model x0 by a differential change in the direction opposite to the gradient.

25

Chapter 3. Theoretical Considerations 3.1. FWI as Local Optimization

3.1.2 | Regularization
FWI often turns out to be an ill-posed problem given the incomplete parameter space
measured in the field. Artefacts and over-fitting might be introduced in the model
due to noise or high frequency component of the data (Sirgue and Pratt, 2004). Well-
posedness can be imposed on the model through a priori information (Asnaashari et al.,
2013). This is introduced into the misfit function (Equation 3.2) with the addition of
Tikhonov L2 − norm regularization (Tikhonov and Arsenin, 1977):

φ(x) =
1
2
||yobs − ycal (x)||2D +

1
2

λ
∣∣∣∣x− xa priori

∣∣∣∣2
M , (3.8)

where
∣∣∣∣x− xprior

∣∣∣∣2
M is the regularization term and λ is the regularisation parameter

which controls the trade-off between data and model residuals. Namely, the regulariza-
tion parameter, λ, gives relative weight to model optimization term with respect to data
optimisation term and acts as a smoother on the modelling (Tikhonov, 1963).

3.1.3 | Difference between Time and Pseudo-spectral FWI
Forward modelling for FWI can be done in the pseudo-spectral or time-domain. In
case of an attenuating medium, the pseudo-spectral domain is the preferred method
as frequency dependent attenuation (quality factor Q) is represented by the imaginary
component of the velocity (Pratt, 1999). Frequency domain application requires the
solution of a linear system of equations by a factorization method (Sirgue and Pratt,
2004). This improves the chance for the inversion to locate the global minimum (Sirgue
and Pratt, 2004), however it scales poorly with the size of the problem (Operto et al.,
2007) or else requires assumptions on the physical propagation of the wave equation
(Ben Hadj Ali et al., 2007). Time-domain approach has a simpler implementation (Vigh
and Starr, 2008), however it is highly more sensitive to cycle skipping (Vigh and Starr,
2008) and prone to problematic low-wavenumber estimation for the gradient (Sirgue
and Pratt, 2004). Time-domain approaches either consider Q to be constant or utilise
some relaxation mechanism, thus not fully representing the physics of the underlying
problem (Blanch et al., 1995). Either approach has been successfully applied to pro-
duction datasets, both with merits in different environments. For time implementation
reference is made to Vigh and Starr (2008), Vigh et al. (2010), Liu and Sen (2011) and
Cai et al. (2015), and for frequency to Ben-Hadj-Ali et al. (2008), Operto et al. (2015),
Plessix (2009). Differences in numerical implementation between time and frequency
FWI given in Appendix A.1.

26

Chapter 3. Theoretical Considerations 3.1. FWI as Local Optimization

3.1.4 | FWI Algorithm Summary
Excluding considerations related to the practical implementation of FWI, the local opti-
mization iterative scheme for FWI described in the previous section can be summarised
in Algorithm 1 and schematic is illustrated in Figure 3.1.

Algorithm 1: FWI as Local Optimization

1 Choose an initial model x0 and source wavelet s(x).
2 For each source, the forward problem Γ : X 7→ Y is solved everywhere in the

model space to get a predicted wavefield yi. This is sampled at receivers r(x).
3 At every receiver, data residuals are calculated between the modelled wavefield

yi and the observed data yobs.
4 Data residuals are back-propagated to produce a residual wavefield.
5 For each source location, the misfit function φ(x) is applied for the observed

data and back-propagated residual wavefield to generate the gradient ∇φ

required at every point in the model.
6 The gradient is scaled based on the step-length α, applied to the starting model

and an updated model is obtained xi+1.
7 The process is iteratively repeated from Step 2 until a convergence criterion is

satisfied.

Figure 3.1: Schematic FWI workflow solved as an iterative optimization process.

27

Chapter 3. Theoretical Considerations 3.2. FWI as a Data-Driven DNN

3.2 | FWI as a Data-Driven DNN
When applied to inverse problems, NNs can simulate the non-linear functional of the
inverse problem Γ−1 : Y 7→ X. That is, using a NN, a non-linear mapping can be learned
which will minimize

||x− gΘ(y)||2 , (3.9)

where gΘ is the learned formulation of the inverse problem functional Γ−1, and Θ the
large data set of pairs (x, y) used for the learning process (Lucas et al., 2018).

3.2.1 | Artificial Neuron, Perceptron and Multi-Layer Perceptron
The most elementary component in a NN is a neuron. This receives excitatory input and
sums the result to produce an output or activation (Raschka and Mirjalili, 2017). For a
given artificial neuron, consider n inputs with signals x and weights w. The output y of
a neuron from all input signals is given by:

y = σ

(
b +

n

∑
j=0

wjxj

)
, (3.10)

where σ is the activation function and b is a bias term enabling the activation func-
tions to shift about the origin. Popular activations functions include Binary Step, Lin-
ear, Sigmoid, Tanh, Softmax and ReLu functions (Goodfellow et al., 2016). The ReLu or
Rectified linear unit is the most widely used activation function. It is non-linear, allow-
ing easily back-propagation of errors. When employed on a network of neurons, the
negative component of the function is converted to zero and the neuron is deactivated,
introducing sparsity with the network and making it efficient and easy for computation.
More information on the other functions is provided in Appendix A.2.

3.2.2 | Feed-forward Architectures and Deep Networks
The architecture of a NN refers to the number of neurons, their arrangement and con-
nectivity. When a single neuron is used in the NN architecture, the result is a Perceptron.
Stacking multi layers of the simple neurons and fully connecting all the inputs results in
the multi-layer perceptron or fully connected layer. Within MLP architecture, the input
from the initial nodes x is connected to a hidden layer of neurons, or a sequence of these
neurons, and the output layer of the neurons. Communication proceeds layer by layer
from the input layer via the hidden layers up to the output layer. Figure 3.2 shows a fully
connected MLP consisting of 2 hidden layers. The output of the unit in each layer is the

28

Chapter 3. Theoretical Considerations 3.2. FWI as a Data-Driven DNN

result of the weighted sum of the input units, followed by a non-linear element-wise
function. The weights between each unit are learned as a result of a training procedure.

Figure 3.2: Fully connected NN with 2 hidden layers. Adapted from Lucas et al. (2018).

When designing a NN, choosing the depth of the network and the width of each
layer is key. A network with a single hidden layer is sufficient to fit the training set
(Goodfellow et al., 2016). Deeper NN are able to generalize better to different non-
linear functions (see Figure 3.3) and are harder to optimize (Haykin, 2009). Indeed,
Montúfar et al. (2014) showed that a shallow NN equivalent to a DNN could require an
exponential number of hidden units.

3.2.3 | A Universal Approximation Framework
A fundamental attribute to all deep feed-forward NN is that these provide a universal
approximation framework (Hornik et al., 1989). In particular, the Universal Approxi-
mation Theorem states that a feed-forward network with a linear output layer and at
least one hidden layer with an appropriate activation function can approximate any
Borel measurable function1 from one finite-dimensional space to another with any de-
sired non-zero amount of error, provided that the network has sufficient hidden layers
(Goodfellow et al., 2016; Leshno et al., 1993).

1The real-valued function f defined with domain E ⊂ Ω, for measurable space (Ω,F), is Borel mea-
surable with respect to F if the inverse image of set B, defined as f−1(B) ≡ {ω ∈ E : f (ω) ∈ B} is an
element of σ-algebra F , for all Borel sets B of R (Stephens, 2006).

29

Chapter 3. Theoretical Considerations 3.2. FWI as a Data-Driven DNN

(a) Deeper networks have been empirically shown to improve
the accuracy and generalize better. Adapted from Goodfellow
et al. (2015)

(b) Visual representation of the improved generalization for deep NNs over shallow NNs.
Left: A shallow NN framework has the same output for every pair from its input. The axis of symmetry
is given by the hyperplane defined from the weights and bias of the units. A function computed on top
of that unit (the green decision surface) will be a mirror image of a simpler pattern.
Centre: A simpler pattern can be obtained when considering the axis of symmetry.
Right: Another repeating pattern can be folded on top of the first to obtain another symmetry (which is
now repeated four times, with two hidden layers). Adapted from Montúfar et al. (2014).

Figure 3.3: Advantages of deep NN over shallow NN.

3.2.4 | Back-Propagation and Learning with DNN
When training a DNN, the forward propagation through the hidden layers from input
x to output y needs to be measured for its misfit. In terms of regression modelling, the
most commonly used cost function is the Sum of Squared Error, defined as:

J ≡ 1
2

J
∑
j=1

(
yi − ytrue

)2
, (3.11)

where ytrue is the labelled true datasets and yi is the output from the ith pass forward
pass through the network.

30

Chapter 3. Theoretical Considerations 3.2. FWI as a Data-Driven DNN

Figure 3.4: Schematic of a DNN with input x, L layers, al activation function at layer l
and weights wl . From Hallström (2016).

Consider the schematic for a fully connected DNN shown in Figure 3.4. Applying
forward propagation through the layers of neurons:

Input sum of neuron k in layer l zl
k = bl

k + ∑
j

wl
kja

l−1
j (3.12)

Activation function on layer l al
k = σ

(
zl

k

)
(3.13)

Input sum of neuron m in layer l + 1 zl+1
m = bl

m + ∑
k

wl+1
mk al

k. (3.14)

The objective is to minimize the function J with respect to the weights. Employing the
chain rule, the derivative with respect to a single weight in layer l is given as:

∂J
∂wl

kj
=

∂J
∂zl

k

∂zl
k

∂wl
kj
=

∂J
∂al

k

∂al
k

∂zl
k

∂zl
k

∂wl
kj

. (3.15)

Substituting Equations 3.12-3.14 in Equation 3.15 yields

∂J
∂wl

kj
=

(
∑
m

∂J
∂zl+1

m

∂zl+1
m

∂ak
l

)
∂al

k

∂zl
k

∂zl
k

∂wl
kj
=

(
∑
m

∂J
∂zl+1

m
wl+1

mk

)
σ
′
(

zl
k

)
al−1

j . (3.16)

31

Chapter 3. Theoretical Considerations 3.2. FWI as a Data-Driven DNN

The error signal of a neuron k in layer l is defined as the total error when the input sum
of the neuron is changed and is given by:

δl
k ≡

∂J
zl

k
. (3.17)

Substituting Equations 3.12-3.14 in Equation 3.16 results in a recursive formulation for
the error given by

δl
k =

(
∑
m

δl+1
m wl+1

mk

)
σ
′
(zl

k). (3.18)

Estimation of the error of the neurons in the final layer L can be a sequential calculation
of the error from the previous layer, until all error signals within the network are thus
computed. The only derivative to be calculated is the derivative of the cost function σ

′
,

which is the output of the network. Bias bl
k for lth layer is a weight to be optimized and

the error signal for the bias is given by:

∂J
∂bL

k
=

∂J
∂zl

k

∂zl
k

∂bl
k︸︷︷︸

1

= δl
k. (3.19)

Hence, error signals for all neurons in the network can be recursively calculated through-
out the network and the derivative of the cost function with respect to all the weights
can also be calculated. Training of the DNN is achieved via gradient descent algorithm,
referred to as Delta Rule in the machine learning community (Sutton, 1988). A small
fraction of the derived derivative is subtracted from the weight and updated weight is
given as:

wl
kj = wl

kj − ηδl
k, (3.20)

where η is a small scalar referred to the learning rate which controls how much of an
adjusting is applied to the DNN with respect to the loss gradient. This is synonymous
to the model update in FWI presented in § 3.1.1. Equivalence of back-propagation and
the classical adjoint method is numerically shown in Appendix A.9.

3.2.5 | Optimizing the Loss Function
Updating of the error gradient in a steepest gradient descent manner might be concep-
tually straightforward to understand. However, a major drawback with this algorithm
is the high risk of getting stuck in local minima (Fletcher, 1987). This is an active area
of research and Ruder (2016) does an extensive review of optimizers. Four of the most
widely used are (i) Adagrad, (ii) Adadelta, (iii) Adam and (iv) RMSprop. Difference in
the implementation for these optimizers is given in Appendix A.3.

32

Chapter 3. Theoretical Considerations 3.2. FWI as a Data-Driven DNN

3.2.6 | Generalization of DNN for “unseen” Data
Central to DNN is how to make the network able to perform well not just on the train-
ing data, but also on new “unseen” inputs. DNN resolve this via two regularization
strategies: (i) functional-based, and (ii) NN architecture-based regularizations. These
are schemes which update the cost function. On the other hand, architecture-based reg-
ularization are alterations to the NN architecture in the form of (i) Dropout, (ii) Data
augmentation, and (iii) Early Stopping. Further information on these is available in
Appendix A.4. Either of these are essential for DNN as shown in Figure 3.5.

Figure 3.5: NN loss function surface without (Left) and with (Right) regularization. Two
random vectors (δ, η) are chosen on the parameter space and values of the loss com-
puted. Vertical axes are in logarithmic scale to show dynamic range. It is highly evident
that without regularization, the loss function is susceptible to local minima and at risk
to converge to sub-optimal levels. On the other hand, regularization promotes flatness
and prevent chaotic behaviour. Adapted from Li et al. (2018a).

3.2.7 | Convolutional Neural Networks
CNNs are feed forward multi-layered networks with layers consisting of convolutions
and linear transformers able to perform multiple transformations (LeCun et al., 2010).
Apart from Dropout, Activation functions and Fully Connected Layers components,
CNNs introduce (i) Convolutional, (ii) Pooling, and (iii) Batch Normalization layers.
Convolutional layers add convolutions across the neurons. Pooling layers are dimen-
sion reducing layers applied after convolutional layers since location of elements within
feature-maps become less important as long as their position relative to others is pre-
served (Khan et al., 2020). Batch Normalization shifts the covariance of the distribution
of hidden units to zero mean and unit variance for each batch (Ioffe and Szegedy, 2015),
ensuring smooth gradient descent and regularization (Santurkar et al., 2018). Further
details on the specific building blocks for CNNs is available in Appendix A.5.

33

Chapter 3. Theoretical Considerations 3.2. FWI as a Data-Driven DNN

3.2.8 | Neural Network Architecture Types
Combining the components introduced in the previous sections, different DNN archi-
tectures can be developed. The simplest form for a network would be MLP. This is con-
sidered to be a rudimental and basic network. An improvement would be the inclusion
of convolutional, max-pooling and batch normalization layers in either one-dimension
(1D) or two-dimensions (2D). One such architecture is AlexNet (Krizhevsky et al., 2012).
Khan et al.’s 2020 survey provides a detailed overview of the different CNN architec-
tures and how they evolved over time. In particular, two architectures which are consid-
ered state-of-the-art as a consensus in the literature are VGG (Simonyan et al., 2014) and
ResNet (He et al., 2016a). These are only three of a myriad of architectures (Figure 3.6).
More information on these architectures is available in Appendix A.6.

Figure 3.6: Historic overview of CNN architectures, highlighting timeline position for
AlexNet, VGG and ResNet. Adapted from Khan et al. (2020).

34

Chapter 3. Theoretical Considerations 3.2. FWI as a Data-Driven DNN

3.2.9 | Outline for Solving FWI with Data-Driven DNNs
Utilizing NN architecture and formulae, training of a DNN for FWI can be summarized
as in Algorithm 2. Schematic of the learning process for DNN is given Figure 3.7.

Algorithm 2: FWI as a data-driven DNN

1 Setup a deep architecture from those shown in § 3.2.8, with regularization
measures.

2 Initialise the set of weights wl and biases bl .
3 Forward propagate through the network connections to calculate input sums

and activation function for all neurons and layers.
4 Calculate the error signal for the final layer δL by choosing an appropriate

differentiable activation function.
5 Back propagate the errors for all neurons in each l layer δl .

6 Differentiate the cost function with respect to biases
(

∂J
∂bl

)
7 Differentiate the cost function with respect to weights

(
∂J
∂wl

)
8 Update weights wl via gradient descent.
9 Recursively repeat from Step 3 until the desired convergence criterion is met.

Figure 3.7: Schematic of DNN workflow solved via supervised learning with input-
output pairs (x, y). This is analogous to the FWI algorithm previously shown in Fig-
ure 3.1, with the difference that feed forward operator gΘ : X 7→ Y is a learned function.

35

Chapter 3. Theoretical Considerations 3.3. RNN as an Analogue of FWI

3.3 | Theory-Guided RNN as an Analogue of FWI
Feed forward NNs presented in § 3.2 do not allow for cyclical connections between
neurons. If this condition is relaxed, we obtain RNNs. This difference is illustrated
in Figure 3.8. Although this might seem trivial, cyclical connections directly enable se-
quence learning as they allow a “memory” of previous inputs to persist in the network’s
internal state. RNN theoretically can map the entire history of previous inputs to each
output (Graves, 2012). Through equivalence results of Universal Approximation Theo-
rem for MLP, Hammer (2000) prove that a RNN with sufficient number of hidden units
can approximate any measurable sequence-to-sequence mapping to arbitrary accuracy.

Figure 3.8: Difference between MLP and RNN architectures are Red and Blue cyclical
connections. Red are intra-layer connections, whereas Blue are across layers.

3.3.1 | Forward Pass
The forward pass of a RNN is identical to that of a MLP, except that both the current
input and the hidden layer activations from the previous time-step contribute to the
current activation function.

Consider a sequence x of length T representing a RNN with input units I, hidden
units H and output units K. Let xt

i be the value of input i at time t, and let at
j and bt

j be
respectively the network output to unit j at time t and the activation of unit j at time t.
For the hidden units we have

at
h = b0

h +
I

∑
i=1

wihxt
i +

H

∑
h′=1

wh′ hbt−1
h′

, (3.21)

36

Chapter 3. Theoretical Considerations 3.3. RNN as an Analogue of FWI

where b0
h is the initial bias term. Zimmermann et al. (2006) show how initial non-zero

bias improve RNN stability and performance. This term is set to always zero to sim-
plify the equation notation. Non-linear, differentiable activation functions σ are applied
similarly to MLP to get:

bt
h = σh

(
at

h
)
= σh

(
I

∑
i=1

wihxt
i +

H

∑
h′=1

wh′ hbt−1
h′

)
. (3.22)

The complete sequence of hidden activations can be calculated by starting at t = 1 and
recursively applying Equation 3.22. The output yt

k at the kth neuron at time t is then
given by:

yt
k =

H

∑
h=1

whkbt
h. (3.23)

3.3.2 | Backward Pass
Given that components of the forward pass and the loss function definition are syn-
onymous with those of MLPs, what is left to determine are the derivatives with respect
to the model weights. There are two widely used algorithms for this: (i) Real Time
Recurrent Learning developed by Robinson and Fallside (1987), and Back-Propagation
Through Time by Werbos (1988). Back-Propagation Through Time will be considered
going forward. A review of the implementation of Real Time Recurrent Learning is
given by Williams and Zipser (1989) or more recently by Haykin (2009).

Like standard back propagation, Back-Propagation Through Time consists of re-
peated application of the chain rule. The only difference is that for RNN, the loss func-
tion J is now dependent on the activation of the hidden layer at the next time-step.
Equation 3.18 can be re-written as:

δt
h =

∂L
∂at

j
= θ

′
(at

h)

(
K

∑
k=1

δt
kwmk +

H

∑
h′=1

δt+1
h′

whh′

)
. (3.24)

The complete sequence of partial derivate terms can be calculated by starting at time
t = T and recursively applying Equation 3.24. Summing over the whole sequence to get
network weights results in:

∂L
∂wij

=
T

∑
t=1

∂L
∂at

j

∂at
j

∂wij
=

T

∑
t=1

δt
j b

t
i . (3.25)

37

Chapter 3. Theoretical Considerations 3.3. RNN as an Analogue of FWI

3.3.3 | Vanishing Gradient
The range of information accessed by standard RNN architectures can be quite lim-
ited. The problem is that the influence of a given input on the hidden layer either de-
cays or blows up exponentially as it cycles through the network’s recurrent connections
Graves (2012). This is known as the vanishing gradient problem (Hochreiter, 1991) and
is schematically illustrated in Figure 3.9. Numerous attempts were made in the 1990s to
address this problem. These included gradient-descent variants (Elman, 1990; Fahlman,
1991; Pearlmutter, 1989; Schmidhuber, 1992b; Williams and Zipser, 1989), explicitly in-
troduced time delays or time constants (Lang et al., 1990; Lin et al., 1996; Mozer, 1992;
Plate, 1993), simulated annealing and discrete error propagation (Bengio et al., 1994), hi-
erarchical sequence compression (Schmidhuber, 1992a) and Kalman filtering (Puskorius
and Feldkamp, 1994). A comprehensive list is available within Hochreiter and Schmid-
huber (1997).

Figure 3.9: Vanishing gradient problem for RNNs. The shading of the nodes in the
unfolded network indicates their sensitivity to the inputs at time one. The darker the
shade, the greater the sensitivity. The sensitivity decays over time as new inputs over-
write the activations of the hidden layer, and the network “forgets” the first inputs.
From Graves (2012).

3.3.4 | Long Short-Term Memory (LSTM)
Apart from the subset of algorithms able to handle the vanishing gradient problem
in the previous section, Hochreiter and Schmidhuber (1997) introduce a different type
known as LSTM. This NN introduces a set of recurrently connected subnets, known as
memory blocks (the input, output and forget gates), and the cell state. Figure 3.10(a)

38

Chapter 3. Theoretical Considerations 3.3. RNN as an Analogue of FWI

shows a standard RNN with a single tanh layer. Figure 3.10(b) shows the LSTM chain
structure but with the additional four interaction layers. Mathematical detail for each of
these components is given in Appendix A.8.

As before, wij is the weight from unit i to unit j, at
j is the network input to unit j at

time t and bt
j is the activation of unit j at time t. Given the LSTM memory blocks, the

subscripts ι, ζ and o refer to the input, forget and output gate respectively, the subscript
c refers to one of the memory cells C and st

c is the state of cell c at time t.

(a) The repeating module in a standard RNN contains a single layer.

(b) A LSTM memory block has an additional three gates – Input, Output
and Forget Gate (red) and a cell state block (blue).

Figure 3.10: Comparison between RNN and LSTM blocks. Adapted from Olah (2015).

39

Chapter 3. Theoretical Considerations 3.3. RNN as an Analogue of FWI

3.3.5 | Network Training
The theory reviewed for MLP optimizers in § 3.2.5 and regularization in § 3.2.6 remain
unchanged for LSTMs.

3.3.6 | LSTM as a Substitute for Wave Propagation
Revisiting the discretized FD stencil for wave propagation given as,

pn+1
j = ∂t2

[
c2

jF−1 [k2Pn
ν

]
+ sn

j

]
+ 2pn

j − pn−1
j , (3.26)

it is clear how pressure wave p and source impulse s at current time step n are not
affected by the future values n + 1, but only dependent on the previous state of pres-
sure at n− 1. This is, by definition, a finite impulse with directed acyclic graph under
graph theory definitions (Thulasiraman and Swamy, 2011). With slight modification to
the LSTM blueprint in Figure 3.10(b), a Deep Learning architecture supporting forward
modelling can be cast as a LSTM cell using a finite difference operator that takes the
pressure wavefield at one point in time n− 1, produces the modelled shot record at cur-
rent time n and stores this in memory for the next step n + 1. Collection of every output
at every time instant and sorting with respect to the time coordinate would equal to the
measurements of the wavefield locally at a geophone. This LSTM architecture capable
of simulating wave propagation is shown in Figure 3.11(a) as an unrolled graph and
Figure 3.11(b) as the building block components within an LSTM.

The inputs to the LSTM cell are the source term at current time st, the wavefield at
current ut and previous time step ut−1 stored in memory of the LSTM. These wavefields
are combined together with untrainable modelling operator ω and constants−1 and−2
to replicate the incremental time stepping in forward modelling. Deciding to model in
time is equivalent to setting ω to the Laplacian, whereas setting it to calculate pseudo-
spectral second order derivates will lead to pseudo-spectral wavefield modelling. The
trainable velocity-related parameter v2∆t2 is applied to get the current modelled wave-
field ut+1. This is stored in memory, passed to the forget gate and receiver location
discretization δxr applied to get the predicted outputs dt+1. To train the velocity param-
eters, seismic shot records are provided as labelled data for training.

40

Chapter 3. Theoretical Considerations 3.3. RNN as an Analogue of FWI

(a) Unrolled form of acyclic graph of LSTM for FWI.

(b) Modified LSTM cell block supporting of forward modelling.

Figure 3.11: Recasting of forward modelling of FWI within an LSTM deep learning
framework. Adapted from Sun et al. (2019).

41

Chapter 3. Theoretical Considerations 3.3. RNN as an Analogue of FWI

3.3.7 | Outline for Solving FWI with a RNN
Physics-informed RNNs for FWI is identical to classical FWI, apart from the forward
modelling component which is done within an LSTM framework. This is summarized
by Algorithm 3 and schematic shown in Figure 3.12.

Algorithm 3: FWI as RNN Implementation

1 Choose an initial model x0 and source wavelet s(x).
2 For each source, solve the forward problem through LSTM time-stepping to get

a predicted wavefield yi. This is sampled at receivers r(x).
3 At every receiver, data residuals are calculated between the modelled wavefield

yi and the observed data yobs.
4 Data residuals are back-propagated to produce a residual wavefield.
5 For each source location, the misfit function φ(x) is applied for the observed

data, regularized and back-propagated through residual wavefield to generate
the gradient ∇φ required at every point in the model.

6 The gradient is scaled based on loss optimization function, applied to the
starting model and an updated model is obtained xi+1.

7 The process is iteratively repeated from Step 2 until a convergence criterion is
satisfied.

Figure 3.12: Schematic of RNN workflow. The orange components are modified from
the original FWI workflow in Figure 3.1.

42

4

Numerical Results

In the previous section, two formulations of FWI within Deep Learning frameworks
were presented. This chapter presents numerical results and additional outcomes of
these implementations.

4.1 | Software Setup
Throughout the work shown in this chapter, Python 3.7 with the Anaconda distribution
was used as the primary development language.

4.2 | FWI as a Data-Driven DNN

4.2.1 | Train-Test Data Split
Learning the inversion from time to pseudo-spectral domain requires a training dataset
which maps time to pseudo-spectral components and their respective velocity profile.
A data generator was designed to create synthetic data on-the-fly for a 2000ms time
window. The steps involved in the data generator are:

i) Randomly create velocity profile vp for a 2000ms distance, with value ranging from
1450ms−1 and 4500ms−1. The lower bound of 1400ms−1 was selected for the water
column since the observed velocity in normal off-shore seismic exploration condi-
tions ranges from 1440ms−1 to 1540ms−1 (Cochrane and Cooper, 1991). The upper
bound of 4000ms−1 was selected as this is the upper limit of velocity in porous and
saturated sandstones (Lee et al., 1996). The assumption is made that limestones,
carbonates and salt deposits are not present in the subsurface model being inverted

43

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

since these would have velocity in excess of 4000ms−1 and go beyond the above
defined parameters.

ii) Calculate the density ρ based on Gardner’s equation (Gardner et al., 1974) given
by ρ = αvβ

p where α = 0.31 and β = 0.25 are empirically derived constants that
depend on the geology.

iii) At each interface, calculate the Reflection Coefficient R =
ρ2vp2−ρ1vp1
ρ2vp2+ρ1vp1

where ρi is
density of medium i and vp is the p-wave velocity of medium i.

iv) For each medium, calculate the Acoustic Impedance Z = ρvp.

v) Define a waveletW . This was selected to be a Ricker wavelet at 10Hz (Ryan, 1994).
The Ricker wavelet is a theoretical waveform that takes into account the effect of
Newtonian viscosity and is representative of seismic waves propagating through
visco-elastic homogeneous media (Wang, 2015), thus making it ideal for this nu-
merical simulation. The central frequency of 10Hz was chosen as a nominal value
based on literature results to be representative of normal FWI conditions (Morgan
et al., 2013). Beyond 10Hz would be considered to be super-high-resolution FWI
(Mispel et al., 2019), which goes beyond the scope of this work.

vi) The reflection coefficient time series and wavelet are convolved to produce the seis-
mic trace T .

vii) Fourier coefficients for magnitudeM(ζ) and phaseM(φ) are derived based on the
Fast Fourier Transform (FFT).

To exploit higher dimensionality and use 2D CNNs, a secondary generator was de-
signed to perform a Continuous Wavelet Transform (CWT). This was identical to the
previous generator, expect that in Step (vii), produce a CWT with sampling frequencies
from 1-75Hz and wavelet identical to the wavelet given in Step (v). This is referred to
as Step (viii). The different steps for these two generator flows are shown in Figure 4.1
for a sample velocity profile. These generators will be referred to as Generator 1 and
Generator 2 respectively.

44

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

2000 4000
(i) vp(ms−1)

0

500

1000

1500

2000

Ti
m
e
(m

s)

1.4 1.6 1.8
(ii) ρ(gcm−3),

0.0 0.2 0.4
(iii) 

2500 5000 7500
(i) vp(ms−1) × ρ(gcm−3)

0 1
() 

0

200

400

600

800

1000

Ti
m
e
(m

s)

0.00 0.25
(i) 

0

500

1000

1500

2000

Ge
ne

ra
to
r 1

 T
im

e
(m

s)

−20 0 20
(ii) (ζ)

−20 0 20
(ii) (ϕ)

0.00 0.25
(i) 

0
250
500
750

1000
1250
1500
1750

Ge
ne

ra
to
r 2

 T
im

e
(m

s)

0 20 40 60

(iii) CWT
 Frequency (Hz)

−1

0

1

2

Figure 4.1: Workflow for creating a pseudo-spectral synthetic trace.

45

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

The parameters assigned with the generators are given in Table 4.1 and distribution
of layers within a training run for 1,000,000 samples and 100,000 testing samples are
given in Figure 4.2. The vel_min_separation, time_min_separation are two key param-
eters as they control the velocity and temporal resolution of the model respectively.

Parameter Description Value
length (ms) Length of trace 2000
vel_min (m/s) Minimum velocity 1450
vel_max (m/s) Maximum velocity 5000
vel_min_separation (m/s) Minimum velocity separation 10
time_min (ms) Minimum time sample 500
time_max (ms) Maximum time sample 1500
time_min_separation (ms) Minimum time separation 2
layers_min Minimum number of layers 1
layers_max Maximum number of layers 4
dominant_frequency Hz of dominant frequency 10

Table 4.1: Synthetic data generator parameters.

1 2 3 4
Number of Layers

0.0%

10.0%

20.0%

Pe
rc
en
ta
ge

Training - 1,000,000 samples

1 2 3 4
Number of Layers

0.0%

10.0%

20.0%

Testing - 100,000 samples

1450 1950 2450 2950 3450 3950 4450
Velocity Distribution (m/s)

0.0%

5.0%

10.0%

15.0%

Pe
rc

en
ta

ge

1450 1950 2450 2950 3450 3950 4450
Velocity Distribution (m/s)

0.0%

5.0%

10.0%

15.0%

500 600 700 800 900 10001100120013001400
Time Distribution (ms)

0.0%

5.0%

10.0%

Pe
rc
en
ta
ge

500 600 700 800 900 10001100120013001400
Time Distribution (ms)

0.0%

5.0%

10.0%

Figure 4.2: The overall statistics on the training and testing dataset.

46

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

4.2.2 | DNN Framework
Figure 4.3(a) illustrates the DNN framework used to first invert for the Fourier co-
efficients from the time domain and then invert for velocity profile. The complete
workflow has five modules, with each module consisting of a NN with 5 fully con-
nected hidden layers. The layer distributions consisted of an input layer of 2000 neu-
rons, a set of 5 hidden layers of sizes 1000, 500, 250, 500, 1000 neurons, and an out-
put layer of 2000 neurons. This hour-glass design can be considered representative
of multi-scale FWI (Bunks et al., 1995) since at each hidden layer, the NN learns an
abstracted frequency component of the data at a different scale. This is Indeed syn-
onymous with modern DNN approaches such as encoder-decoders and U-Net (Ron-
neberger et al., 2015) and how they extract data representations (Berthelot et al., 2018;
Yu and Principe, 2019). The final concatenate network learns the optimal way for com-
bining the outputs. In total, the DNN had 25 hidden layers. In the case of the CWT
pseudo-representation, we designed a similar framework to that shown in Figure 4.3(a),
except that the learned CWT network has an additional dimension to be able to create
the CWT. This is shown in Figure 4.3(b). The learned CWT network has layers of shape
(2000× 9), (1000× 18), (500× 37), (250× 37), (500× 37), (1000× 74), (2000× 74). The
velocity inversion DNNs were built to be representatives of Conv1D, Conv2D, VGG,
ResNet architectures respectively. A full architectural summary and training process
for these network is provided in Appendix B.4.1.

(a) Fourier components. (b) CWT.

Figure 4.3: Pseudo-spectral FWI DNN frameworks to invert for Fourier Transform and
CWT. X is the input time domain, Y is the output vp velocity andM is the Fourier do-
main, with magnitude ζ and phase φ. Each component (blue or grey box) is a network.

47

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

4.2.3 | Multi-layer Numerical Results
The first experiment was to assert the validity of the framework in a 1D synthetic case.
Using Generator 1 with 1,000,000 training and 100,000 testing samples, with DNN frame-
work A for the Fourier components, loss function was set to be the Sum of Squared
Error, stabilized via fixed L2 − norm regularization, data batching, early stopping, and
executed for 120 epochs (the number times that the algorithm passes through the entire
training dataset). Gradient descent update was optimized via an ADAM optimizer. The
DNN was implemented using Keras 2.2.4 and TensorFlow 1.13.1 backend. This was
trained on an Intel i7-7800x X-series CPU workstation provided by the Department of
Physics at the University of Malta.

Figure 4.4 illustrates the application of DNN architecture for a sample of unseen
data and the respective inversion. Inspection of the first 750ms indicates that the DNN
approach is able to reconstruct both the velocity and the waveform profile near per-
fectly, irrespective of the number of layers and the magnitude of the acoustic difference
in this time range. Indeed, these indicate the validity of this approach. Beyond 750ms,
reconstructions start suffering from slight degradation. As illustrated in the velocity
reconstruction of the middle figure, the inaccuracy is minimal and ranges ±100ms−1.
This leads to perturbations in the reconstruction and does not allow for perfect match-
ing. Further inspection suggests that the main source of error is due to the magnitude
component of the network (red).

Figure 4.5 shows the DNN mean squared error performance over the different epochs
per DNN component. This graph indicates that the network is learning since mean
squared error is overall decreasing at each epoch. The drastic decreases in the mean
squared error at different epoch levels can be attributed to the step-wise reductions in
learning rate shown in Figure 4.5(c). This varying learning rate allows the network to
move to a deeper optimization level and approach a more global minima for the op-
timization problem. Interestingly, this performance plot indicates that the technique
might suffer from a compounding error issue. The two best performing components are
the first layer of learning for the inversion, namely Time-to-FFT-Magnitude and Time-
to-FFT-Phase, as their mean squared error performance plateaus are at 10−1. In the
second phase of the inversion from the respective FFT components to velocities (FFT-
Magnitude-to-Velocity and FFT-Phase-to-Velocity) error plateaus are at 101, which is
two orders of magnitude greater. The final network component sits even higher on the
scale at 102.

48

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

2000

3000

4000

5000
V p

 (m
/s

)

True
�(ζ)

�(ϕ)
Predicted

0 250 500 750 1000 1250 1500 1750 2000
Time (ms)

−0.2

0.0

0.2

0.4

0.6

Am
pl

itu
de

True Predicted

1500

2000

2500

3000

3500

V p
 (m

/s
)

True
�(ζ)

�(ϕ)
Predicted

0 250 500 750 1000 1250 1500 1750 2000
Time (ms)

−0.1

0.0

0.1

0.2

Am
pl

itu
de

True Predicted

2000

3000

4000

5000

V p
 (m

/s
)

True
�(ζ)

�(ϕ)
Predicted

0 250 500 750 1000 1250 1500 1750 2000
Time (ms)

−0.2

0.0

0.2

0.4

Am
pl

itu
de

True Predicted

2000

3000

4000

V p
 (m

/s
)

True
�(ζ)

�(ϕ)
Predicted

0 250 500 750 1000 1250 1500 1750 2000
Time (ms)

0.0

0.2

Am
pl

itu
de

True Predicted

Figure 4.4: Four different predictions obtained from learned weights of the DNN on
unseen data. The top panels are the velocity profile reconstructions from the two NN
architecture branches (M(ζ) and M(φ)) and the combined result. Bottom panels are
the observed and inverted waveforms.

49

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

0 25 50 75 100 125
Epochs

10−1

100

101

102

103

104

105

M
SE

Train Data Performance

0 25 50 75 100 125
Epoch

10−1

100

101

102

103

104

105

M
SE

Te t Data Performance

0 25 50 75 100 125
Epoch

10−12

10−10

10−8

10−6

10−4

Le
ar
ni
ng

 R
at
e

Learning Rate Performance
net_time_mag net_mag_vel net_time_pha e net_pha e_vel net_avg_vel

0 20 40 60 80 100 120
Epochs

10−1

100

101

102

103

104

105

M
SE

Train Data Performance

0 20 40 60 80 100 120
Epochs

10−1

100

101

102

103

104

105

M
SE

Test Data Performance

0 20 40 60 80 100 120
Epochs

10−12

10−10

10−8

10−6

10−4

Le
ar

ni
ng

 R
at

e

Learning Rate Performance

(a) Training dataset MSE over the different
epochs per DNN component. Overall perfor-
mance is decreasing per epoch, indicating that
the DNN is learning to invert.

0 20 40 60 80 100 120
Epochs

10−1

100

101

102

103

104

105

M
SE

Train Data Performance

0 20 40 60 80 100 120
Epochs

10−1

100

101

102

103

104

105

M
SE

Test Data Performance

0 20 40 60 80 100 120
Epochs

10−12

10−10

10−8

10−6

10−4

Le
ar

ni
ng

 R
at

e

Learning Rate Performance

(b) Test dataset MSE over the different epochs
per DNN component. Overall MSE is de-
creasing per epoch and there are not signs of
over-fitting.

0 20 40 60 80 100 120
Epochs

10−1

100

101

102

103

104

105

M
SE

Train Data Performance

0 20 40 60 80 100 120
Epochs

10−1

100

101

102

103

104

105

M
SE

Test Data Performance

0 20 40 60 80 100 120
Epochs

10−12

10−10

10−8

10−6

10−4

Le
ar

ni
ng

 R
at

e

Learning Rate Performance

(c) Learning Rate performance over the dif-
ferent epochs per DNN component.

Figure 4.5: DNN training performance metrics.

50

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

4.2.4 | Pre-Processing
In classical DNN approaches, it is best practice to normalise or standardize the dataset.
An experiment was executed to assess what would happen with and without normal-
isation of the data for the Magnitude component architecture shown in the previous
section. 10,000 training and 1,000 validation traces were generated using Generator 1,
stored in memory so the only variance will be the scaling and trained for 200 epochs
with early stopping and reducing learning rate monitor. The compute and memory
resources necessary for this test were small enough such that this experiment was ex-
ecuted on a 2.6 GHz 6-Core Intel Core i7, 16GB RAM personal computer. The scaling
approaches considered are the Standard Scaler and Min-Max Scaler. These are defined
as:

xMM =
x− xMIN

xMAX − xMIN
, (4.1)

xSS =
x− µ

σ
, (4.2)

where xMM, xSS are the scaled values for Min-Max and Standard Scaler respectively,
xMIN , xMAX are the minimum and maximum values of the data, µ is the mean and σ is
the standard deviation of the training samples.

The mean square error for the dataset with-out and with processing was evaluated
and is shown in Table 4.2. The value of the mean squared error indicates that pre-
processing in the form of normalisation or standardization should not be applied to the
problem dataset. The impact of the pre-processing on the inverted velocity profiles is
shown in Figure 4.6. In either case, Min-Max scaling was the worst performant, only
able to reconstruct the first layer at 500ms.

Pre-Processing Mean Square Error
No Normalisation 4,041

Min Max Normalisation 296,672
Standard Scaling 17,653

Table 4.2: Quantitative assessment on the impact of pre-precessing

51

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

2000

4000

Ve
lo

cit
y

(m
/s

)

2000

4000

Ve
lo

cit
y

(m
/s

)

0 250 500 750 1000 1250 1500 1750 2000
Time (ms)

2000

4000

Ve
lo

cit
y

(m
/s

)
True No Normalisation Min-Max Scaling Standard Scaling

Figure 4.6: Comparison of velocity profiles with and without scaling.

4.2.5 | Architecture Comparison
In § 4.2.3, the validity of the approach was assessed and pitfalls identified for a simple
example. This was extended to identify the ideal configuration in terms of architecture,
loss, time-to-train and over-fitting. The following computation was made using Python
3.7 and Tensorflow 2.0.0 with a Keras backend. It was executed on an NVIDIA Titan
V Graphical Processing Unit with 5120 cores and 12GB ram provided in collaboration
with Dr. Carlo Giunchi at Istituto Nazionale di Geofisica e Vulcanologia at Pisa.

The conversion from time trace to pseudo-spectral representation was fixed for all
1D and 2D networks such that the comparison was done on only the different inver-
sions architectures. This architecture given as “Time to Pseudo-Spectral 1D” or “Time
to Pseudo-Spectral 2D” can be found in Appendix B.4.1. Figure 4.7 gives a compari-
son of different DNN architectures, loss optimizers, duration of training and validation
curves. The networks were trained for the same number of epochs without early stop-
ping. The training and validation data consisted of 1,000,000 and 100,000 generated
traces using Generator 1 and Generator 2 respectively. The loss was fixed to be the MSE
and lr represents the learning rate on a secondary axis in Red.

Considering all loss curves, the best performing setup is that for Conv2D and RM-
Sprop with 20,000 loss and worst performant are MLP-Adam and Conv2D-Adam. The

52

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

deeper more complex Conv2D, VGG and ResNet architectures in general seem to be
experiencing some under-fitting due to the parallel, non-convergent training-validation
curves. This would be indicative that the complexity in the current problem is not high
and less complex network type such as Conv1D would be more suitable. As evidenced
by the gradual monotonic decrease in validation curves, none of the architecture-loss
optimizer combinations experienced over-fitting. Conv1D-Adam and MLP, Conv1D
and Conv2D for RMSprop seem to indicate increases between epochs 2 and 10 on the
validation curves. This would be symptomatic to over-fitting; however, the learning
rates move to lower orders of magnitude. This enables networks to continue training
and move to lower orders of loss value. The lr for some of the combinations is remain-
ing unvaried, namely Conv1D-Adagrad, Conv2D-Adagrad and Conv2D-Adadelta, all
of VGG and ResNet-Adadelta and ResNet-Adam. This is indicative that these net-
works are not close to reaching a global minimum and would benefit from training
for more epochs. Indeed, this would indicate that more complex architectures such as
VGG and ResNet require longer training epochs. Indeed, the loss-validation curves fur-
ther highlight this as, in general, they do not plateau. The more complex and deeper
the architectures required longer training times. MLP averaged training time of 41.5
compute hours, whereas ResNet averaged 117 compute hours. These performance met-
rics should not be considered in isolation and visual inspection of inversion should be
equally assessed.

Figure 4.8 show two sample traces inverted for all these architecture and loss op-
timizer combinations. Upon initial qualitative inspection, it is clearly evident how
Conv1D is the superior architecture. This further confirms the previous assertion that
for this given experiment, deeper and more complex architecture types such as Conv2D,
VGG and ResNet are not necessary and can be detrimental to overall performance.
Common to all architectures is a ringing effect on the time trace inversion. This is due to
inadequate inversion for the velocity profile where the initial velocity increase is identi-
fied correctly, but beyond this, there is a step-wise incremental velocity profile. This is
present in simple MLP and more complex DNNs. Conv1D is the only architecture type
which is symptom free.

53

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

103

104

105

106

107

M
LP

Adagrad
Time: 45 rs

Adadelta
Time: 54 rs

RMSprop
Time: 31 rs

Adam
Time: 36 rs

loss
valid.
lr

103

104

105

106

107

CO
NV

1D

Time: 49 rs Time: 59 rs Time: 59 rs Time: 55 rs
loss
valid.
lr

103

104

105

106

107

CO
NV

2D

Time: 66 rs Time: 66 rs Time: 67 rs Time: 67 rs

loss
valid.
lr

103

104

105

106

107

VG
G

Time: 75 rs Time: 75 rs Time: 177 rs Time: 75 rs
loss
valid.
lr

0 5 10 15 20
Epoc

103

104

105

106

107

Re
sN

et

Time: 108 rs

0 5 10 15 20
Epoc

Time: 109 rs

0 5 10 15 20
Epoc

Time: 144 rs

0 5 10 15 20
Epoc

Time: 107 rs

loss
valid.
lr

10−7

10−5

10−3

10−7

10−5

10−3

10−7

10−5

10−3

10−7

10−5

10−3

10−7

10−5

10−3

Ar
c
ite

ct
ur
e

Figure 4.7: Normalised comparison of DNN architectures, loss optimizer, duration of
training and validation curves. The networks were trained for the same number of
epochs without early stopping. The loss is the MSE and lr is the Learning Rate.

54

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

2000

3000

M
LP

0.0

0.2

2000

3000

CO
NV

1D

0.0

0.2

2000

3000

CO
NV

2D

0.0

0.2

2000

3000

VG
G

0.0

0.2

0 250 500 750 1000 1250 1500 1750 2000
Time (ms)

2000

3000

Re
sN

et

0 250 500 750 1000 1250 1500 1750 2000
Time (ms)

0.0

0.2

Loss Optimizer
True Adadelta Adagrad Adam RMSprop

(a) Trace A

2000

4000

M
LP

0.00

0.25

2000

4000

CO
NV

1D

0.00

0.25

2000

4000

CO
NV

2D

0.00

0.25

2000

4000

VG
G

−0.25

0.00

0.25

0 250 500 750 1000 1250 1500 1750 2000
Time (ms)

2000

4000

Re
sN

et

0 250 500 750 1000 1250 1500 1750 2000
Time (ms)

0.00

0.25

Loss Optimize
T ue Adadelta Adag ad Adam RMSp op

(b) Trace B

Figure 4.8: Velocity inversion for different DNN architectures and losses.

55

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

4.2.6 | Architecture-Loss Combination
All results are summarised in Table 4.5 to quantitatively assess the inversion process
and the DNN performance metric. The evaluation criteria are:

� Duration (d): Duration of training

� Train (t): Lowest MSE within training

� Validation (v): Qualitative assess of under-fitting/over-fitting and learning rate
performance

� Inversion (i): RMSE of 100,000 validation velocities as compared to true velocity

These criteria are ranked from 1-20, with 20 being the best result. The score was
calculated as

Score = d + t + v + 2i. (4.3)

The formula is arbitrarily chosen and linear in nature, making ideal for interpretation
and understanding. The additional weight of 2 for the inversion rank emphasizes the
inversion is the most important criteria. The rank criteria ranks all scores, with the high-
est score being best. The best performing architecture-loss combination is identified as
Conv1D-Adadelta. Table 4.3 and Table 4.4 summarize Table 4.5 per architecture and
loss optimizer respectively. Table 4.3 further reinforces the choice for ideal setup being
of type Conv1D since this architecture ranked in the top four, irrespective of Loss Opti-
mizer. Table 4.4 is in agreement that Adadelta is the better loss optimizer for our setup,
however the difference is relatively small and not substantial. Choosing a different loss
optimizer would not result in deterioration of our result. Full results used to build these
tables is given in Appendix B.4.

Architecture
Score

Avg Min Max
Conv1D 74.3 70 79

MLP 63.8 61 66
Conv2D 51.8 48 56

VGG 48.5 34 55
ResNet 33.5 28 42

Table 4.3: Quantitative assessment for
architectures.

Architecture
Score

Avg Min Max
Adadelta 58.0 42 79
Adagrad 54.6 31 70
RMSprop 54.4 33 72

Adam 50.4 28 76

Table 4.4: Quantitative assessment for
loss optimizers.

56

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

Architecture Loss Optimizer Duration Train Validation Inversion Score Overall Rank
MLP Adagrad 18 4 20 11 64 6
MLP Adadelta 16 13 19 8 64 6
MLP RMSprop 20 7 9 15 66 5
MLP Adam 19 19 9 7 61 8

Conv1D Adagrad 17 2 15 18 70 4
Conv1D Adadelta 14 8 19 19 79 1
Conv1D RMSprop 14 9 9 20 72 3
Conv1D Adam 15 10 17 17 76 2
Conv2D Adagrad 12 5 15 12 56 9
Conv2D Adadelta 12 15 15 4 50 14
Conv2D RMSprop 10 1 9 14 48 15
Conv2D Adam 10 20 3 10 53 11

VGG Adagrad 8 3 15 13 52 13
VGG Adadelta 8 14 15 9 55 10
VGG RMSprop 1 11 9 16 53 11
VGG Adam 8 12 4 5 34 17

ResNet Adagrad 4 6 17 2 31 19
ResNet Adadelta 4 17 15 3 42 16
ResNet RMSprop 2 16 3 6 33 18
ResNet Adam 5 18 3 1 28 20

Table 4.5: Quantitative assessment for architecture and loss optimizers.

4.2.7 | Marmousi Model
4.2.7.1 | Dataset

The Marmousi-2 model (Martin et al., 2002) was used to evaluate the technique on an
industry standard dataset. Figure 4.9 and Figure 4.10 illustrate the Marmousi-2 model
and velocity profile respectively. The model has a lateral extension of 17 km and a
depth of 3.5 km and includes a total of 199 layers geophysical layers, as well as an
extended water layer of 450 m depth to simulate a deep-water setting. The grid spacing
was 10m vertically by 25m laterally, resulting in a 2801 by 13601 grid. The velocity in
the model ranges from 1500ms−1 up to 4700ms−1 and after the application of a 150m
vertical median filter to reduce the vertical resolution, the number of layers in each
velocity profile was analytically calculated to range between 20 to 50 layers. The salt
density as taken constant throughout. The generation for this model is provided in
Appendix B.2. This will be referred to as the Marmousi model for the rest of the thesis.

57

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

0

1000

2000De
pt
h
(m

)

Original

0 2000 4000 6000 8000 10000 12000
Xline Number

0

1000

2000De
pt
h
(m

)

Modified Marmousi-2

1500 2000 2500 3000 3500 4000 4500
Velocity (m/s)

Figure 4.9: Marmousi-2 and modified Marmousi-2 velocity model.

2000 4000
Velocity (m/s)

0

500

1000

1500

2000

2500

De
pt

h
(m

)

Xline: 2000

2000 4000
Velocity (m/s)

Xline: 4000

2000 4000
Velocity (m/s)

Xline: 6000

2000 4000
Velocity (m/s)

Xline: 8000

2000 4000
Velocity (m/s)

Xline: 10000

2000 4000
Velocity (m/s)

Xline: 12000
Original Modified

Figure 4.10: Velocity profiles through crosslines (Xlines) on Marmousi-2 and modified
Marmousi-2 models.

4.2.7.2 | DNN FWI Generator

Following from the work in Sections 4.2.1- 4.2.6, a generator was constructed to be able
to invert for the Marmousi model. The generator parameters are given in Table 4.6.
A sample of the velocity, trace and CWT generated by this generator are available in
Figure 4.11.

58

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

Parameter Description Value
length (ms) Length of trace 2801
vel_min (m/s) Minimum velocity 1450
vel_max (m/s) Maximum velocity 5000
vel_min_separation (m/s) Minimum velocity separation 15
time_min (ms) Minimum time sample 0
time_max (ms) Maximum time sample 2801
time_min_separation (ms) Minimum time separation 5
layers_min Minimum number of layers 20
layers_max Maximum number of layers 50
dominant_frequency Hz of dominant frequency 5

Table 4.6: Marmousi data generator parameters.

2000 3000 4000
Velocity (m\s)

0

500

1000

1500

2000

2500

Ti
m

e
(m

s)

Veloci y

−0.5 0.0 0.5
Ampli ude

Trace

0 20 40 60
Frequency (Hz)

CWT

−5

0

5

Figure 4.11: Sample velocity profile, trace and CWT generated by Marmousi generator.

4.2.7.3 | DNN Training and Architecture Performance

The network was trained for 30 epochs, at 1,000,000 traces and 100,000 traces per train-
ing and testing dataset respectively. The network was a slightly modified version of the
ideal network in § 4.2.6 due to the longer time length of trace. This network is given
as two part network “Marmousi - Time to Pseudo-Spectral” and “Marmousi - Pseudo-
Spectral to Velocity” in Appendix B.1.

As expected from previous work, the DNN training performance shown in Fig-
ure 4.12 indicates how this workflow performs well with a monotonically decreasing
loss per epoch, with no symptoms of over-fitting or under-fitting. From the Learning
Rate plot, the DNN might benefit from a couple more additional training epochs since
the automatic reducing learning rate callback within the network was never initiated.
Figure 4.13 reinforce this suggestion of good training and with additional metrics cal-
culated per epoch of Explained Variance and R2 Score, both of which are gradually
approaching one per epoch.

59

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

5 10 15 20 25 30
Epoch

0.5

1.0

M
SE

1e6 Training Performance
Train
Valid

5 10 15 20 25 30
Epoch

0.00095

0.00100

0.00105

LR

Learning Rate

Figure 4.12: Training and Validation curves for DNN training and Learning Rate values.

0 5 10 15 20 25
Epochs

0.9

1.0
Explained Variance

0 5 10 15 20 25
Epochs

0.9

1.0
R2 Score

Figure 4.13: Explained variance and R2 Score metrics calculated per epoch. Both these
metrics are approaching one per epoch, suggesting a good overall DNN performance.

Figure 4.14 show histograms for the evolution of network trainable parameters per
epoch. The y-axis of these plots are the epochs and the darker saturation indicate the
older the epoch value. The z-axis is the density of values represented at x-axis. The first 6
rows show histograms for the convolution and batch normalisation layers as groups per
row. Each group is composed of Convolution – Convolution – Batch Normalisation lay-
ers which is getting repeated 6 times in the network. For each convolution, the trainable
parameters are the bias and kernel, whilst for Batch Normalisation γ and β are the per
epoch standard deviation and mean respectively, moving variance and moving mean.
Convolution kernels are relatively flat, with narrow distribution from [−0.15, 0.15] to
[−0.04, 0.04]. This indicates that the input signal is getting collapsed into smaller prob-
abilities for explanation. Comparing convolution kernels with each row, these are very
similar. They both have wider distributions indicating that more abstractions are being
included with each pass. The bias starts off with multiple peaks then centre about 0,
moving from a left skewed to a more gaussian distribution. This shows that the initial
layers are identifying multiple parts of the input signal as being important due to the
multiple peaks, but as we go deeper into the network with more epochs, we start seeing
that the network “understanding” starts to converge into a gaussian distribution and
collapsing all the abstracted information from the upper layers into the desired output.
The last row shows histograms for the two dense layers, with trainable parameters for
bias and the kernel. The kernel distribution for both dense layers is centred around
zero, with a very narrow standard deviation. This indicates how the last two layers a

60

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

selectively choosing components from the different abstracted feature maps and adding
small components to build up the final inversion. The shifting bias from left skewed to
more Gaussian, with mean close to 0.004, indicates that the final reconstruction is hap-
pening within a Gaussian environment for the DNN. This is an ideal setup as this will
facilitate regularizations to unseen data.

−0.1 0.0 0.1

01020

conv1d_72 - kernel

−0.005 0.000 0.005

conv1d_72 - bias

−0.1 0.0 0.1

conv1d_73 - kernel

−0.005 0.000 0.005

conv1d_73 - bias

1.00 1.05 1.10 1.15

bn_36 - γ

0.0 0.1

bn_36 - β

0.0 0.2 0.4

bn_36 - mm

0.0 0.2 0.4

bn_36 - mv

−0.1 0.0 0.1

01020

conv1d_74 - kernel

−0.005 0.000 0.005

conv1d_74 - bias

−0.1 0.0 0.1

conv1d_75 - kernel

−0.005 0.000 0.005

conv1d_75 - bias

1.00 1.05 1.10 1.15

bn_37 - γ

0.0 0.1

bn_37 - β

0.0 0.2 0.4

bn_37 - mm

0.0 0.2 0.4

bn_37 - mv

−0.1 0.0 0.1

01020

conv1d_76 - kernel

−0.005 0.000 0.005

conv1d_76 - bias

−0.1 0.0 0.1

conv1d_77 - kernel

−0.005 0.000 0.005

conv1d_77 - bias

1.00 1.05 1.10 1.15

bn_38 - γ

0.0 0.1

bn_38 - β

0.0 0.2 0.4

bn_38 - mm

0.0 0.2 0.4

bn_38 - mv

−0.1 0.0 0.1

01020

conv1d_78 - kernel

−0.005 0.000 0.005

conv1d_78 - bias

−0.1 0.0 0.1

conv1d_79 - kernel

−0.005 0.000 0.005

conv1d_79 - bias

1.00 1.05 1.10 1.15

bn_39 - γ

0.0 0.1

bn_39 - β

0.0 0.2 0.4

bn_39 - mm

0.0 0.2 0.4

bn_39 - mv

−0.1 0.0 0.1

01020

conv1d_80 - kernel

−0.005 0.000 0.005

conv1d_80 - bias

−0.1 0.0 0.1

conv1d_81 - kernel

−0.005 0.000 0.005

conv1d_81 - bias

1.00 1.05 1.10 1.15

bn_40 - γ

0.0 0.1

bn_40 - β

0.0 0.2 0.4

bn_40 - mm

0.0 0.2 0.4

bn_40 - mv

−0.1 0.0 0.1

01020

conv1d_82 - kernel

−0.005 0.000 0.005

conv1d_82 - bias

−0.1 0.0 0.1

conv1d_83 - kernel

−0.005 0.000 0.005

conv1d_83 - bias

1.00 1.05 1.10 1.15

bn_41 - γ

0.0 0.1

bn_41 - β

0.0 0.2 0.4

bn_41 - mm

0.0 0.2 0.4

bn_41 - mv

−0.5 0.0 0.5

01020

dense_12 - kernel

0.000 0.005 0.010

dense_12 - bias

−0.5 0.0 0.5

dense_13 - kernel

0.000 0.005 0.010

dense_13 - bias

Figure 4.14: Evolution of network histograms. The depth (y-dimension) of these plots
are the epochs and the darker saturation indicate the older the epoch value. The z-
dimension is the density of values represented at x-dimension. MM is the moving aver-
age and MV is moving variance.

Figure 4.15 and Figure 4.16 show the velocity inversion and resultant trace for Xline
2000, 8000 and 12000 from that Marmousi model respectively for every training epoch
for the DNN. From the initial epoch, the DNN was able to invert most of the infor-
mation within the velocity profile. The inversion is not perfect, since there is a form
of leakage/spikes coming in up to about epoch 10. This is the learning-process of the
DNN, since this gets gradually removed from the velocity profile with additional epoch,
and at about epoch 20 there is an almost perfect reconstruction. From epoch 20 to epoch
30, the differences are minimal as can be seen by the very small changes to the MSE
shown in the plot and as well in the overall DNN loss values in Figure 4.12.

61

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

0
10

00
20

00De
pt

h
(m

)

1
0.0

2
0.0

3
0.0

4
0.0

5
0.0

6
0.0

7
0.0

8
0.0

9
0.0

10
0.0

11
0.0

12
0.0

13
0.0

14
0.0

15
0.0 Final

0.
0

2.
5

0
10

00
20

00De
pt

h
(m

)

16
0.0

0.
0

2.
5

17
0.0

0.
0

2.
5

18
0.0

0.
0

2.
5

19
0.0

0.
0

2.
5

20
0.0

0.
0

2.
5

21
0.0

0.
0

2.
5

22
0.0

0.
0

2.
5

23
0.0

0.
0

2.
5

24
0.0

0.
0

2.
5

25
0.0

0.
0

2.
5

26
0.0

0.
0

2.
5

27
0.0

0.
0

2.
5

28
0.0

0.
0

2.
5

29
0.0

0.
0

2.
5

30
0.0

0.
0

2.
5

Final

Xline: 2000
0

10
00

20
00De

pt
h

(m
)

1
0.0

2
0.0

3
0.0

4
0.0

5
0.0

6
0.0

7
0.0

8
0.0

9
0.0

10
0.0

11
0.0

12
0.0

13
0.0

14
0.0

15
0.0 Final

0.
0

2.
5

0
10

00
20

00De
pt

h
(m

)

16
0.0

0.
0

2.
5

17
0.0

0.
0

2.
5

18
0.0

0.
0

2.
5

19
0.0

0.
0

2.
5

20
0.0

0.
0

2.
5

21
0.0

0.
0

2.
5

22
0.0

0.
0

2.
5

23
0.0

0.
0

2.
5

24
0.0

0.
0

2.
5

25
0.0

0.
0

2.
5

26
0.0

0.
0

2.
5

27
0.0

0.
0

2.
5

28
0.0

0.
0

2.
5

29
0.0

0.
0

2.
5

30
0.0

0.
0

2.
5

Final

Xline: 8000

0
10

00
20

00De
pt

h
(m

)

1
0.0

2
0.0

3
0.0

4
0.0

5
0.0

6
0.0

7
0.0

8
0.0

9
0.0

10
0.0

11
0.0

12
0.0

13
0.0

14
0.0

15
0.0 Final

0.
0

2.
5

0
10

00
20

00De
pt

h
(m

)

16
0.0

0.
0

2.
5

17
0.0

0.
0

2.
5

18
0.0

0.
0

2.
5

19
0.0

0.
0

2.
5

20
0.0

0.
0

2.
5

21
0.0

0.
0

2.
5

22
0.0

0.
0

2.
5

23
0.0

0.
0

2.
5

24
0.0

0.
0

2.
5

25
0.0

0.
0

2.
5

26
0.0

0.
0

2.
5

27
0.0

0.
0

2.
5

28
0.0

0.
0

2.
5

29
0.0

0.
0

2.
5

30
0.0

0.
0

2.
5

Final

Xline: 12000

Figure 4.15: Evolution of velocity profile for Xline 2000, 8000 and 12000 through the
different epochs respectively. Above each plot, there is the Epoch number in bold, and
the MSE.

62

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

0
10

00
20

00De
pt

h
(m

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Final
−0

.2
5

0.
00

0.
25

0
10

00
20

00De
pt

h
(m

)

16

−0
.2

5
0.

00
0.

25

17

−0
.2

5
0.

00
0.

25

18
−0

.2
5

0.
00

0.
25

19
−0

.2
5

0.
00

0.
25

20

−0
.2

5
0.

00
0.

25

21

−0
.2

5
0.

00
0.

25

22

−0
.2

5
0.

00
0.

25

23

−0
.2

5
0.

00
0.

25

24

−0
.2

5
0.

00
0.

25

25

−0
.2

5
0.

00
0.

25

26

−0
.2

5
0.

00
0.

25

27

−0
.2

5
0.

00
0.

25

28

−0
.2

5
0.

00
0.

25

29

−0
.2

5
0.

00
0.

25

30

−0
.2

5
0.

00
0.

25

Final

Xline: 2000
0

10
00

20
00De

pt
h

(m
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Final

0.
0

0.
2

0
10

00
20

00De
pt

h
(m

)

16

0.
0

0.
2

17

0.
0

0.
2

18

0.
0

0.
2

19

0.
0

0.
2

20

0.
0

0.
2

21

0.
0

0.
2

22

0.
0

0.
2

23

0.
0

0.
2

24

0.
0

0.
2

25

0.
0

0.
2

26
0.

0
0.

2
27

0.
0

0.
2

28

0.
0

0.
2

29

0.
0

0.
2

30

0.
0

0.
2

Final

Xline: 8000

0
10

00
20

00De
pt

h
(m

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Final

−0
.2 0.
0

0.
2

0
10

00
20

00De
pt

h
(m

)

16

−0
.2 0.
0

0.
2

17

−0
.2 0.
0

0.
2

18

−0
.2 0.
0

0.
2

19

−0
.2 0.
0

0.
2

20

−0
.2 0.
0

0.
2

21

−0
.2 0.
0

0.
2

22

−0
.2 0.
0

0.
2

23

−0
.2 0.
0

0.
2

24

−0
.2 0.
0

0.
2

25

−0
.2 0.
0

0.
2

26

−0
.2 0.
0

0.
2

27

−0
.2 0.
0

0.
2

28

−0
.2 0.
0

0.
2

29

−0
.2 0.
0

0.
2

30

−0
.2 0.
0

0.
2

Final

Xline: 12000

Figure 4.16: Evolution of trace for Xline 2000, 8000 and 12000 through the different
epochs respectively.

63

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

4.2.7.4 | Deterministic FWI

Classical FWI with Sobolev space norm regularization was employed for comparative
purposes – see Figure 4.17 and Figure 4.18. This was a modified version of the FWI
optimization framework provided by Kazei and Ovcharenko (2019). The maximum fre-
quency of the inversion process was set to be 3.5Hz. This results in a minimum update
resolution of 414m given by λ = vmin

fmax
where vmin is 1450ms−1 and fmax is 3.5Hz. The

dataset was resampled and interpolated by a factor of 10 to enable a faster implemen-
tation and still retain the maximum update resolution. The iterative update process
started from frequency 1Hz and iteratively updated by a factor of 1.2 until reaching a
maximum frequency of 3.45Hz. The optimization algorithm was L-BFGS-B (Zhu et al.,
1997), with 50 iterations per frequency band in each update. Forward shot modelling
was done every 100m, starting from 100m offset, and receivers spaced every 100m. The
detailed implementation and inversion parameters are provided in Appendix B.3. More
advanced FWI code could have been implemented to improve lateral continuity and
imaging, however results obtained by this implementation provided acceptable run-
times and results, thus making feasible for our experimentation. Examples of state-of-
the-art code which usually available for consortiums are FULLWAVE1 or CREWES2.

0

1000

2000De
pt
h
(m

)

Marmousi

0

1000

2000De
pt
h
(m

)

Initial

0 2000 4000 6000 8000 10000 12000
Xline Number

0

1000

2000De
pt
h
(m

)

FWI

1500 2000 2500 3000 3500 4000 4500 5000 5500
Velocity (m/s)

Figure 4.17: Classical FWI with Sobolev space norm regularization result. Top: Initial
modified Marmousi model. Middle: Initial velocity provided for FWI. Bottom: FWI
result following from inverting for 3.6Hz.

1https://fullwave3d.github.io/
2https://www.crewes.org/ResearchLinks/Full_Waveform_Inversion/

64

https://fullwave3d.github.io/
https://www.crewes.org/ResearchLinks/Full_Waveform_Inversion/

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

2000 4000
Velocity (m/s)

0

500

1000

1500

2000

2500

De
pt
h
(m

)

Xline: 2000

2000 4000
Velocity (m/s)

Xline: 4000

2000 4000
Velocity (m/s)

Xline: 6000

2000 4000
Velocity (m/s)

Xline: 8000

2000 4000
Velocity (m/s)

Xline: 10000

2000 4000
Velocity (m/s)

Xline: 12000
Marmousi Initial FWI

Figure 4.18: Velocity profiles through Xlines on Marmousi, Initial and FWI results as
shown in Figure 4.17.

4.2.7.5 | DNN and Classical FWI

To evaluate the performance of our DNN approach, classical FWI and the DNN FWI
approach are compared in Figure 4.19. Off the start, it is clearly evident how the DNN
approach is producing a lot more uplift than the standard approach. There is improved
imaging in the sediment layers, with distinct layers being reconstructed which would
otherwise be missed with classical FWI – Zoom 1 in Figure 4.20. The middle section,
with the heavily over-trusted layers shown in Zoom 2, the velocity layers are also being
reconstructed to good levels and the small sedimentary pockets at the pinch of the over-
thrust are being to be imaged as well. These are being missed completely in Classical
FWI. Sub-salt in Zoom 3, DNN is once again producing much better imaging up to
the salt and below the salt. Indeed, sub-salt, we are starting to image partially some
of the layer coming up into the salt. The inversion process is not perfect as shown
by the differences in velocities in Figure 4.22 for either of the three zoomed sections.
Comparison of the error maps, the problematic areas of DNN are also those for classical
FWI. In Zoom 1, the amplitude of the large velocity layer coming in at 1400m depth is
not being inverted properly. The onset of this layer is not as problematic, but leakage
is evidently present. Similarly, for Zoom 3, the salt arrival at 2200m depth, is being
imaged by DNN and not by FWI. In Zoom 2, the error hotspot for DNN are similar to
those of FWI, however the magnitude of the error is of an order different. This would
indicate that DNN is very good performant when it comes to inverting for large velocity
packages. Figure 4.21 gives the amplitude spectra for the full and zoomed velocity

65

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

models respectively. This show that the frequency content is similar in either approach,
yet both are lower than the true.

The velocity profiles (Figure 4.22) and trace reconstruction (Figure 4.23) confirm that
our DNN approach inverted more of the signal than classical FWI. Upon closer inves-
tigation, we are seeing small spikes on the velocity on the salt section of Xlines 2000,
4000 and 6000. Further training would potentially mitigate this, or a median filter could
be applied post-inversion to resolve this. From the velocity profiles, we see how FWI
is able to update the shallow sections up to 1400m really well, potentially better than
DNN as it is able to identify a velocity inversion at depth 500m on Xline 8000 and a pro-
nounced segment layer at depth 800m on Xline 12000. However, beyond 1400m depth,
the geometry and forward-modelling physical constraints from ray-tracing come into
play and FWI is unable to provide more uplift at deeper velocity packages.

0

1000

2000De
pt
h
(m

) Zoom 1
Zoom 2

Zoom 3

True

0

1000

2000De
pt
h
(m

)

DNN

0 2000 4000 6000 8000 10000 12000
Xline Number

0

1000

2000De
pt
h
(m

)

FWI

1500 2000 2500 3000 3500 4000 4500
Velocity (m/s)

Figure 4.19: Comparison of DNN and Classical FWI reconstructed velocity models. Top:
Initial Marmousi model with highlighted Zoom 1-3 used in Figure 4.22. Middle: DNN
FWI result. Bottom: Classical FWI result following from inverting for 3.6 Hz.

66

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

500
1000
1500Tr

ue
De

pt
h
(m

) Z m 1
1000

2000

Z m 2
1500
2000
2500

Z m 3

500
1000
1500DN

N
De

pt
h
(m

)

1000

2000

1500
2000
2500

500
1000
1500

FW
I

De
pt
h
(m

)

1000

2000

1500
2000
2500

500
1000
1500Di

ffe
re
nc
e

DN
N

De
pt
h
(m

)

1000

2000

1500
2000
2500

10000 11000 12000 13000
Xline Number

500
1000
1500Di

ffe
re
nc
e

FW
I

De
pt
h
(m

)

6000 7000 8000 9000
Xline Number

1000

2000
2000 3000 4000 5000

Xline Number

1500
2000
2500

1500 2000 2500 3000 3500 4000 4500
Vel city (m/s)

−1500 −1000 −500 0 500 1000 1500
Difference in Vel city (m/s)

Figure 4.20: Zoomed comparison of DNN and Classical FWI reconstructed velocity
models and corresponding errors.

104

M
ag
ni
tu
de

Full

103

M
ag
ni
tu
de

Zoom 1

20 40 60 80 100 120
Frequency (Hz)

103

104

M
ag
ni
tu
de

Zoom 2

20 40 60 80 100 120
Frequency (Hz)

103

104

M
ag
ni
tu
de

Zoom 3

True FWI DNN

Figure 4.21: DNN and Classical FWI amplitude spectra show that the frequency content
is similar in either approach, yet both are lower than the true.

67

Chapter 4. Numerical Results 4.2. FWI as a Data-Driven DNN

2000 4000
Velocity (m/s)

0

500

1000

1500

2000

2500

De
pt
h
(m

)

Xline: 2000

2000 4000
Velocity (m/s)

Xline: 4000

2000 4000
Velocity (m/s)

Xline: 6000

2000 4000
Velocity (m/s)

Xline: 8000

2000 4000
Velocity (m/s)

Xline: 10000

2000 4000
Velocity (m/s)

Xline: 12000
True DNN FWI

Figure 4.22: Velocity profiles through Xlines on Initial, DNN and FWI results as shown
in Figure 4.19.

−0.250.000.25
Amplitude

0

500

1000

1500

2000

2500

Ti
m

e
(s

)

Xline: 2000

−0.250.00 0.25
Amplitude

Xline: 4000

−0.2 0.0 0.2
Amplitude

Xline: 6000

0.0 0.2
Amplitude

Xline: 8000

−0.2 0.0 0.2
Amplitude

Xline: 10000

−0.25 0.00 0.25
Amplitude

Xline: 12000
True DNN FWI

Figure 4.23: Time inversions of velocity profiles through Xlines on Initial, DNN and FWI
results as shown in Figure 4.19.

68

Chapter 4. Numerical Results 4.3. RNN as an Analogue of FWI

4.3 | Theory-Guided RNN as an Analogue of FWI
Based on the formulation presented in the previous Chapter, results for theory-guided
RNN as an analogue for FWI are presented in this Section. As indicated in the Literature
Review, this idea is not novel. However, the use of pseudo-spectral spatial gradient
calculation for the inversion process is novel. Two-dimensional experiment formulation
are shown, and confirm the pseudo-spectral forward modelling implementation. This
is then applied to synthetic data results.

4.3.1 | Experiment Setup
The original code for the time inversion as RNN framework was provided by Richard-
son (2018) and developed in TensorFlow v1.4. TensorFlow has been in active develop-
ment since 2018, with a major release of v2.0 in September 2019. This provided much im-
provement in terms of efficiency and it allowed for easier implementation on GPUs. For
this reason, the framework was re-written in v2.0 to enable the use of INGV’s NVIDIA
Titan V GPU. This code is published as part of the additional resources to this disserta-
tion in Appendix B.1.

4.3.2 | Forward Modelling using RNNs
RHH should be able to model the different wave field components if it is to replace the
forward modelling component. This was first tested by considering the 1D case for both
Time and Frequency implementations and compared to a 1D Green function solution.
This was achievable via a custom RNNcell unit developed in TensorFlow and can be
inspected code repository provided in Appendix B.1. The 1D implementation provided
promising results and is available as part of Appendix B.5.1.

The experiment was extended to 2D and tested for all wavefield components. A
25Hz Ricker wavelet was propagated through a 2D 1500ms−1 constant velocity model
(Figure 4.24(a)) with a multi-source multi-receiver geometry setup. The 25Hz source
wavelet goes into the hyper-resolution realm for FWI and is beyond the resolution that
will be investigated on the synthetic model, however this allows for gauging the limit
of accuracy. This model setup was forward propagated for 5333 time-steps at 1ms, with
a 10m grid spacing. Namely, this implies that 5333 LSTM cells where employed for the
forward modelling. The resulting direct waves are illustrated in Figure 4.24(b), with
True being the analytical solution calculated using a 2D Green’s function, RNN Time
and RNN Freq are the RNN implementations for forward modelling using Time and

69

Chapter 4. Numerical Results 4.3. RNN as an Analogue of FWI

Fourier spatial derivatives respectively. Qualitatively, there is no visible difference be-
tween either approach.

Reflected and transmitted arrivals were tested using a simple step velocity model
ranging from 1500ms−1 to 2000ms−1 (Figure 4.25(a)). Figure 4.25(b) is the forward mod-
elled wavefield for the two receiver locations (RCV-1 and RCV-2), top and bottom re-
spectively. RCV-1 at ground level interacts with the direct wave at 125ms and reflected
wave at 250ms. RCV-2 is below the acoustic impedance layer at 30m and shows the
transmitted wave. Comparing these to the analytical solution, either are able to model
the wave components perfectly.

The remaining wavefield components are scattering waves. A constant velocity
model of 1500 ms−1 was created with a 1550ms−1 point scatterer (Figure 4.26(a)). RNN
implementations were modelled to be depended non-linearly on the scattering ampli-
tude and then approximately linearised. The results are given in Figure 4.26(b). The
direct wave was not included in the scattered wavefield reconstruction. Similarly to
previous components, scattering are modelled successfully.

Table 4.7(a) lists quantitative metrics for the wavefield components. RNN Freq was
found to be better for imaging the direct wave (Table 4.7(a)), with an improvement of
0.01 in error tolerance and 0.3% Relative Percentage Error (RPE). Metrics in Table 4.7(b)
and Table 4.7(c) indicate that RNN Time matches the 2D Green’s function near perfectly,
whilst RNN Freq introduce error of less than 0.04 and 0.1% RPE. RNN Time is able
to model the wavefield within a maximum 0.06 error tolerance and 1.74% RPE, whilst
RNN Freq is overall more accurate with 0.05 and 1.449% respectively. Given these met-
rics and the observed models, the discrepancies between the analytical solution and the
RNN implementation are deemed acceptable and should be suitable for the modelling
process.

Modelling Error Tolerance RPE (%)
RNN Time 0.060 1.740
RNN Freq 0.050 1.449

(a) Direct wave.

Modelling Error Tolerance RPE (%)
RNN Time 0.001 0.002
RNN Freq 0.020 0.013

(b) Reflected and transmitted wave.

Modelling Error Tolerance RPE (%)
RNN Time – Non-linear 0.003 0.010
RNN Time – Linear 0.010 0.025
RNN Freq – Non-linear 0.030 0.076
RNN Freq – Linear 0.040 0.097

(c) Scattering wave.

Table 4.7: Empirical comparison of 2D wavefield components.

70

Chapter 4. Numerical Results 4.3. RNN as an Analogue of FWI

0

5

10

Sh
ot

 1
y

(m
)

1

2

3

1

2

3

1

2

3

1

2

3

0

5

10

Sh
ot

 2
y

(m
)

1

2 3

1

2 3

1

2 3

1

2 3

0 10 20 30 40 50 60 70 80
x (m)

0

5

10

Sh
ot

 3
y

(m
)

12

3

12

3

12

3

12

3

SRC 1
RCV 1

SRC 2
RCV 2

SRC 3
RCV 3

SRC 4

(a) Constant velocity model.

−2

0

2

Sh
ot

 1
Am

pl
itu

de
 (m

)

RCV - 1 RCV - 2 RCV - 3

−2

0

2

Sh
ot

 2
Am

pl
itu

de
 (m

)

0 1000 2000 3000 4000
Time (ms)

−2

0

2

Sh
ot

 3
Am

pl
itu

de
 (m

)

0 1000 2000 3000 4000
Time (ms)

0 1000 2000 3000 4000
Time (ms)

True RNN Time RNN Freq

(b) Direct wave RNN forward modelling.

Figure 4.24: Direct wave forward modelling for multi-source, multi-receiver geometry.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x (m)

0

20

40

60

80

y
(m

)

SRC RCV-1 RCV-2

1500 1600 1700 1800 1900 2000
Vel. (m/s)

(a) Step velocity model.

−1

0

1

RC
V-

1
Am

pl
itu

de
 (m

)

0 50 100 150 200 250 300 350 400
Time (ms)

−1

0

1

RC
V-

2
Am

pl
itu

de
 (m

)

True RNN Time RNN Freq

(b) Top: RCV-1 located at ground level reacts to direct
arrival at 125ms and reflected arrival at 250ms.
Bottom: RCV-2 shows transmitted arrival.

Figure 4.25: Reflected and transmitted wave RNN forward modelling.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x (m)

0

20

40

60

80

y
(m

)

SRC RCV

1500 1510 1520 1530 1540 1550
Vel. (m/s)

(a) Point-scattering velocity model.

−0.002

−0.001

0.000

0.001

0.002

0.003

Am
pl

itu
de

 (m
)

Linear

0 50 100 150 200 250 300 350 400
Time (ms)

−0.002

−0.001

0.000

0.001

0.002

0.003

Am
pl

itu
de

 (m
)

Non-Linear

True RNN Time RNN Freq

(b) Scattering wavefield modelling. Direct wavefield
was excluded in the modelling.

Figure 4.26: Scattering wave RNN forward modelling.

71

Chapter 4. Numerical Results 4.3. RNN as an Analogue of FWI

4.3.3 | Gradient Comparison
The gradient of the cost function defines the direction in which the model needs to
be updated to reach a global minimum (§ 3.1.1). Classical FWI approaches generally
use the adjoint state method to calculate gradients or the finite differences approach
(although computationally expensive), whereas DNN frameworks use automatic dif-
ferentiation. Theoretical equivalence has been shown in Appendix A.9, and we now
confirm computational equivalence following the approach described by the work of
Richardson (2018).

A random 1D model was generated, randomly perturbed and gradient of cost func-
tion evaluated along the trace. Figure 4.27 and Table 4.8 compare the gradients at each
point for classical finite differences and adjoint techniques to automatic differentiation
(AutoDiff.). The adjoint state and AutoDiff. Freq react similarly and slightly over-
estimates the gradient, with the pseudo-spectral approach being worse. AutoDiff. Time
under-estimates the gradient with an infinitesimal error. Gradients deviate at the edges
in either case, with AutoDiff. Freq producing evident perturbation in the initial few
time-steps. This is due to the choice of the batch-size within the inversion process and
is further discussed in subsection § 4.3.4. Although this might seem worrying, the scale
of this deviation is very minimal and no concerning effects were observed within the
previous experimentation leading to this investigation. The other discrepancies are at-
tributed to numerical inaccuracies as per Richardson (2018).

0 50 100 150 200 250
Time (ms)

−0.0002

0.0000

0.0002

Gr
ad

ie
nt

Finite Difference Adjoint AutoDiff. Time AutoDiff. Freq

Figure 4.27: Gradient comparison of of RNN implementation with classical approaches.
AutoDiff. is the automatic differentiation implementation in Tensorflow v2.0.

Finite Difference gradient baseline Adjoint AutoDiff. Time AutoDiff. Freq
Error tolerance 1.000× 10−5 −2.196× 10−9 3.000× 10−4

RPE (%) 0.593 1.302× 10−5 1.779

Table 4.8: Empirical comparison of gradient calculations.

72

Chapter 4. Numerical Results 4.3. RNN as an Analogue of FWI

4.3.4 | Hyper-Parameter Tuning
Similarly to the approach shown in Sun et al. (2019), a benchmark 1D 4-layer synthetic
profile, with velocities [2, 3, 4, 5]kms−1, was used to identify the ideal parameters for
the RNN architecture. This is illustrated as the Black line in Figure 4.28. Classical 1D
second-order FD modelling was used to generate the required true receiver data. Multi-
ple learning rates for the different loss optimizers were investigated to try and identify
the ideal combination. Figure 4.28 shows the best combination for all losses with an
ideal batch size of three. The full investigation for this tuning is given in Appendix B.5.2.

2000

3000

4000

5000

SG
D

LR
 0

.4
Ve

lo
cit

y
(m

\s
)

Model Inversion

0.0

2.5

5.0

7.5

Er
ro

r

Losses

2000

3000

4000

5000

Ad
ag

ra
d

LR
 2

0
Ve

lo
cit

y
(m

\s
)

0.0

2.5

5.0

7.5

Er
ro

r

2000

3000

4000

5000

Ad
ad

el
ta

LR
 1

00
0

Ve
lo

cit
y

(m
\s

)

0.0

2.5

5.0

7.5

Er
ro

r

2000

3000

4000

5000

RM
Sp

ro
p

LR
 1

Ve
lo

cit
y

(m
\s

)

0.0

2.5

5.0

7.5

Er
ro

r

0 10 20 30 40 50
Grid Point (*10m)

2000

3000

4000

5000

Ad
am

LR
 2

Ve
lo

cit
y

(m
\s

)

0 100 200 300 400 500
Shot Iteration

0.0

2.5

5.0

7.5

Er
ro

r

True Initial Time Freq

Figure 4.28: Tuning of hyper-parameters to identify ideal loss optimizer combination.

Left side of Figure 4.28 shows the inverted velocity profiles, with Red being the ini-
tial velocity profile. For Stochastic Gradient Descent, the learning rates was found to be
both between zero and one. This is as expected and follows conventional loss optimiza-
tion. On the other hand, the other loss optimizers had to be scaled to beyond one due
to the magnitude differences brought by accumulated squared-norms of the gradients
as investigated by Sun et al. (2018). This is allowed provided the scaling coefficient is
between zero and one. For Adagrad, following from Duchi et al. (2011), the β hyper-
parameter was fixed at 0.9 and learning rate found to be 20. Adadelta, RMSprop and
Adam optimal learning rates were identified at 1000, 1 and 2 respectively.

73

Chapter 4. Numerical Results 4.3. RNN as an Analogue of FWI

The right side of Figure 4.28 gives the loss progression. All optimizers iteratively
reduce the error with additional shots and on similar scales. Stochastic Gradient Descent
and Adagrad do this relatively sooner than the rest, yet the inverted velocity is not as
good as the other optimizers. RMSprop follows a rather slow gradual decrease in loss,
which then sudden increases. This is expected given that RMSprop updates are derived
from a moving average of the square gradients and require an inertial start.

Based on this investigation, Adam with a learning rate of 2 was identified as the
best optimizer. This provided the most stable inversion for either RNN Time or Freq,
with the most update and reasonable error loss performance. Mis-match in the shallow
part of the velocity is due to the choice of batch-size within the RNN update process.
Figure 4.29 shows the Adam optimizer fixed with learning rate 2 and inverted for batch
sizes ranging from one to five. The smaller the batch size, the greater the error since the
inversion is more localized and amplifies the gradient onset error shown in Figure 4.27.
The larger the batch size, the better the inversion as more data is being used. This poses
a limitation since batch size is limited by the Graphical Processing Unit RAM. Given
fore-sight that this approach will be used on a large dataset, this was taken as a caveat
and batch size fixed at one for the rest of the implementation.

0 10 20 30 40 50
Grid Point (*10m)

2000

3000

4000

5000

Ad
am

LR
 2

Ve
lo

cit
y

(m
\s

)

True
Initial

Batch size 1
Batch size 2

Batch size 3
Batch size 4

Batch size 5

Figure 4.29: A smaller batch-size introduces error at the initial part of the velocity profile
due to more localized updates. This was derived for a time time implementation for
RNN architecture with Adam loss optimizer and learning rate of 2.

74

Chapter 4. Numerical Results 4.3. RNN as an Analogue of FWI

4.3.5 | 2D Synthetic
4.3.5.1 | True and Initial Models

To expand the numerical analysis of FWI through RNN training, a 2D scalar model
of the Marmousi-2 was formulated similar to that in § 4.2.7.1. This was re-sampled
to a 50m×50m grid and smoothed to create the initial model model. These velocity
models are plotted in Figure 4.30. True synthetic receivers were computed by forward
modelling through the RNN framework. 56 shots at 300m intervals at depth 200m were
generated with a Perfectly Matched Layer at the boundaries. Receivers were set at 50m
intervals and modelled for 12s duration.

0 2000 4000 6000 8000 10000 12000
Xline Number

0

1000

2000

3000

De
pt
h
(m

)

True Velocity

0 2000 4000 6000 8000 10000 12000
Xline Number

Initial Velocity

1500 2000 2500 3000 3500 4000 4500
Velocity (m/s)

Figure 4.30: 50m×50m grid 2D Marmousi models for RNN training.

4.3.5.2 | Training of RNN

As in standard RNN approaches, the receiver dataset was split into a training and
development datasets with at 75%-25% split. Training was run for 100 epochs, with
early stopping on an NVIDIA Titan V Graphical Processing Unit courtesy of Istituto
Nazionale di Geofisica e Vulcanologia. Development loss was calculated every 5th train-
ing shot. Figure 4.31 gives the RNN performance for training and development datasets
using Adam optimizer with learning rate of 2.0 and batch size 1. The horizontal labels
shows the epoch number and respective number of shots evaluated for training and de-
velopment. Computational run times are of 14 hours per approach. Both RNN Time
and RNN Freq follow similar reductions in loss per epoch and indicate that either im-
plementation converge to an optimal loss. L-BFGS-B loss for classical FWI is shown and
is discussed is in the next section.

75

Chapter 4. Numerical Results 4.3. RNN as an Analogue of FWI

0
0
0

10
420
140

20
840
280

30
1260
420

40
1680
560

50
2100
700

60
2520
840

70
2940
980

80
3360
1120

90
3780
1260

100
4200
1400

Epoch
Number of Training Shots Evaluated

Number of Development Shots Evaluated

5

10

15

20

25

30
Lo
ss

RNN Time - Develop
RNN Time - Training

RNN Freq - Develop
RNN Freq - Training

L-BFGS-B

Figure 4.31: RNN loss performance for RNN training and development datasets using
Adam optimizer with learning rate of 2 and batch size 1. The horizontal labels shows
the epoch number and respective number of shots evaluated for training and develop-
ment. L-BFGS-B is the cost function evaluation for classical FWI plotted on shot number
equivalent. Either RNN approach converge quicker than L-BFGS-B, and RNN Freq pro-
vides a more stable convergence and better performance then RNN Time.

4.3.5.3 | Comparison with classical FWI

Figure 4.31 plots the cost function versus the number of shot evaluation equivalent for
classical FWI and RNN. The RNN framework is more computationally efficient since ei-
ther RNN approach converge significantly quicker than L-BFGS-B. RNN Freq provides
a more stable convergence and is better performant then RNN Time. The classical FWI
is plotted as a shot number equivalent and not the epoch number. The full cost function
performance is provided in Appendix B.3.

Figure 4.32 compares the inverted velocities and residuals for FWI, together with
RNN Time and RNN Freq implementations. Complementary plots showing the model
update progressions for this sections are provided as part of Appendix B.5.3. The true
model velocity in Figure 4.32 identifies three zoomed areas which are shown in Fig-
ure 4.33 and Figure 4.35 are velocity profiles taken at 2000 Xline intervals. Figure 4.34
show the resolution spectra derived via FFT on the velocity models. Comparing FWI
and the RNN model in either of these figures, it is clear that the resolution recovery
is different. Figure 4.34 confirms the frequency content in these approaches and shows
how RNN models invert more of the lower frequencies in Zoom 2 and Zoom 3. In Zoom
1, FWI is slightly better at frequency recovery beyond 25Hz.

Residual plots (Figure 4.32- 4.33) and the velocity profiles (Figure 4.35) show how
RNN approaches are able to recover more of the signal in the shallow right side (Zoom
1) and the over-thrust middle area (Zoom 2) of the model. Almost all the signal up to
depth 1500m is inverted correctly in Zoom 1 whereas over-thrust faults are near per-

76

Chapter 4. Numerical Results 4.3. RNN as an Analogue of FWI

fectly recovered in Zoom 2 and 4.33F. Zoom 3 is of most interest. The prominent layer
at depth circa 2000m is nearly completely missed by RNN models, whereas FWI is able
to recover this partially. On the other hand, the deeper 3000m strata are hardly identi-
fied with FWI. Residual figures in the full sections show that the RNN model amplitude
recover is not as good when compared to FWI (Labels 4.33A-B). Indeed, some layers are
missed at depth greater than 1500m for Xline number greater than 10,000 (Label 4.33C-
D). Considering either RNN approach in Figure 4.32, there is a low-frequency shadow
artefact introduced till depth 2300m from Xline 0 to 6000 and Xline 8000 to 13900. This
is attributed to the practical implementation of batch-size discussed in § B.5.2.

Figure 4.36 shows labelled receivers for either model at Common Depth Point (CDP)
60, 150 and 300. These CDPs split the model into three sections, representing the differ-
ent extremities. Label A and B reiterate that the shallow left side is better imaged for
FWI, whilst shallow right side is better for RNNs respectively. Label C is the missing
high velocity at depth 2000m which has incorrect amplitude for the RNNs, but posi-
tioned correctly. Classical FWI has less prominent leakage in this area, yet very evident.
Label D is the badly imaged layer at depth between 2000m and 2500m on the right side
of the model. Labels E throughout the residuals highlight better low frequency resolu-
tion imaging by RNN approaches. Indeed, RNN Freq is able to recover slightly more
of these low frequencies and identified by E1 and E2. Similar improvements are visible
throughout the other plots.

Intentionally left black space.

77

Chapter 4. Numerical Results 4.3. RNN as an Analogue of FWI

0

1000

2000

3000

Tr
ue

De
pt

h
(m
) Zoom 1

Zoom 2
Zoom 3

Velocity

0

1000

2000

3000

FW
I

De
pt
h
(m
)

Residual

0

1000

2000

3000

RN
N
Ti
m
e

De
pt
h
(m
)

0
0

2000
40

4000
80

6000
120

8000
160

10000
200

12000
240

Xline Number
CDP

0

1000

2000

3000

RN
N
Fr
eq

De
pt
h
(m
)

0
0

2000
40

4000
80

6000
120

8000
160

10000
200

12000
240

Xline Number
CDP

1500 2000 2500 3000 3500 4000 4500
Velocity (m/s)

−2000−1500−1000 −500 0 500 1000 1500 2000
Veloci) residual (m/s)

Figure 4.32: Classical FWI and RNN implementation velocity model inversion.

78

Chapter 4. Numerical Results 4.3. RNN as an Analogue of FWI

500
1000
1500
2000

Tr
ue

De
pt
h
(m

)

Z m 1
1000
1500
2000
2500

Z m 2
2000
2500
3000

Z m 3

500
1000
1500
2000

FW
I

De
pt
h
(m

) 1000
1500
2000
2500

2000
2500
3000

500
1000
1500
2000RN

N
Ti
m
e

De
pt
h
(m

) 1000
1500
2000
2500

2000
2500
3000

500
1000
1500
2000RN

N
Fr
eq

De
pt
h
(m

) 1000
1500
2000
2500

2000
2500
3000

500
1000
1500
2000Re

sid
ua

l
FW

I
De

pt
h
(m

) 1000
1500
2000
2500

2000
2500
3000

500
1000
1500
2000Re

sid
ua

l
RN

N
Ti
m
e

De
pt
h
(m

) 1000
1500
2000
2500

2000
2500
3000

11200 12800
Xline Number

500
1000
1500
2000Re

sid
ua

l
RN

N
Fr
eq

De
pt
h
(m

)

6400 8000
Xline Number

1000
1500
2000
2500

3200 4800
Xline Number

2000
2500
3000

1500 2000 2500 3000 3500 4000 4500
Vel city (m/s)

(1500 (1000 (500 0 500 1000 1500
Vel city residual (m/s)

Figure 4.33: Zoomed In RNN Models

79

Chapter 4. Numerical Results 4.3. RNN as an Analogue of FWI

0

20000

M
ag

ni
tu
de

Full

2500

5000

7500

M
ag

ni
tu
de

Zoom 1

0 50 100 150 200 250
Frequency (Hz)

2500

5000

7500

M
ag

ni
tu
de

Zoom 2

50 100 150 200
Frequency (Hz)

5000

10000

M
ag

ni
tu
de

Zoom 3

True FWI RNN Time RNN Freq

Figure 4.34: RNN model velocity resolution spectra.

2000 4000
Velocity (m/s)

0

500

1000

1500

2000

2500

3000

3500

De
pt
h
(m

)

A

B

E

Xline: 2000

2000 4000
Velocity (m/s)

A

B

E

Xline: 4000

2000 4000
Velocity (m/s)

A

B

E

Xline: 6000

2000 4000
Velocity (m/s)

D

F

Xline: 8000

2000 4000
Velocity (m/s)

C

D

F

Xline: 10000

2000 4000
Velocity (m/s)

C

D

Xline: 12000
True FWI RNN Time RNN Freq

Figure 4.35: Comparison of velocity profiles for RNN and classical FWI. Label A-B: RNN
is able to identify strata near perfectly, however unable to inverte the amplitudes values
correctly. Label C-D: Missed layers from RNN approaches. Label E: Low frequency
artefact for RNN. Label F: Near perfect velocity inversion in the middle Xlines, over
shallow depth.

80

Chapter 4. Numerical Results 4.3. RNN as an Analogue of FWI

0

2

4

6

8

10

12

Xl
in

e
30

00
CD

P
60

Ti
m

e
(s

)

Tr(e FWI RNN Time RNN Freq

A

C

E

FWI
Resid(a

A

C

E1

RNN Time
Resid(a

A

C

E2

RNN Freq
Resid(a

0

2

4

6

8

10

12

X
in

e
75

00
CD

P
15

0
Ti

m
e

(s
)

A

E

A A

0 4 8 12 16
) (km)

0

2

4

6

8

10

12

X
in

e
15

00
0

CD
P

30
0

Ti
m

e
(s

)

0 4 8 12 16
) (km)

0 4 8 12 16
) (km)

0 4 8 12 16
) (km)

0 4 8 12 16
) (km)

B

E
0 4 8 12 16

) (km)

B

D

0 4 8 12 16
) (km)

B

D

−30 −20 −10 0 10 20 30
Seismic amp it(de (m)

−30 −20 −10 0 10 20 30
Seismic resid(a amp it(de (m)

Figure 4.36: Receivers for True, FWI and RNN models at CDP 60, 150 and 300. Label A
and B: Shallow left side is better imaged for FWI. Label C: Missing high velocity with
incorrect amplitude but positioned correctly. Label D: Badly imaged layer. Labels E:
Better low frequency imaging for either RNN approaches. Labels E1 and E2: RNN Freq
is able to recover slightly more low frequencies.

81

Chapter 4. Numerical Results 4.4. Data-Driven and Theory-Guided NN Frameworks

4.4 | Data-Driven and Theory-Guided NN Frameworks
In this section, DNN refers to “Data-Driven FWI” and RNN to “Theory-Guided RNN
as an Analogue of FWI”.

4.4.1 | Data Volume
The volume of data used to train for DNN was 20 orders of magnitude greater. Fig-
ure 4.37 shows the normalised loss for the two derived frameworks, with respective
count for the number of training and validation shot or shot equivalent. Given that
the DNN framework used randomly generated traces with each epoch of 1,000,000 and
100,000 trace for training and validation respectively, these were batched into groups of
340 traces to match the number of receivers in the RNN approach.

Training Validation

Figure 4.37: Classical FWI and RNN implementation velocity model inversion.

4.4.2 | Data-Driven Uplift
DNN produces more imaging uplift since it is not bound by the deterministic forward-
modelling physical constraints from ray-tracing. Figure 4.38 shows a sample of shots
through the Marmousi model. Ray-paths below the high velocity at depth 2-2.5km
do not arrive at the receivers at the surface for the current model offsets. Acquisition
geometry controlling the offset is a hard-limit within FWI. Morgan et al. (2009) consid-
ers large-offsets to be fundamental for successful FWI. Moreover, this hinders seismic
imaging in and around salt bodies since, by definition, only one-way ray-paths are con-
sidered (Jones and Davison, 2014). In the case of the data-generators used for the DNN
approach, these are free from offset-constraints and do not influence the inversion ex-
periment employed by classical FWI.

82

Chapter 4. Numerical Results 4.4. Data-Driven and Theory-Guided NN Frameworks

1520 1840 2160 2480 2800 3120 3440 3760 4080 4400
Velocity (m/s)

Figure 4.38: Ray-tracing coverage within forward modelling derived from deterministic
geophysics.

4.4.3 | Inversions
Figure 4.39 and 4.40 are the full and zoomed-in sections for the inverted models for
classical FWI, DNN and RNN respectively. DNN has better layer amplitude continuity
as seen by in Zoom 1 and Zoom 3. RNN is better at edge definition than both DNN and
FWI as in Zoom 2.

The velocity profiles in Figure 4.41 illustrate with Label A how either approach is
good in the middle and shallow sections. Indeed, if the RNN artefact labelled A1 is
excluded in smaller Xlines, this would be valid for either Xline. Label B show how large
velocity contrasts within the velocities is well defined for DNN, followed by FWI. In
particular, the RNN approach is able to identify the edges, but not able to reconstruct
the amplitudes correct. Smaller velocity increases are not an issue as shown by B1. A
combination of FWI and RNN could potentially exploit the benefit of either. However,
not in areas with large velocity contrasts such as salt areas and carbonates. With depth,
DNN is a better framework as marked with Label C. Comparing RNN and FWI, RNN
is more suited at the edges with Depth as shown with Label C1.

Receivers for pseudo-spectral NN frameworks and true models are shown in Fig-
ure 4.42. Either approach is able to recover different shallow arrivals successfully as
marked with Label A. DNN has residual and RNN is able to invert more of the shallow,
however FWI recovers direct arrival components nearly completely. Considering CDP
150 and 300, RNN is reinforced as being better performant at the edges from the resid-

83

Chapter 4. Numerical Results 4.4. Data-Driven and Theory-Guided NN Frameworks

uals marked with Label A1. Excluding the gradients artefact of RNN, theses receivers
indicate that RNN is the most suited for shallow sections. Both DNN and RNN have
leakage on CDP 60 and CDP 300 as shown with Label B. RNN’s residual show evidence
of signal, possible symptomatic to cycle-skipping. With depth, RNN in general has less
residual as shown with Label C.

1500 2000 2500 3000 3500 4000 4500
Velocity (m/s)

−2000−1500−1000 −500 0 500 1000 1500 2000
Velociy residual (m/s)

Figure 4.39: Full model showing differences between DNN and RNN velocity inversion
as compare to classical FWI, with residual differences.

84

Chapter 4. Numerical Results 4.4. Data-Driven and Theory-Guided NN Frameworks

1500 2000 2500 3000 3500 4000 4500
Velocity (m/s)

−1500 −1000 −500 0 500 1000 1500
Velocity residual (m/s)

Figure 4.40: Zoomed in sections showing differences between DNN and RNN velocity
inversion as compare to classical FWI, with residual differences.

85

Chapter 4. Numerical Results 4.4. Data-Driven and Theory-Guided NN Frameworks

True FWI DNN RNN

Figure 4.41: Comparison of velocity profiles for DNN, RNN and classical FWI. Label A:
Either approach is good in the middle and shallow sections, with the exception of the
gradient artefact marked A1. Label B: Problematic recover of large velocity contrasts for
RNN, whilst smaller velocity contrasts are inverted corrected as marked by B1. Label
C: DNN is a better framework with depth for velocity, whilst RNN is more suited at the
edges as shown with C1

86

Chapter 4. Numerical Results 4.4. Data-Driven and Theory-Guided NN Frameworks

−30 −20 −10 0 10 20 30
Seismic amplitude (m)

−30 −20 −10 0 10 20 30
Seismic residual amplitude (m)

Figure 4.42: Labelled receivers for True, FWI and RNN models at CDP 60, 150 and 300.
Label A: NN frameworks recover shallow arrivals successfully, with RNN reinforced as
being better performant at the edges from the residuals marked with A1. Label B: Some
signal leakage on NN frameworks. Label C: Less leakage from RNN with depth.

87

Chapter 4. Numerical Results 4.5. Summary

4.5 | Summary
The key outcomes from this chapter can be summarised in the following lists. For “FWI
as a Data-Driven DNN”:

� Elements within a classical FWI framework can be replaced with a DNN frame-
work successfully. This was practically assessed for multi-strata model using
geophysics-generated data.

� Normalization is not a necessary component within the framework.

� The ideal architecture is a 1D convolutional based (Conv1D), with Adadelta loss
optimization.

� Kernel and bias distribution plots for the training process confirm that the frame-
work is a learning process.

� Most of the update happens within the first few epochs. Additional epochs refine
the inverted velocity.

� Inversion performance in shallow section was equally good for either classical
FWI or DNN approach. DNN framework performs better for deeper and over-
thrust areas since DNNs are not bound by forward-modelling physical constraints
from ray-tracing.

For “RNN as an Analogue of FWI”:

� Pseudo-spectral RNN frameworks are feasible approaches.

� Based on comparisons of a simple model with an analytical Green’s function for-
mulation, RNN Time is able to model the wavefield within a maximum 0.06 error
tolerance and 1.74% RPE. RNN Freq is overall more accurate with 0.05 error toler-
ance and 1.449% RPE.

� Adjoint state and RNN Freq gradients overestimate the Finite Difference, whilst
RNN Time under-estimates it with an infinitesimal error. RNN Freq produce a
perturbation on the onset of the gradient which is attributed to modelling artefact.

� Based on the model size and compute available, the ideal loss was Adam with a
learning rate of 2 and batch size of 1. Model batch size proved to be a limitation
for practical implementations.

88

Chapter 4. Numerical Results 4.5. Summary

� RNN is computationally more efficient than the classical FWI presented in this
work. RNN freq shows more stable convergence.

� Classical FWI and RNN approaches have merits. RNN frameworks are able to
identify faults, but amplitudes are not fully inverted properly. This results in RNN
inversions with some missing layers. However, the low frequency content in RNN
approaches is better than classical FWI, particularly for RNN Freq.

Outcomes of the comparison between the NN approaches:

� Well performing DNN was achievable through the use of a very large dataset.

� DNN recovers more of the velocity contrast and RNN is better at edge definition.

� RNN is the most suited for the shallow sections (exclude the gradient artefact)
and at depth due to the cleaner residuals on the receivers. This is only valid in
the middle section of the model with the most coverage from ray-tracing. Indeed,
RNN approaches have some leakage on the edges which might be symptomatic
to cycle-skipping.

� RNN Freq is able to recover more low frequencies.

89

5

Discussion and Conclusions

In this chapter, DNN refers to “FWI as a Data-Driven DNN” and RNN as “Theory-
Guided RNN as an Analogue of FWI”. The first section presents a critique to the
work, addresses possible pitfalls, identifies areas of potential improvement and sug-
gests directions for future research. This is followed by a final section which presents
concluding remarks for this dissertation.

5.1 | Critique, Limitations and Future Work

5.1.1 | Inversion Paradigm
DNN, RNN and FWI are three different frameworks which fall within different parts
of the inversion spectrum. On one end there is the strongly data-driven approach for
DNN, on the other there is purely deterministic geophysics with classical FWI, and in
between there is theory-guided RNN.

Within the DNN approach, the inversion component is data-oriented and the data
generator is based on geophysics. If data-generators are to include information that
might not be deterministically available within a seismic survey, the reconstruction pro-
cess could invert for this information to Lewis and Vigh (2017)’s work. A similar ap-
proach has already been applied by Bubba et al. (2019) for brain CT-scans (Figure 5.1).
These types of data-driven models could be pre-cursors for deterministic models as
has been done in the work of Araya-Polo et al. (2018). Figure 5.2 shows inversion for
classical FWI without and with DNN as a priori model. The latter approach produces
more layer continuity and better imaging at depth. This comes with relatively no ex-
tra overhead cost since the DNN would be a pre-trained network. Furthermore, Grohs
et al. (2019) analytically determine the upper bounds for the approximation and gener-

90

Chapter 5. Discussion and Conclusions 5.1. Critique, Limitations and Future Work

alization power for a NN. This could be implemented and provided as a caveat with
data-driven inversion by providing confidence maps for the inversion.

Figure 5.1: Inversion for brain CT-scan, with area of interest. Classical inversion via
Filtered Back Projection has areas of poor-illumination due to limited-angle, whilst the
data-driven approach offers better inversion. Adapted from Bubba et al. (2019).

0 3200 6400 9600 12800
Xline Number

0

700

1400

2100

2800

3500

De
pt
h
(m
)

FWI

0 3200 6400 9600 12800
Xline Number

FWI with DNN Initial Model

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Velocity (km/s)

Figure 5.2: Improved FWI result with DNN as initial model.

Theory-guided inversion inherits advantages and problems from either part of the
spectrum. It faces challenges of cycle-skipping and local-minima, whilst it benefits from
the use of automatic differentiation to calculate the gradient. This reduces develop-
ment time as it avoids the need to manually implement and verify the adjoint state
method. Furthermore, being at the intersection of physics and computer science, it is
inherently strengthened by contributions from two communities of researchers. This
opens up possibility of considering other deep learning techniques such as dropout or
other acyclic-graph architectures such as directed acyclic graphs (Bogaerts et al., 2020).

In classical FWI, the wavefield at the final time step is affected by the wavefield
during the initial time steps. Back-propagation must occur over the entire sequence

91

Chapter 5. Discussion and Conclusions 5.1. Critique, Limitations and Future Work

of time steps for theory-guided RNN. Application of back-propagation through thou-
sands of layers is not a typical application in deep learning applications and automatic
differentiation is not designed to efficiently handle such situations. Strategies common
to other FWI frameworks to reduce memory requirements could be translated into the
field. Examples would include not saving the wavefield at every time step (Nguyen and
Mcmechan, 2015), applying compression to the wavefield time slices (Boehm et al., 2015;
Kalita and Alkhalifah, 2017), saving wavefields to disk rather then memory (Shen and
Clapp, 2015), and regenerating wavefields during back-propagation rather than storing
them (Malcolm and Willemsen, 2016; Yao et al., 2020). Data-driven inversion is gradu-
ally proving itself to be a field of its own. An account for some of the main contributions
is provided by Arridge et al. (2019). It is up to the end user to decide to which level of
confidence they are willing to base their inversion on data.

5.1.2 | Training Datasets for Real Data
The DNN requires a global model for a real world problem. Consider as example a data
generator trained on data that is limited to 3 layers and inversion is carried out for a
system made for more than 3 layers. The inversion process will start degradation as
shown in Figure 5.3(a). Conv1D-Adadelta DNN was trained for 30 epochs for a maxi-
mum 3 layers for velocity ranging from 1450ms−1 to 5000ms−1. The first two columns
are inversions for velocity profiles within the generator limit for the number of layers.
These inversions are of good quality as expected from previous results. For more layers
in the velocity profile, the inversion tries to generalize for these profiles but misses some
components. The inversion is still able to identify some layers, but not to the same reso-
lution as if trained on those layers. The large velocity contrasts are inverted correctly as
shown for the 6 layer velocity profile. Similarly, the geophysics models allowed within
the problem need to be considered. Figure 5.3(b) illustrates inversion for a large velocity
of 6000ms−1 and velocity inversion respectively. Given that these models were not in-
cluded in the development dataset, the inversion process would never be able to invert
for these velocity types correctly. On the other hand, the DNN framework is robust to
different noise levels. Figure 5.3(c) showcases the inversion for pink noise contaminated
data at different levels. Pink noise contamination was chosen due to its prevalence in the
low frequency limit (Randall, 2009), thus making it more suited to assess the effect on
the low frequency component of FWI. The inversion remains relatively unaltered before
25% and then starts degradation. This inversion process could be used as a de-noising
technique given the correct data-generator.

92

Chapter 5. Discussion and Conclusions 5.1. Critique, Limitations and Future Work

2000 3000 4000 5000
Vp (m/s)

0

250

500

750

1000

1250

1500

1750

2000

Ti
m
e
(m

s)

Number of layers: 1

2000 3000 4000 5000
Vp (m/s)

Number of layers: 2

2000 3000 4000 5000
Vp (m/s)

Number of layers: 5

2000 3000 4000 5000
Vp (m/s)

Number of layers: 6

2000 3000 4000 5000
Vp (m/s)

Number of layers: 7

−0.2 0.0 0.2 0.4 0.6
Am litude

0

250

500

750

1000

1250

1500

1750

2000

Ti
m
e
(m

s)

−0.2 0.0 0.2 0.4 0.6
Am litude

−0.2 0.0 0.2 0.4 0.6
Am litude

−0.2 0.0 0.2 0.4 0.6
Am litude

−0.2 0.0 0.2 0.4 0.6
Am litude

True Prediction - Included Prediction - Excluded

(a) The first two columns are inversions for velocity profiles within the generator limit for the
number of layers. For more layers, the inversion tries to generalize for these profiles but misses
some components. The inversion is still able to identify some layers, but not to the same resolu-
tion as if trained on those layers.

2000

4000

6000

V p
 (m

/s
)

Original Inclusion Inversion

0 250 500 750 1000 1250 1500 1750 2000
Time (m/s)

0.0

0.5

Am
pl
itu

de

0 250 500 750 1000 1250 1500 1750 2000
Time (m/s)

0 250 500 750 1000 1250 1500 1750 2000
Time (m/s)

True Predicted Original Inclusion Prediction Inversion Prediction

(b) Large velocity inclusions and Velocity inversion would be missed as well.

2000

3000

4000

5000

V p
 (m

/s
)

0 500 1000 1500 2000
Time (m/s)

−0.25

0.00

0.25

0.50

Am
pl

itu
de

0 500 1000 1500 2000
Time (m/s)

0 500 1000 1500 2000
Time (m/s)

0 500 1000 1500 2000
Time (m/s)

0 500 1000 1500 2000
Time (m/s)

True 5% 25% 50% 75%

(c) Robustness to noise up to 25% pink noise contamination.

Figure 5.3: Conv1D-Adadelta DNN trained for 30 epochs for a maximum 3 layers for
velocity ranging from 1450ms−1 to 5000ms−1. The quality of the development dataset
directly influence the quality of DNN inversion. A: Missing layer. B: Different geophys-
ical models. C: Noise sensitivity.

93

Chapter 5. Discussion and Conclusions 5.1. Critique, Limitations and Future Work

Modelling techniques and transform spaces could provide an alternative approach
for the DNN. Jozinović et al. (2020) use Wigner-Ville distributions for pseudo-spectral
representations of the seismograms for prediction of intensity measurements of ground
shaking, or other representations such as Recurrence Plots (Kamphorst and Ruelle, 1987),
Markov Transition Fields (Wang and Oates, 2015) and Gramian Angular Fields (Wang
and Oates, 2015) - See Figure 5.4.

0.0

0.5
Trace

0

1000

Recurrence Plot

0

10

20

Markov
Transition Field

0

10

20

Gramian Angular
Field Summation

0

10

20

Gramian Angular
Field Difference

0.0

0.2

0

1000

0

10

20

0

10

20

0

10

20

0 1000 2000
Time (ms)

0.0

0.2

0 1000
0

1000

0 10 20
0

10

20

0 10 20
0

10

20

0 10 20
0

10

20

Figure 5.4: Alternative representations for a trace.

For theory-guided RNN, excluding part of the data from training for use as a de-
velopment dataset is standard practice in deep learning, but not within classical FWI.
For a real-world problem, the size of the seismic dataset relative to the model parame-
ters generally has fewer data samples and could potentially prove problematic. Hyper-
parameter tuning for the optimal parameters for RNN demonstrate that practice can
result in convergence to a good model, yet this does not prove a similar result is achiev-
able when using the entire dataset.

5.1.3 | Forward Modelling and Multiples
All shots considered within the forward problem for either FWI and RNN framework
were within the water column for the Marmousi model. This implies that receiver data
have surface-related multiples, together with all other inter-layer multiple components.
Undergoing forward problem solving with and without multiples is a decision that the
literature is still unable to resolve.

Multiples travel longer paths and are reflected at small angles in contrast to the pri-
maries and are able to illuminate shadow zones where primary reflections cannot reach
(Bergen et al., 2019). Inclusion of these wavefield components can lead to improve-

94

Chapter 5. Discussion and Conclusions 5.1. Critique, Limitations and Future Work

ment within the inversion process as multiples can contain more subsurface informa-
tion compared to primary and diving wave (Komatitsch and Tromp, 2002). Bleibinhaus
and Rondenay (2009) studied these effects of surface scattering in FWI and concluded
that velocity models resulting from neglecting the free surface in the inversion show
artifacts and suffered from a loss of resolution. Liu et al. (2020) employ a combination
of lower-order multiple as the source and the higher-order multiple to invert, whilst
Zhang et al. (2013) transform each hydrophone into a virtual point source with a time
history equal to that of the recorded data to help their inversion and are able to produce
methods utilizing multiples to improve velocity updates.

Hicks and Pratt (2001) and Operto et al. (2006) demonstrated that traditional FWI
would become unstable when it inverts observed data with the free surface related
waves. This said, removing of multiples introduce additional processing steps which
are subject to error and could lead to removal of signal. The consensus is that the choice
of multiple inclusion is per different use case. Indeed, the work presented could be
revisited for the sensitivity of multiples within the inversion.

5.1.4 | Implications of Data Volume and Computational Power
More data is directly correlated with better modelling for NN frameworks, and this abil-
ity is limited by the resources available. Similar to classical FWI, computational power
is a limitation within the frameworks presented. This was already identified within the
RNN approach with the limit from the Graphical Processing Unit RAM, constraining
the model size and batch processing. A larger batch-size for RNN processing would in-
tuitively imply that the optimization is less likely to get stuck with local minimum and
reduce the probability of cycle-skipping. Workaround for this could be multi-Graphical
Processing Unit systems, such as NVIDIA’s DGX station1 and Lambda Lab’s Vector sta-
tion2, or cloud computing such as Amazon Web Services 3 and Google Cloud4,5. This
cost on memory requirements for NNs is a common issue with solving optimization
of large-scale neural networks (Bottou et al., 2018) and efforts have been made into
unconventional training methods such as alternating gradient direction methods and
Bregman iterations (Boyd et al., 2011; Taylor et al., 2016).

1https://www.nvidia.com/en-us/data-center/dgx-systems/
2https://lambdalabs.com/gpu-workstations/
3https://aws.amazon.com/nvidia/
4https://cloud.google.com/gpu/
5These are just samples of resources which are readily available. There is no affiliation with either of

the products mentioned.

95

https://www.nvidia.com/en-us/data-center/dgx-systems/
https://lambdalabs.com/gpu-workstations/
https://aws.amazon.com/nvidia/
https://cloud.google.com/gpu/

Chapter 5. Discussion and Conclusions 5.1. Critique, Limitations and Future Work

5.1.5 | Maturity of the Frameworks
The NN framework results presented in this work should be considered within the con-
text of maturity of the technique. As indicated in the literature review, FWI was origi-
nally an academic pursuit and initial inversions results were naive. Figure 5.5 shows re-
sults for FWI inversion obtained by Gauthier et al. (1986) for a circular model. Inverting
for 8 shots for 5 iterations, with 400 receiver locations, the model is able to recover some
structure within the velocity - Figure 5.5(b). Inverting a similar model within a modern
FWI framework would produce better global inversion as shown in Figure 5.5(c). The
legacy inversion by Gauthier et al. took approximately 1 hour to execute on a CRAY-1S
supercomputer (Kolodzey, 1981), whilst modern FWI was run on a personal computer
for 2 minutes. This is a major uplift, which is backed by thirty-fives years of advances in
hardware, computational modelling, mathematics, geophysics and optimization theory.
Taking a similar time consideration for the NN framework, the potential for data-driven
pseudo-spectral approach is still in infancy, yet able to produce improvements to a ma-
ture technique.

(a) Initial circular model. (b) Legacy FWI from 1986. (c) Modern FWI.

Figure 5.5: Comparison between inversion results for legacy FWI and modern FWI for
a circular model. 35 years of advances in hardware, computational modelling, mathe-
matics, geophysics and optimization theory produce major uplift at the fraction of time.

Both frameworks are still to be implemented to higher dimensions. The DNN ap-
proach would follow similarly to the work by Liu et al. (2020). 2D receivers are modelled
for an arbitrary velocity models and 2D convolutional architectures are trained to invert
from the seismic data to the velocity model. Naturally, the next step would be 3D ge-
ometry. In the case of theory-guided approaches, addition of this axis is expected to
provided better imaging.

5.1.6 | Other Areas of Deep Learning
The intersection of Deep Learning and FWI is just starting to flourish and offers ample
opportunity for new research avenues. Alternative architectures are readily available

96

Chapter 5. Discussion and Conclusions 5.2. Conclusion

to be implemented. Some examples for DNN are shown in Figure 3.6. Transform-
ers (Vaswani et al., 2017) are currently state-of-the-art sequence learners and Shalova
and Oseledets (2020) developed the initial theoretical work for implementation for FWI.
Alternatively, Fourier Recurrent Units (Zhang et al., 2018) could be used within theory-
guided FWI. These units stabilize training gradients along the temporal dimension with
Fourier basis functions and would potentially resolve the gradient anomaly within our
work.

The technique of Transfer Learning within Deep Learning has just starting to be
considered in geophysics. Indeed, given that DNN generators are stochastic global
engines, a pre-trained NN for a survey could easily be employed on another seismic
survey with minimal training. Siahkoohi et al. (2019) successfully used the probabil-
ity distributions of nearby surveys around an area of interest to fine-tune a pre-trained
Generative Adversarial Network and be able to map low-cost, low-fidelity solutions to
remove surface-related multiples and ghost from shot records and numerical dispersion
from receivers.

Yadav et al. (2015) presented the topic of solving differential equations directly us-
ing NN architectures and bypassing the finite-difference approach. This framework has
been found to be advantageous since (i) the solutions obtained are integrable and dif-
ferentiable, thus have better interpretability, (ii) solutions are highly generalized and
preserves accuracy despite very few points, and (iii) no modification is needed for dif-
ferent kinds of boundary conditions. Indeed, Zhu et al. (2020) developed a neural-
network-based full waveform inversion method that integrates deep neural networks
with FWI by representing the velocity model with a generative neural network. The ve-
locity model generated by NN is input to conventional FWI partial differential equation
solvers. The gradients of both the NN and PDEs are calculated using automatic differ-
entiation, which back-propagates gradients through the acoustic/elastic PDEs and NN
layers to update the weights and biases of the generative neural network.

5.2 | Conclusion
Data-driven and theory-guided approaches for FWI have been reviewed with a compre-
hensive study of literature. The pseudo-spectral approach via deep learning framework
was identified to be lacking in any previous work and this proved to be an opportu-
nity for development. FWI was re-cast within a DNN framework for both a data-driven
and a theory-guided based formulation. Both approaches were developed theoretically,
qualitatively assessed on synthetic data and tested on the Marmousi dataset.

97

Chapter 5. Discussion and Conclusions 5.2. Conclusion

Elements within a classical FWI framework were shown to be substitutable with
DNN components. The base architecture for the network was set to be an hour-glass
neuron design. This is representative of multi-scale FWI and modern DNN approaches.
Two data-generators were used to validate the framework on multi-layer models. This
was tested for normalization and concluded not applicable. Fully connected layers,
1D and 2D convolutions, VGG and ResNet type architectures for Adagrad, Adadelta,
RMSprop and Adam optimizer were quantitatively evaluated for computational hours,
DNN training performance, validation and learning rate performance, and inversion
RMSE. The best performing architecture-loss combination was identified as Conv1D-
Adadelta. Conv1D architecture ranked the highest in all tests, whilst the differences in
optimizer were superficial. The choice of architecture was the most important aspect as
choosing a different loss optimizer would not result in deterioration of the result.

The Conv1D-Adadelta network was trained for inversion of the Marmousi model
by using a 20-50 layer generator, with velocities ranging from 1450ms−1 to 5000 ms−1.
It was trained for 30 epochs, at 1,000,000 and 100,000 trace per epoch per training and
testing dataset respectively. Analysis of the network kernel and bias distribution for
the training and velocity and trace update per epoch confirmed that the framework
is a learning process. Most of the update happen within the first few epochs, whilst
additional epochs refined the inverted velocity. Multi-scale 3.5Hz classical FWI with
Sobolev space norm regularization was compared to this DNN inversion. Inversion
performance in shallow sections was equally good for either classical FWI or DNN ap-
proach. DNN framework performs better for deeper and over-thrust areas since DNNs
are not bound by forward-modelling physical constraints from ray-tracing.

Theory-guided RNN as an analogue of FWI was implemented for 2D experiments
and different wavefield components compared to an analytical 2D Green’s function and
time implementation. Based on these results, RNN Time is able to model the wavefield
within a maximum 0.06 error tolerance and 1.74% RPE. RNN Freq is overall more ac-
curate with 0.05 error tolerance and 1.449% RPE. Assessment on the gradients indicates
how the adjoint state and RNN Freq gradients in general overestimate finite difference
calculation, whilst RNN Time under-estimates it with an infinitesimal error. RNN Freq
produced a perturbation on the onset of the gradient which was attributed to modelling
artefact and could be mitigated in future versions of this approach. Based on the model
size and compute available, the ideal loss was Adam with a learning rate of 2 and batch
size of 1. Model batch size proved to be a limitation for practical implementations, yet
RNN is computationally more efficient than the classical FWI presented in this work.
RNN freq provides more stable convergence and is better performant. Overall, RNN
frameworks are able to identify faults, but amplitudes are not fully inverted properly.

98

Chapter 5. Discussion and Conclusions 5.2. Conclusion

From the comparative analysis of the NN approaches, DNN was better performing.
DNN networks recovered more of the velocity contrast, whilst RNN was better at edge
definition. RNN was more suited for the shallow and depth sections due to the cleaner
receiver residuals. This was only valid in the middle section of the model with the most
coverage from ray-tracing. Indeed, RNN approaches had some leakage on the edges.

A critique addressing benefits and limitations of these two approaches was also in-
cluded. The impact of the shift in the inversion paradigm was reviewed for both ap-
proaches. Data-driven should be considered within global approximation approaches
and has potential to be used as a priori to deterministic FWI. Research which can be
easily translated was addressed in the form of probabilistic maps for the inversions and
analytical accuracy upper bounds per iteration. The RNN approach benefits from the
wider community of active researchers. The reduction in development time is a direct
integration from Computer Science to geophysics. Vice-versa, Deep Learning frame-
works can adopt strategies common to FWI.

Data-driven inversion is still at the very early stages of development, and more re-
search opportunity is still available. However, to truly assess the applicability and rele-
vance of these frameworks, these approaches will have to be applied to real data in the
future. The DNN model generators were shown to work within the boundaries of their
parameters. Extra layers, velocity inversions and inclusions could be missed altogether
if the network is not prepared correctly. Application of pre-trained networks is rela-
tively easy and thus different geophysical model hypothesis could be assessed quickly.
In either case, the DNN is robust to noise and future work would involve implementa-
tion as a de-noising techniques. Alternative modelling methods and transform spaces
were also provided as alternative approaches for DNN.

The forward modelling approach used through this work was critiqued for the use
of multiples. Whether to use or not to use multiples within forward modelling is model
dependent and should be evaluated for RNN Freq. Similar to classical FWI, computa-
tional power was identifiable as a limitation within these DNN frameworks. Although
this is currently a limitation, it will not be in the near future due to the relative quick
development of GPUs. A corollary to the whole approach was addressed in the form of
the maturity of the approach. 35 years of advances applied to these frameworks would
be expected to yield very good results. Finally, other areas of DNN that can be ap-
plied to FWI were presented. Alternative architectures such as Transformers and use of
Fourier Recurrent Units are readily available. Potential of transfer learning and solving
differential equations using NN were presented as future directions of research for these
frameworks.

99

A

Additional Theoretical Tools

A.1 | Difference between Time and Frequency FWI
To illustrate the differences within numerical implementations between time and fre-
quency FWI, let us consider the 1D finite difference formulation of the acoustic wave
equation given by:

1
c(x)2

∂2 p(x, t)
∂t2 −∇2 p(x, t) = s(x, t). (A.1)

Following from Igel (2017), Equation A.1 is re-arranged and re-written in dense notation
as:

∂2
t p = c2∂2

x p + s. (A.2)

Discretize space and time with constant increments dx and dt such that

xj = jdx, j = [0, lmax] (A.3)

tn = ndt, t = [0, nmax] . (A.4)

Implementing a FD stencil as shown in Figure A.1, the derivatives approximated via
central finite differences and Equation A.2 can be written as:

pn+1
j − 2pn

j + pn−1
j

dt2 = c2
j

[
pn+1

j − 2pn
j + pn−1

j

dx2

]
+ sn

j , (A.5)

where the upper index corresponds to time discretization and the lower index corre-
sponds to spatial discretization. Pressure at location n + 1 based on current location n
and previous n− 1 location is given by:

pn+1
j = c2

j

[
pn+1

j − 2pn
j + pn−1

j

]
+ 2pn

j − pn−1
j + dt2sn

j . (A.6)

100

Appendix A. Theoretical Tools A.1. Difference between Time and Frequency FWI

Figure A.1: Space-Time FD discretization stencil for the 1D acoustic wave equation. The
x-axis corresponds to space and the y-axis to time. The open circle denotes the point
p(xj, tn+1) to which the state of the pressure field is extrapolated. From Igel (2017).

Given a source wavelet sn
j at location j and time n, an initial wavefield p0

j and initial
conditions such that everything is at rest at time t = 0, all components on the right-
hand side of Equation A.6 are known and can be used to propagate particle motion
through an acoustic medium.

Considering the Fourier pseudo-spectral implementation (Gazdag, 1981), Fourier
theory seeks to approximate a given function by a finite sum over some N orthogonal
basis functions Φi, namely:

f (x) ≈
N

∑
i=0

aiΦi(x), (A.7)

where ai are the Fourier coefficients. The main benefit of using this approximation is
that given the discrete Fourier transform of functions defined on a regular grid, exact
machine precision derivatives up to the Nyquist wavenumber kN = π

dx can be calcu-
lated. In particular, it can be shown that the Fourier transform operator F can obtain
the exact nth derivate as:

f n(x) = F−1 [(ik)nF [f (x)]] . (A.8)

Substituting Equation A.8 in the 2nd order spatial derivative of the 1D acoustic wave
equation in Equation A.2 gives:

∂2
x pn

j = F−1 [(ik)2Pn
ν

]
= F−1 [−k2Pn

ν

]
, (A.9)

where Pn
ν is the discrete complex wavenumber spectrum at time n. As such, the main

overall error in the numerical solution comes from only the time integration scheme.
Substituting Equation A.9 in Equation A.2, discretize on a FD stencil and rearranging
yields:

pn+1
j = dt2

[
c2

jF−1 [k2Pn
ν

]
+ sn

j

]
+ 2pn

j − pn−1
j . (A.10)

101

Appendix A. Theoretical Tools A.2. Activation Functions

A.2 | Activation Functions
Below are popular activations functions based on Goodfellow et al. (2016). These are
represented graphically in Figure A.2.

� Binary Step: f (x) =

1, ∀x ≥ 0

0, ∀x < 0
. This a simple switch on-off type function ideal

for a binary classification. It is more theoretical than practical as data classifica-
tions tasks usually classify into multiple classes. Furthermore, a binary step func-
tion has a vanishing gradient, thus making it not usable with back-propagation.

� Linear: f (x) = αx, ∀x ∈ R. This is proportional to the input x, based on the scalar
α. It can be applied to various neurons and multiple neurons can be activated at
the same time. However, the gradient would be constant at α, resulting in a linear
transformation.

� Sigmoid: f (x) = 1
1+e−x . This is widely used function since it is a non-linear

smooth continuously differentiable function. The non-linearity enables neurons to
approximate non-linear functions. The gradient is always positive, however it still
has a vanishing gradient problem as f

′
(x) approaches zero for larger x. Further-

more, the sigmoid function is non-symmetric and connectivity between neurons is
not necessarily always positive. Mitigation is achieved via scaling of the sigmoid,
resulting in the Tanh function.

� Tanh: f (x) = ex−e−x

ex+e−x . This function caries the same properties of non-linearity,
smoothness and continuous differentiability of the sigmoid function, however it
has the added benefit of being symmetric over the origin. This mitigates the prob-
lem of having all values of the same sign. Nonetheless, Tanh still retains the van-
ishing gradient problem as the function is flat with small gradients for large x.

� Softmax: f (xi) =
exi

∑n
j=1 exj . This function is the sigmoid function extended to multi-

ple classes and provides the probability of the input being in a particular class as
an output. The softmax function is ideal when trying to attain the probabilities to
define the class of each input.

� ReLU: f (x) = max(0, x). The Rectified Linear Unit is the most widely used acti-
vation function. It is non-linear, allowing easy back-propagation of errors. When
employed on a network of neurons, the negative component of the function is con-
verted to zero and the neuron is deactivated, thus introducing sparsity with the
network and making it efficient and easy for computation.

102

Appendix A. Theoretical Tools A.3. Loss Optimizers

(a) Binary Step (b) Linear (c) Sigmoid

(d) Tanh (e) ReLU

Figure A.2: Activation functions f (x) and their derivative f
′
(x).

A.3 | Loss Optimizers
To simplify notation in this section, consider objective function J (Θ) parameterized by
model parameters Θ ∈ Rd to optimize gradient ∇ΘJ (Θ) with respect to the model
parameters for a learning rate η. This can be recast as:

Θ ≡ Θ− η∇ΘJ (Θ). (A.11)

A.3.1 | Adagrad
The Adaptive Gradient or Adagrad algorithm (Duchi et al., 2011) performs learning rate
updates with training based on the frequency of distribution in the data. It performs
smaller updates (smaller learning rates) on parameters associated with frequently oc-
curring features and larger updates vice-versa.

As Adagrad uses a different learning rate for every parameter Θi at time step t, the
gradient of the objective function is given by

gt = ∑
i
∇ΘtJ (Θt,i). (A.12)

103

Appendix A. Theoretical Tools A.3. Loss Optimizers

Model updates at time t + 1 become:

Θt+1 = Θt −
η√

Gt + ε
gt, (A.13)

where Gt is the sum of squares of the gradients up to time step t and ε is a stabilizing
term to avoid division by zero. This optimizer eliminates the need to manually tune the
learning rate. However, the accumulation of the squared gradients in the denominator
keeps growing with every update and will eventually cause the learning rate to shrink
up to the point the algorithm is no longer able to acquire additional knowledge (Ruder,
2016).

A.3.2 | Adadelta
Adadelta (Zeiler, 2012) extends Adagrad and aims to avoid the continual decay of the
learning rates by using a decaying average of past gradients to some fixed size w. Equa-
tion A.13 becomes

Θt+1 = Θt −
RMS [∆Θ]t−1

RMS [g]t
gt, (A.14)

where RMS [g]t is the Root Mean Squared for the gradient, RMS [∆Θ]t−1 =
√

E [∆Θ2]t−1 + ε

is the Root Mean Squared of parameter updates. Since RMS [∆Θ]t is unknown, it is ap-
proximated until the previous time step t − 1. This algorithm removes the need for a
default learning rate.

A.3.3 | RMSprop
Similar to Adadelta, RMSprop (Hinton et al., 2012) attempts to resolve Adagrad’s van-
ishing learning rates by maintaining a moving average of the square of gradients and
divides the gradient by the root of this average. Equation A.13 becomes:

E
[
g2]

t = 0.9E
[
g2]

t−1 + 0.1g2
t (A.15)

Θt+1 = Θt −
η√

E [g2]t + ε
gt. (A.16)

A.3.4 | Adam
Adaptive Moment Estimation or Adam (Kingma and Ba, 2014) computes adaptive learn-
ing rates for each parameter based on estimations of first-order and second-order mo-
ments. The algorithm updates exponential moving averages of the gradient (m̂t) and

104

Appendix A. Theoretical Tools A.4. Regularization

the squared gradient (v̂t) by

m̂t =
mt

1− βt
1

(A.17)

v̂t =
vt

1− βt
2

, (A.18)

where the hyper-parameters β1, β2 ∈ [0, 1) control the exponential decay rates of these
moving averages. Equation A.13 for Adam becomes:

Θt+1 = Θt −
η√

v̂t + ε
m̂t. (A.19)

A.4 | Regularization
DNN regularization is available via two strategies: (i) functional-based, and (ii) NN
architecture-based.

A.4.1 | Functional-based
These type of schemes update the cost function (Equation 3.11) with a regularization
term, namely:

Ĵ = J + αΩ, (A.20)

where J is the original cost function, Ω is the regularization term or norm penalty and
α ∈ [0, inf) is a hyperparameter that weights the relative contribution of J to Ω. The
most commonly used norm penalty is L2 − norm defined as:

ΩL2 =
1
2
||w||22 , (A.21)

where w are the weights throughout the DNN. This lends itself from the broader subject
of regularization theory and was previously identified for FWI in § 3.1.2. Alternative
names for this style of regularization are Ridge Regression or Tikhonov regularization.

A.4.2 | Architecture-based
DNN can be regularized via alterations to the NN architecture through (i) Dropout, (ii)
Data augmentation, and (iii) Early Stopping.

105

Appendix A. Theoretical Tools A.4. Regularization

A.4.2.1 | Dropout

Dropout is a very simple ensemble-based technique (Srivastava et al., 2014). It is the
process of allow only some parts of the network to be updated. Figure A.3 illustrates
all sub-networks that can be formed from a simple NN that allow weight update within
an epoch. Either of these sub-networks is randomly considered and trained at a given
epoch and inherently remove nodal dependencies (Srivastava et al., 2014).

Figure A.3: All 16 possible sub-networks are produced from a simple base network.
A large proportion of these do not have sufficient input-to-output connections and are
ignored. However, for wide and deeper DNNs, these types of sub-networks become
insignificant since the probability of dropping all possible paths from inputs to outputs
becomes negligible. If such an occurrence does happen, it would only effect a single
epoch and this would be mitigated with long enough training. From Goodfellow et al.
(2016).

A.4.2.2 | Data Augmentation

The best way to make a DNN model generalize better for “unseen” data is to train
on more data (Goodfellow et al., 2016). The amount of data available in real-world
application is limited and it is reasonably straight forward to create new “fake” data.
This is achieved via transformations of the original x input and mapping to the correct
y (Lee and Moloney, 2018). Keivan Ekbatani et al. (2017) and Le et al. (2017) show
successful training of a DNN using synthetic created input-output pairs in practice.

106

Appendix A. Theoretical Tools A.5. CNN Building Blocks

A.4.2.3 | Early Stopping

When DNN model complexity is sufficient to represent over-fitting, it is likely that the
training error decreases steadily over time, but validation set error begins to rise again
and makes the model worse off with any additional iteration (Yao et al., 2007). Early
stopping is the technique which terminates training at a given epoch En if the errors on
the validation sets at En+1 are greater than those of En. Early stopping regularization
is the most widely used regularization technique as it is unobtrusive to the learning
dynamics for DNN (Caruana et al., 2000).

A.5 | CNN Building Blocks
This section reviews the elements for CNNs referenced through-out the dissertation.

A.5.1 | Convolutional Layer
A convolutional layer differs from a normal fully connected layer through the introduc-
tion of convolutions across the neurons. The window across which convolutions are
applied is referred to as a kernel or filter. Mathematically, the convolutional operation
on an input image tensor Ic for the lth layer is given by:

f k
l (p, q) = ∑

c
∑
x,y

ic(x, y)ek
l (u, v), (A.22)

where ic(x, y) is an element of the input image tensor, ek
l (u, v) is the index of the kth

convolutional kernel kl , and the output or feature-map of the kth convolutional kernel
is given by Fk

l =
[

f k
l (1, 1), · · · , f k

l (P, Q)
]

with P and Q being the total number of rows
and columns in IC. A graphical representation of the convolutional operation is given
in Figure A.4.

A.5.2 | Pooling Layer
Once a feature-map is extracted from a convolutional layer, the exact location of one ele-
ment becomes less important as long as its relative position to others is preserved (Khan
et al., 2020). Sub-regions of interest can thus be inferred via reduction of dimensionality
(Lee et al., 2016). There are two main types mechanisms, max and min pooling. Max
pooling picks the maximum value and min pooling picks the minimum value from the
assigned region. Figure A.5 illustrates an example of max pooling.

107

Appendix A. Theoretical Tools A.5. CNN Building Blocks

Figure A.4: Example of 2D convolution.

Figure A.5: Example of 2D max-pooling.

Either of these pooling operations support feature extraction which is invariant to
translational shifts and small distortions (Ranzato et al., 2007). These invariant features
regulate the complexity of the network and reduce over-fitting. Alternative formula-
tions such as average, L2, overlapping, spatial pyramid pooling have also been used for
CNNs (Boureau et al., 2010; He et al., 2015; Wang et al., 2012).

A.5.3 | Batch Normalization
Input distributions to the layers in deep network may vary when weights are updated
during training. This covariance shift in the distribution of hidden unit values slows
down the convergence by forcing learning rate to small values. Batch Normalization
is used to counteract this internal covariance shift by standardising the input to zero
mean and unit variance for each batch (Ioffe and Szegedy, 2015). It smoothens the flow
of gradient and acts as a regulating factor (Santurkar et al., 2018). Batch normalization
for a transformed feature-map Fk

l is given by

N k
l =

F k
l − µB√
σ2

B + ε
, (A.23)

108

Appendix A. Theoretical Tools A.6. Common CNN Architectures

where N k
l is the normalized feature map, F k

l is the input feature map, µB is the mean,
σ2

B is the variance for a batch and ε is added for numerical stability (Ioffe and Szegedy,
2015).

A.6 | Common CNN Architectures

A.6.1 | AlexNet
AlexNet (Krizhevsky et al., 2012) is considered as the first deep neural network with 8
layers, compared to its predecessor LeNet with 5 layers (LeCun et al., 1990). In partic-
ular, it has large filters (11× 11, 5× 5) at the initial layers, dropout during training to
enforce the model to learn more robust features, ReLU to improve convergence rates and
overlapping sub-sampling and local response normalization to improve generalization.
The basic architectural blueprint is given in Figure A.6(a).

A.6.2 | VGG
VGG (Simonyan et al., 2014) is a rather simplistic, homogenous network. However,
it is 19 layers deep. It stacks (3 × 3) filters to reduce the computational complexity,
uses max pooling after the convolutional layers and padding is applied to maintain the
spatial resolution. The only problem associated with VGG network are the 138 million
trainable parameters, which make it computationally expensive for network training
and deploying on system with low resources. The architectural blueprint is given in
Figure A.6(b).

A.6.3 | ResNet
ResNet (He et al., 2016b) is a 152-layers deep network shown in Figure A.6(c). ResNet
is 20 times deeper than AlexNet and 8 times deeper VGG. Pivotal to this network is
the concept of a residual block, shown in Figure A.6(d). This introduces the “identity
map” or “skip connection” that skips one or more layers. This propagates the error deep
through the network layers and allows it to learn how to minimize the residual.

109

Appendix A. Theoretical Tools A.7. RNN Graphs and Unfolding

A.7 | RNN Graphs and Unfolding
RNNs are capable of learning sequentially representing dynamic temporal behaviour
(Rumelhart et al., 1986). These can be categorized into two broad classes: (i) finite im-
pulse with directed acyclic graphs, and (ii) infinite impulse with directed cyclic graphs
(Sherstinsky, 2020). A finite impulse RNN is a directed acyclic graph that can be un-
rolled and replaced with a strictly feed-forward NN, whilst an infinite impulse RNN is
a directed acyclic graph which cannot be unrolled (Sherstinsky, 2020). Given the direc-
tionality of time in wave propagation (i.e. the wavefield at the time t is not affected by
future wavefield values t + 1 and time t is only affect by the previous step t− 1), a finite
impulse directed acyclic graph is suitable for wave simulation. “Unfolding” of a RNN
is a useful technique to visualize directed acyclic graphs. Figure A.7 shows part of an
unfolded RNN.

A.8 | LSTM Components

A.8.1 | Forget gate
The forget gate decides what information should be thrown away or kept. Informa-
tion from the previous hidden state and information from the current input is passed
through the sigmoid function. Values come out between 0 and 1. The closer to 0 means
to forget, and the closer to 1 means to keep.

A.8.2 | Input gate
The input gate it accepts the previous hidden state and current input into a sigmoid
function. This activation function decides which values will be updated by transform-
ing the values to be between 0 and 1, with 0 being not important and 1 being more
important. The current input and previous hidden state are passed into the tanh func-
tion to squeeze values between -1 and 1 and get a potential new candidate.

A.8.3 | Cell state
The cell state Ct acts as a mechanism to transfers information all the way down the se-
quence and can carry relevant information throughout the processing of the sequence.
This enables information from earlier time steps to be available at later time steps, thus
reducing the effects of short-term memory. The preservation over time of gradient in-

110

Appendix A. Theoretical Tools A.9. Equivalence of Automatic Differentiation

formation by LSTM is illustrated in Figure A.8. As the cell state goes through the chain
structure of the LSTM sequence, information from the input and forget gates are mul-
tiplied and only updates the cell states to values that the neural network learns to be
relevant.

A.8.4 | Output gate
The output gate decides what the next hidden state should be and what is to be used for
predictions. It accepts the previous hidden state and current cell input into a sigmoid
function. The modified cell state is passed into a tanh function which will learn to decide
which part of the data should be pushed forward through the sequence. The output is
the hidden state. The new cell state and the new hidden are carried over to the next time
step.

A.9 | Automatic Differentiation and Adjoint State
Following from Richardson (2018), consider the 1D scalar wave equation consisting of
only one shot with one receiver. Using cost function in Equation 3.11, the gradient with
respect to one wavefield time step is

∂J
∂ut

=
∂J
∂ut

+
∂J

∂ut+1

∂ut+1

∂ut
+

∂J
∂ut+2

∂ut+2

∂ut
, (A.24)

where ∂J
∂ut

indicates the row vector of partial derivatives of J with respect to elements of
ut, while the wave speed c and the wavefields from other time steps ut′ 6=t are held con-
stant. ∂J

∂ut+1
includes all changes to J caused by changes of the wavefield at a previous

ut+1 and a later time step ut+1.
Considering Automatic differentiation, the gradient of the cost function with respect

to the wave speed is obtained by chaining different derivates at different time steps via
the chain rule. Namely,

∂J
∂c

=
Nt

∑
t=1

∂J
∂ut

∂ut

∂c
. (A.25)

Consider Nt = 4 as an example. The steps to calculate the gradient of J would be

∂J
∂u4

=
∂J
∂u4

, (A.26)

∂J
∂u3

=
∂J
∂u3

+
∂J
∂u4

∂u4

∂u3
, (A.27)

111

Appendix A. Theoretical Tools A.9. Equivalence of Automatic Differentiation

∂J
∂u2

=
∂J
∂u2

+
∂J
∂u3

∂u3

∂u2
+

∂J
∂u4

∂u4

∂u2
, (A.28)

∂J
∂u1

=
∂J
∂u1

+
∂J
∂u2

∂u2

∂u1
+

∂J
∂u3

∂u3

∂u1
. (A.29)

The required partial derivatives are given by

∂J
∂ut

= 2(δT
xr

ut − dt)δ
T
xr

, (A.30)

∂ut+1

∂ut
= c2∆2

t Dx
2 + 2, (A.31)

∂ut+2

∂ut
= −1, (A.32)

∂ut

∂c
= 2c∆2

t
(
Dx

2ut−1 − ft−1
)

. (A.33)

Substituting into Equation A.25 yields

∂J
∂c

=
Nt

∑
t=1

(
2(δT

xr
ut − dt)δ

T
xr
+

∂J
∂ut+1

(c2∆2
t Dx

2 + 2)− ∂J
∂ut+2

)
(A.34)

× 2c∆2
t
(
Dx

2ut−1 − ft−1
)

=
Nt

∑
t=1

(
c2∆2

t

(
Dx

2 ∂J
∂ut+1

+
2

c2∆2
t
(δT

xr
ut − dt)δ

T
xr

)
(A.35)

+2
∂J

∂ut+1
− ∂J

∂ut+2

)
2c∆2

t
(
Dx

2ut−1 − ft−1
)

(A.36)

=
Nt

∑
t=1
−F−1

(
2

c2∆2
t
(δT

xr
ut − dt)δ

T
xr

)
2c∆2

t
(
Dx

2ut−1 − ft−1
)

, (A.37)

where F−1(gt) is wave propagation backward in time of the source amplitude gt. Recog-
nize that the wave equation can be used to express the factor on the right as the second
time derivative of the forward propagated source wavefield,

∂J
∂c

=
Nt

∑
t=1
−F−1

(
2

c2∆2
t
(δT

xr
ut − dt)δ

T
xr

)
2∆2

t
c

∂2ut−1

∂t2 (A.38)

=
Nt

∑
t=1
−F−1

(
2(δT

xr
ut − dt)δ

T
xr

) 2
c3

∂2ut−1

∂t2 , (A.39)

where the linearity of wave propagation is used to take factors out of the source am-
plitude of the left term. The result is the same equation that is used in the adjoint state
method.

112

Appendix A. Theoretical Tools A.9. Equivalence of Automatic Differentiation

Input

11x11 conv. 96

5x5 conv. 256

Max pool

3x3 conv. 384

Max pool

3x3 conv. 256

Max pool

3x3 conv. 384

FC 4096

FC 4096

Softmax

(a) AlexNet: Five convolutional
and three fully connected layers.

Input

3x3 conv. 64

3x3 conv. 64

Max pool

3x3 conv. 128

Max pool

3x3 conv. 256

Max pool

3x3 conv. 256

FC 4096

FC 4096

Softmax

3x3 conv. 128

3x3 conv. 256

3x3 conv. 512

Max pool

3x3 conv. 512

3x3 conv. 512

FC 1000

3x3 conv. 512

Max pool

3x3 conv. 512

3x3 conv. 512

(b) VGG: Five stacked conv. lay-
ers with max pooling and 3 fully
connected layers.

Input

7x7 conv. 64

3x3 conv. 64

3x3 conv. 64

3x3 conv. 64

3x3 conv. 64

3x3 conv. 64

3x3 conv. 64

3x3 conv. 128

3x3 conv. 128

3x3 conv. 128

3x3 conv. 128

3x3 conv. 128

3x3 conv. 128

Max pool

3x3 conv. 64

3x3 conv. 64

3x3 conv. 64

3x3 conv. 512

3x3 conv. 512

3x3 conv. 512

3x3 conv. 512

FC 6

152 layers

(c) ResNet: 152 layer deep net-
work with residual blocks.

W
ei

gh
t l

ay
er

Ba
tc

h
N

or
m

.

+

!
id

en
tit

y

" ! Re
LU

W
ei

gh
t l

ay
er

Ba
tc

h
N

or
m

.

" !
"#

Re
LU

(d) Residual block introduces an “identity map” or
“skip connection” which skips one or more layers.

Figure A.6: Architectural blueprints for (a) AlexNet, (b) VGG, (c) ResNet and (d) Resid-
ual Block for ResNet. The numbers in each layer in (a)-(c) indicate the number of train-
able parameters. Adapted from Krizhevsky et al. (2012), Simonyan et al. (2014) and He
et al. (2016b).

113

Appendix A. Theoretical Tools A.9. Equivalence of Automatic Differentiation

Figure A.7: RNNs can be represented as directed acyclic graphs. Chuck of the NN A
looks at some input xt and outputs a value yt. A loop allows information to be passed
from one step of the network to the next. Bias weights are omitted for clarity. Adapted
from Olah (2015).

Figure A.8: As in Figure 3.9, the shading of the nodes indicates their sensitivity to the
inputs at a particular point in time. In this case, the black nodes are maximally sensitive
and the white nodes are entirely insensitive. The state of the input, forget, and output
gates are displayed below, to the left and above the hidden layer respectively. In this
example, all gates are either entirely open (‘O’) or closed (‘—’). From Graves (2012).

114

B

Code Repository and Additional
Results

B.1 | Code Repository
A git repository with all code used in this dissertation is available at https://gitfront.
io/r/zerafachris/52df30fb666ba880749c8e951a3d056ce628a6cd/PhD/. In the follow-
ing chapter, any reference made to code will refer to this repository.

B.2 | Marmousi-2 Model
The original Marmousi-2 model has been made available by Martin et al. (2006) under
a Creative Commons Attribution 4.0 International License. This was modified with
a 150m median filter. Figure B.1 shows the impact of the 150m median filter on the
vertical resolution of the model. The code used for this modification is available at
./code/appendix/Marmousi_2_generator.ipynb.

Figure B.1: Sample velocity through original and modified Marmousi-2 model. s is the
150m median filtered modified Marmousi-2.

115

https://gitfront.io/r/zerafachris/52df30fb666ba880749c8e951a3d056ce628a6cd/PhD/
https://gitfront.io/r/zerafachris/52df30fb666ba880749c8e951a3d056ce628a6cd/PhD/
https://gitfront.io/r/zerafachris/52df30fb666ba880749c8e951a3d056ce628a6cd/PhD/blob/code/appendix/Marmousi_2_generator.ipynb
./code/appendix/Marmousi_2_generator.ipynb

Appendix B. Code and Additional Results B.3. Classical FWI

B.3 | Classical FWI

B.3.1 | Inversion
FWI with Sobolev space norm regularization was used as the deterministic version of
FWI within this work. The maximum frequency of the inversion process was set to be
3.5Hz. The iterative update process started from frequency 1Hz and iteratively updated
by a factor of 1.2 until reaching a maximum frequency of 3.45Hz. The optimization
algorithm was L-BFGS-B, with 50 iterations per frequency. Figure B.2 is the loss update
for L-BFGS-B and Stochastic Gradient Descent. Figure B.3 shows the progression of
the frequency updates. Code for this implementation is available at ./classical_FWI/
marmousi.

0
0

10
1000

20
2000

30
3000

40
4000

50
5000

60
6000

70
7000

80
8000

Epoch Equivalent
Number of Training Shots Evaluated

15.0

17.5

20.0

22.5

25.0

27.5

30.0

Lo
ss

L-BFGS-B
SGD

Figure B.2: Classical FWI loss update for L-BFGS-B and Stochastic Gradient Descent.
L-BFGS-B was a better loss optimizer than Stochastic Gradient Descent due to the
monotonically decreasing loss. Stochastic Gradient Descent training should have been
stopped at an earlier epoch due to the increase at 30 when compared to earlier epoches.

B.3.2 | Ray-Tracing
Pre-cursor to FWI is ray-tracing modelling to assess areas of update from standard
FWI formulation. Open source version of fteikpy Python library provided by Noble
et al. (2014) was adapted and utilized on the Marmousi-2 in § B.2. This implementa-
tion computes accurate first arrival travel-times in 2D heterogeneous isotropic veloc-
ity models. The algorithm solves a hybrid Eikonal solver that combines a spherical
approximation when close to the source and a plane wave approximation when far
away. This reproduces properly the spherical behaviour of wave fronts in the vicin-
ity of the source. Figure B.4 shows a sample of ray-paths for a source at 0km and depth
0km and ray coverage for the Marmousi model. The adapted code is available within
./ray_tracing/marmousi/marmousi_ray_tracing.ipynb.

116

https://gitfront.io/r/zerafachris/fbeffbcbfa1a363bc271e3bcd3717a830d3bfe7f/academic/tree/PhD/code/classical_FWI/marmousi/*
./classical_FWI/marmousi
https://gitfront.io/r/zerafachris/fbeffbcbfa1a363bc271e3bcd3717a830d3bfe7f/academic/tree/PhD/code/classical_FWI/marmousi/*
./classical_FWI/marmousi
https://gitfront.io/r/zerafachris/52df30fb666ba880749c8e951a3d056ce628a6cd/PhD/blob/code/ray_tracing/marmousi/marmousi_ray_tracing.ipynb
./ray_tracing/marmousi/marmousi_ray_tracing.ipynb

Appendix B. Code and Additional Results B.3. Classical FWI

Marmousi II

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s

Initial

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s

1 Hz

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s

1.2 Hz

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s

1.44 Hz

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s

1.728 Hz

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s

2.0736 Hz

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s
2.4883 Hz

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s

2.986 Hz

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s

3.5832 Hz

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s

2.1436 Hz

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s

2.3579 Hz

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s
2.5937 Hz

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s

2.8531 Hz

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s

3.1384 Hz

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s

3.4523 Hz

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s

Final

0 2 4 6 8 10 12 14 16

km

0

1

2

3

k
m

2

3

4

k
m

/s

Figure B.3: Classical FWI frequency updates. Starting from 1Hz, model update fre-
quency was increased by a factor of 1.2 until a maximum frequency of 3.45Hz.The opti-
mization algorithm was L-BFGS-B, with 50 iterations per step.

117

Appendix B. Code and Additional Results B.4. Data-Driven FWI

(a) Sample of ray-paths through Marmousi

0 20 40 60 80 100
Ray Coverage Intensity (%)

(b) Area of coverage intensity from ray-tracing.

Figure B.4: Ray-tracing using fteikpy.

B.4 | Data-Driven FWI

B.4.1 | DNN Architectures
Table B.1 lists DNN architectures used throughout Section 4.2.

Architecture Code Repository
Time to Pseudo-Spectral 1D ./appendix/DNN_arch_time_pseudo_1D.txt
Time to Pseudo-Spectral 2D ./appendix/DNN_arch_time_pseudo_2D.txt
Conv1D ./appendix/DNN_arch_conv1d.txt
Conv2D ./appendix/DNN_arch_conv2d.txt
VGG ./appendix/DNN_arch_vgg.txt
ResNet ./appendix/DNN_arch_resnet.txt
Marmousi - Time to Pseudo-Spectral ./appendix/DNN_arch_marm_time_pseudo.txt
Marmousi - Pseudo-Spectral to Velocity ./appendix/DNN_arch_marm_pseudo_velocity.txt

Table B.1: Repositories defining different architectures used in Section 4.2.

118

https://gitfront.io/r/zerafachris/52df30fb666ba880749c8e951a3d056ce628a6cd/PhD/blob/code/appendix/DNN_arch_time_pseudo.txt
./appendix/DNN_arch_time_pseudo_1D.txt
https://gitfront.io/r/zerafachris/52df30fb666ba880749c8e951a3d056ce628a6cd/PhD/blob/code/appendix/DNN_arch_time_pseudo.txt
./appendix/DNN_arch_time_pseudo_2D.txt
https://gitfront.io/r/zerafachris/52df30fb666ba880749c8e951a3d056ce628a6cd/PhD/blob/code/appendix/DNN_arch_conv1d.txt
./appendix/DNN_arch_conv1d.txt
https://gitfront.io/r/zerafachris/52df30fb666ba880749c8e951a3d056ce628a6cd/PhD/blob/code/appendix/DNN_arch_conv2d.txt
./appendix/DNN_arch_conv2d.txt
https://gitfront.io/r/zerafachris/52df30fb666ba880749c8e951a3d056ce628a6cd/PhD/blob/code/appendix/DNN_arch_vgg.txt
./appendix/DNN_arch_vgg.txt
https://gitfront.io/r/zerafachris/52df30fb666ba880749c8e951a3d056ce628a6cd/PhD/blob/code/appendix/DNN_arch_resnet.txt
./appendix/DNN_arch_resnet.txt
https://gitfront.io/r/zerafachris/52df30fb666ba880749c8e951a3d056ce628a6cd/PhD/blob/code/appendix/DNN_arch_marm_time_pseudo.txt
./appendix/DNN_arch_marm_time_pseudo.txt
https://gitfront.io/r/zerafachris/52df30fb666ba880749c8e951a3d056ce628a6cd/PhD/blob/code/appendix/DNN_arch_marm_pseudo_velocity.txt
./appendix/DNN_arch_marm_pseudo_velocity.txt

Appendix B. Code and Additional Results B.4. Data-Driven FWI

B.4.2 | Architecture and Loss Tuning
Tables B.2-B.5 show results for different architecture and loss optimizer combinations.

Architecture Loss Optimizer Duration (Hours) Rank
MLP Adagrad 45 18
MLP Adadelta 54 16
MLP RMSprop 31 20
MLP Adam 36 19
Conv1D Adagrad 49 17
Conv1D Adadelta 59 14
Conv1D RMSprop 59 14
Conv1D Adam 55 15
Conv2D Adagrad 66 12
Conv2D Adadelta 66 12
Conv2D RMSprop 67 10
Conv2D Adam 67 10
VGG Adagrad 75 8
VGG Adadelta 75 8
VGG RMSprop 177 1
VGG Adam 75 8
ResNet Adagrad 108 4
ResNet Adadelta 108 4
ResNet RMSprop 144 2
ResNet Adam 107 5

Table B.2: Architecture and Loss comparison - Duration. The shortest duration is better
result.

B.4.3 | Network Training Process
For each of the Architecture-Loss combinations available, these networks were trained
on an Intel i7-7800x X-series CPU workstation provided by the Department of Physics
at the University of Malta. The script for this is available at
./code/appendix/ArchitectureComparison.py. The initial maximum epoch was set
to 20, with 5 epoch early stopping and 2 epoch learning rate reduction of 0.2 when
reaching a plateau. The number of traces in the training and testing epoch generators
were 1,000,000 and 100,000 respectively. The batch size was set to 100 for MLP and
Conv1D, whilst 20 for the other networks due to ram size of the workstation.

119

https://gitfront.io/r/zerafachris/52df30fb666ba880749c8e951a3d056ce628a6cd/PhD/blob/code/appendix/ArchitectureComparison.py
./code/appendix/ArchitectureComparison.py

Appendix B. Code and Additional Results B.4. Data-Driven FWI

Architecture Loss Optimizer Train MSE Rank
MLP Adagrad 6352.22549 4
MLP Adadelta 86460.7877 13
MLP RMSprop 8098.47514 7
MLP Adam 1369163.37 19
Conv1D Adagrad 5180.91202 2
Conv1D Adadelta 9913.78826 8
Conv1D RMSprop 14578.6939 9
Conv1D Adam 20305.0825 10
Conv2D Adagrad 6808.32294 5
Conv2D Adadelta 111152.159 15
Conv2D RMSprop 1618.25641 1
Conv2D Adam 5145821.2 20
VGG Adagrad 6139.20768 3
VGG Adadelta 93423.5512 14
VGG RMSprop 59200.3044 11
VGG Adam 78038.1544 12
ResNet Adagrad 7280.4593 6
ResNet Adadelta 131353.653 17
ResNet RMSprop 123707.716 16
ResNet Adam 232489.037 18

Table B.3: Architecture and Loss comparison - Training MSE. The lowest MSE is the
better result.

Architecture Loss Optimizer Rank
MLP Adagrad 20
MLP Adadelta 19
MLP RMSprop 9
MLP Adam 9
Conv1D Adagrad 15
Conv1D Adadelta 19
Conv1D RMSprop 9
Conv1D Adam 17
Conv2D Adagrad 15
Conv2D Adadelta 15
Conv2D RMSprop 9
Conv2D Adam 3
VGG Adagrad 15
VGG Adadelta 15
VGG RMSprop 9
VGG Adam 4
ResNet Adagrad 17
ResNet Adadelta 15
ResNet RMSprop 3
ResNet Adam 3

Table B.4: Architecture and Loss comparison - Qualitative assessment of under-
fitting/over-fitting and learning rate performance.

120

Appendix B. Code and Additional Results B.4. Data-Driven FWI

Architecture Loss Optimizer Inversion RMSE (Hours) Rank
MLP Adagrad 102.008808 11
MLP Adadelta 144.749442 8
MLP RMSprop 41.112304 15
MLP Adam 161.546795 7
Conv1D Adagrad 19.0347424 18
Conv1D Adadelta 15.4491243 19
Conv1D RMSprop 15.4070707 20
Conv1D Adam 20.1883355 17
Conv2D Adagrad 84.3773592 12
Conv2D Adadelta 252.899762 4
Conv2D RMSprop 45.4919989 14
Conv2D Adam 117.230985 10
VGG Adagrad 61.7665919 13
VGG Adadelta 135.254508 9
VGG RMSprop 23.2408697 16
VGG Adam 220.758795 5
ResNet Adagrad 358.686894 2
ResNet Adadelta 264.61373 3
ResNet RMSprop 162.649915 6
ResNet Adam 406.824565 1

Table B.5: Architecture and Loss comparison - Inversion RMSE. RMSE for 100,000 vali-
dation velocity profile are compared to the true velocity.

121

Appendix B. Code and Additional Results B.5. Theory-Guided FWI

B.5 | Theory-Guided FWI

B.5.1 | 1D Results
Replacing the forward modelling component with RNN directly implies that the RNN
should be able to retrieve all wavefield components. This was first tested by consid-
ering a 1D direct wave as shown in Figure B.5. A 10Hz Ricker wavelet (Figure B.5(a))
was injected into a 1D 1500 ms−1 constant velocity model (Figure B.5(b)) with a single
source and single receiver. The wave was forward propagated for 5333 time-steps at
1ms, with a 10m grid spacing. The resulting direct wave is illustrated in Figure B.5(c),
with True being the analytical solution calculated using a 1D Green’s function, RNN
Time and RNN Freq are the RNN implementation for forward modelling using Time
and Fourier spatial derivatives respectively. Qualitatively, there is no visible difference
between either approach. Quantitative analysis shown in Table B.6 indicates that the
pseudo-spectral approach is producing slightly better results with an improved error
tolerance of 0.2 in amplitude, resulting in a 0.9% improvement in the RPE.

0 200 400 600 800 1000 1200 1400
Time (ms)

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Am
pl
itu

de

Source

0 10 20 30 40 50 60 70
 (m)

Velocity Model
SRC
RCV

(a) Source for 1D experiments.

0 200 400 600 800 1000 1200 1400
Time (ms)

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Am
pl
itu

de

Source

0 10 20 30 40 50 60 70
 (m)

Velocity Model
SRC
RCV

(b) 1D constant 1500 m/s velocity model.

0 1000 2000 3000 4000 5000
Time (ms)

−20

−10

0

10

20

Am
pl

itu
de

Direct Wave
True
RNN Time
RNN Freq

(c) 1D direct wave trace forward modelling comparison to analytical 1D Green’s function wave-
field, RNN Time and RNN Freq showing no discrepancies.

Figure B.5: 1D Direct wave forward modelling comparison.

Modelling Error Tolerance RPE (%)
RNN Time 0.980 4.786
RNN Freq 0.780 3.809

Table B.6: Empirical comparison of 1D Direct wave modelling to 1D Green’s function.

122

Appendix B. Code and Additional Results B.5. Theory-Guided FWI

An identical source was used to test for Reflected and Transmitted arrivals. Fig-
ure B.6(b) is the 1D step velocity model ranging from 1500 ms−1 to 2500 ms−1 used
to produce the forward propagated wavefields in Figure B.6(b). The top shows the
full wavefield, with Direct and Reflected arrivals at about 20 ms and Transmitted wave
with peak at 96 ms. Middle and bottom sections of Figure B.6(b) show zoomed sections
of the wavefield respectively. Either the Reflected and Transmitted component match
near identically to the Green’s function formulation. Quantitatively, the RNN Time im-
plementation was found to be slightly improved, with an improvement of 0.1 in error
tolerance and 0.2% RPE (Table B.7).

0 20 40 60 80 100
x (m)

1500

1750

2000

2250

2500

Ve
lo

cit
y

(m
/s

)

(a) 1D step velocity model ranging from 1500 ms−1 to 2500 ms−1.

0 20 40 60 80

0

10

20

Am
pl
itu

de

Full Trace

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
−5

0

5

Am
pl
itu

de

Direct and Reflected

80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5
Time (m)

0

10

20

Am
pl
itu

de

Tran mitted

True RNN Time RNN Freq

(b) Top: Full wavefield showing Direct and Reflected waves at about 20ms and Transmitted
wave with peak at 96 ms. Middle and Bottom: Zoomed in sections from Full trace showing
different components of the wavefield and near perfect reconstruction.

Figure B.6: 1D direct, reflected and transmitted wave forward modelling comparison.

Modelling Error Tolerance RPE (%)
RNN Time 2.460 9.637
RNN Freq 2.520 9.872

Table B.7: Empirical comparison of 1D direct, reflected and transmitted wave modelling.

123

Appendix B. Code and Additional Results B.5. Theory-Guided FWI

The remaining wavefield component to be modelled are Scattering waves. A con-
stant velocity model with one-point scatterer was created with velocity ranging from
1500 ms−1 to 1550 ms−1 at the point scatterer (Figure B.7(a)). The same source in the
previous two wavefields was used. RNN implementations were modelled for the wave-
form at a point to be depended non-linearly on the scattering amplitude and then ap-
proximately linearised. The resulting wavefields are given in Figure B.7(b). The Direct
wave was not included in the Scattered wavefield reconstruction. From the error tol-
erance and RPE comparison (Table B.8), RNN Time produces marginally better results
than RNN Freq. This is due to the lack of ringing effect introduced due to discretisation
beyond 1500ms which gets absorbed within the complex component of the pseudo-
spectral approach. The RNN Frequency approach is thus a superior modelling approach
in 1D. In the 2D case, RNN Time does not suffer from this effect.

0 20 40 60 80 100
x (m)

1500

1520

1540

Ve
lo

cit
y

(m
/s

)

(a) 1D scattering velocity model ranging from 1500 ms−1 to 1550 ms−1.

0 250 500 750 1000 1250 1500 1750 2000 2250
Time (ms)

 0.2

 0.1

0.0

0.1

0.2

0.3

0.4

Am
pl
itu
de

True
RNN Time Non-linear
RNN Time Linear
RNN Freq Non-linear
RNN Freq Linear

(b) Scattering wavefield modelling. Direct wavefield was excluded in the modelling.

Figure B.7: 1D scattering wave forward modelling comparison.

Modelling Error Tolerance RPE (%)
RNN Time – Non-linear 0.009 0.031
RNN Time – Linear 0.010 2.493
RNN Freq – Non-linear 0.030 7.649
RNN Freq – Linear 0.040 9.711

Table B.8: Empirical comparison of 1D scattering wave modelling.

124

Appendix B. Code and Additional Results B.5. Theory-Guided FWI

B.5.2 | RNN Hyper-Parameter Tuning
Similarly to the approach shown in Sun et al. (2019), a benchmark 1D 4-layer synthetic
profile, with velocities [2, 3, 4, 5] kms−1, was used to identify the ideal parameters for
the RNN architecture. Classical 1D second-order Finite Difference (FD) modelling was
used to generate the required true receiver data. Batch size is used as a discriminator
throughout Figure B.9. The results indicate that the larger the batch size used, the better
the inversion as more data is being used. However, given fore-sight that this hyper-
parameter tuning will be used a large dataset that might not fit in Graphical Processing
Unit RAM, this was fixed at batch size one.

0

2

4

6

8

Ba
tc
h
Si
ze
 5

Er
ro
r

SGD Learning Rate
time-0.1
freq-0.1

time-0.4
freq-0.4

time-0.8
freq-0.8

Adagrad Learning Rate
time-0.1
freq-0.1

time-20
freq-20

time-100
freq-100

Adadelta Learning Rate
time-800
freq-800

time-1000
freq-1000

time-2000
freq-2000

RMSprop Learning Rate
time-0.1
freq-0.1

time-1
freq-1

time-10
freq-10

Adam Learning Rate
time-0.1
freq-0.1

time-2
freq-2

time-10
freq-10

0

2

4

6

8

Ba
tc
h
Si
ze
 4

Er
ro
r

0

2

4

6

8

Ba
tc
h
Si
ze
 3

Er
ro
r

0

2

4

6

8

Ba
tc
h
Si
ze
 2

Er
ro
r

0 100 200 300 400 500
Shot Iteration

SGD

0

2

4

6

8

Ba
tc
h
Si
ze
 1

Er
ro
r

0 100 200 300 400 500
Shot Iteration

Adagrad

0 100 200 300 400 500
Shot Iteration
Adadelta

0 100 200 300 400 500
Shot Iteration
RMSprop

0 100 200 300 400 500
Shot Iteration

Adam

Figure B.8: Losses for different loss optimizer learning rate hyper-parameter tuning.

125

Appendix B. Code and Additional Results B.5. Theory-Guided FWI

2000

3000

4000

5000

Ba
tc

h
Si

ze
 5

Ve
lo

cit
y

(m
\s

)

SGD Learning Rate
True
Initial

0.1
0.4

0.8
Adagrad Learning Rate

True
Initial

0.1
20

100
Adadelta Learning Rate

True
Initial

0.1
2

10
RMSprop Learning Rate

True
Initial

0.1
1

10
Adam Learning Rate
True
Initial

800
1000

2000

2000

3000

4000

5000

Ba
tc

h
Si

ze
 4

Ve
lo

cit
y

(m
\s

)

2000

3000

4000

5000

Ba
tc

h
Si

ze
 3

Ve
lo

cit
y

(m
\s

)

2000

3000

4000

5000

Ba
tc

h
Si

ze
 2

Ve
lo

cit
y

(m
\s

)

0 10 20 30 40 50
Grid Point (*10m)

SGD

2000

3000

4000

5000

Ba
tc

h
Si

ze
 1

Ve
lo

cit
y

(m
\s

)

0 10 20 30 40 50
Grid Point (*10m)

Adagrad

0 10 20 30 40 50
Grid Point (*10m)

Adadelta

0 10 20 30 40 50
Grid Point (*10m)

RMSprop

0 10 20 30 40 50
Grid Point (*10m)

Adam

(a) RNN Time

2000

3000

4000

5000

Ba
tc

h
Si

ze
 5

Ve
lo

cit
y

(m
\s

)

SGD Learning Rate
True
Initial

0.1
0.4

0.8
Adagrad Learning Rate

True
Initial

0.1
20

100
Adadelta Learning Rate

True
Initial

0.1
2

10
RMSprop Learning Rate

True
Initial

0.1
1

10
Adam Learning Rate
True
Initial

800
1000

2000

2000

3000

4000

5000

Ba
tc

h
Si

ze
 4

Ve
lo

cit
y

(m
\s

)

2000

3000

4000

5000

Ba
tc

h
Si

ze
 3

Ve
lo

cit
y

(m
\s

)

2000

3000

4000

5000

Ba
tc

h
Si

ze
 2

Ve
lo

cit
y

(m
\s

)

0 10 20 30 40 50
Grid Point (*10m)

SGD

2000

3000

4000

5000

Ba
tc

h
Si

ze
 1

Ve
lo

cit
y

(m
\s

)

0 10 20 30 40 50
Grid Point (*10m)

Adagrad

0 10 20 30 40 50
Grid Point (*10m)

Adadelta

0 10 20 30 40 50
Grid Point (*10m)

RMSprop

0 10 20 30 40 50
Grid Point (*10m)

Adam

(b) RNN Freq

Figure B.9: Loss optimizer learning rate hyper-parameter tuning results.

126

Appendix B. Code and Additional Results B.5. Theory-Guided FWI

B.5.3 | RNN Inversion Update Progress
Complementary to inverted Marmousi models in § 4.3.5.3, Figure B.10 gives the update
progress at epoch 10, 25, 40, 55, 70, 85 and 100 for RNN Time and RNN Freq, together
with residual. Furthermore, classical FWI progress is included at different update fre-
quency scales. In addition, receivers are provided in Figure B.11.

0

2

Ti
m

e
(s

)

Tr(e

1.
2H

z

FWI

Ep
oc

h:
 1

0

RNN Time RNN Freq
FWI

Resid(a
RNN Time
Resid(a

RNN Freq
Resid(a

0

2

Ti
m

e
(s

)

1.
44

Hz

Ep
oc

h:
 2

5

0

2

Ti
m

e
(s

)

1.
72

8H
z

Ep
oc

h:
 4

0

0

2

Ti
m

e
(s

)

2.
07

36
Hz

Ep
oc

h:
 5

5

0

2

Ti
m

e
(s

)

2.
48

83
Hz

Ep
oc

h:
 7

0

0

2

Ti
m

e
(s

)

2.
98

6H
z

Ep
oc

h:
 8

5

0 10
) (km)

0

2

Ti
m

e
(s

)

0 10
) (km)

3.
58

32
Hz

0 10
) (km)

Ep
oc

h:
 1

00

0 10
) (km)

0 10
) (km)

0 10
) (km)

0 10
) (km)

1500 2000 2500 3000 3500 4000 4500
Ve ocity (m/s)

−1500 −1000 −500 0 500 1000 1500
Ve ocity resid(a (m/s)

Figure B.10: Velocity model inversion update progress for classical FWI, RNN Time and
Freq, with residuals.

127

Appendix B. Code and Additional Results B.5. Theory-Guided FWI

0

5

10

Ti
m

e
(s

)

Tr(e
1.

2H
z

FWI

Ep
oc

h:
 1

0

RNN Time RNN Freq
FWI

Resid(a
RNN Time
Resid(a

RNN Freq
Resid(a

0

5

10

Ti
m

e
(s

)

1.
44

Hz

Ep
oc

h:
 2

5

0

5

10

Ti
m

e
(s

)

1.
72

8H
z

Ep
oc

h:
 4

0

0

5

10

Ti
m

e
(s

)

2.
07

36
Hz

Ep
oc

h:
 5

5

0

5

10

Ti
m

e
(s

)

2.
48

83
Hz

Ep
oc

h:
 7

0

0

5

10

Ti
m

e
(s

)

2.
98

6H
z

Ep
oc

h:
 8

5

0 10
) (km)

0

5

10

Ti
m

e
(s

)

0 10
) (km)

3.
58

32
Hz

0 10
) (km)

Ep
oc

h:
 1

00

0 10
) (km)

0 10
) (km)

0 10
) (km)

0 10
) (km)

−100 −75 −50 −25 0 25 50 75 100
Amp it(de (m)

−40 −20 0 20 40
Seismic resid(a amp it(de (m)

Figure B.11: Receiver progress through model updates for classical FWI, RNN Time and
Freq, with residuals.

128

C

Publications and Collaborations

C.1 | Publications
Zerafa, C., Galea, P. & Sebu, C. (2019). "Learning to Invert Pseudo-Spectral Data
for Seismic Waveforms". Xjenza Online 7(1),3-17.

Zerafa, C. (2018) "DNN application of pseudo-spectral FWI". First EAGE/PESGB
Workshop on Machine Learning: European Edition.

TBD Parts of this work are planned for publishing in SEG Geophysics and OUP Geophys-
ical Journal International.

C.2 | Conferences & Poster Presentations
� Jul 2020 Zerafa, C. "Overview of Machine Learning Applications in Geophysics

and Seismology". Department of Geosciences Summer Seminar, University of Malta.

� Nov 2019. Zerafa, C., Galea, P. & Sebu, C. "Learning to Invert Pseudo-Spectral
Data for Seismic Waveforms". OptML: Optimization and Machine Learning, Univer-
sity of Southampton, UK.

� Mar 2018. Zerafa, C. "An Introduction to High Resolution Seismic Imaging".
Scubed Annual Scientific Conference.

129

https://www.xjenza.org/JOURNAL/OLD/7-1-2019/07.pdf
https://www.xjenza.org/JOURNAL/OLD/7-1-2019/07.pdf
https://www.earthdoc.org/content/papers/10.3997/2214-4609.201803015
https://www.earthdoc.org/content/papers/10.3997/2214-4609.201803015
https://library.seg.org/journal/gpysa7
https://academic.oup.com/gji
https://academic.oup.com/gji
https://www.southampton.ac.uk/the-alan-turing-institute/news/events/2019/10/optimization-and-machine-learning.page
https://www.southampton.ac.uk/the-alan-turing-institute/news/events/2019/10/optimization-and-machine-learning.page
https://www.southampton.ac.uk/the-alan-turing-institute/news/events/2019/10/optimization-and-machine-learning.page

Appendix C. Publications and Collaborations C.3. Appointments

C.3 | Appointments
� Jan 2022 Post-Doc at Istituto Nazionale di Geofisica e Vulcanologia, Pisa.

Will be joining Istituto Nazionale di Geofisica e Vulcanologia for 2-year Post-Doc
at Istituto Nazionale di Geofisica e Vulcanologia for project titled SOME Seismo-
logical Oriented Machine lEarning. I will be involved in two main working groups:

– WP2: Earthquake detection and characterization using large seismic datasets
from tectonic/volcanic processes and hydrocarbon/geothermal exploitation.
In this WP, we plan to extensively test published or newly developed super-
vised and unsupervised Machine Learning algorithms on the wealth of al-
ready available seismic datasets. We will use seismic datasets from regional
(e.g., INSTANCE, AlpArray, Amatrice/Norcia) and local scale (Mugello, Ir-
pinia fault system, Val d’Agri, Amiata, Larderello, Campi Flegrei, Etna).

– WP4: Automatic extraction of phase and group velocity surface dispersion
curves. We plan to build up on the recent work by Zhang et al. (2020), ap-
plying the method to a various range of datasets already available at Istituto
Nazionale di Geofisica e Vulcanologia (Molinari et al., 2020, 2015) or avail-
able in the near future as results of Department Projects at local and regional
scales and in a wide frequency range.

� Apr 2020 - CA17137 WG2 - Co-Leader - www.g2net.eu/wgs/wg2.
I joined a leadership position within the working group together with Dr. Ilec. My
involvement includes overseeing and organising the research initiatives within the
group, introduced a common code repository to encourage collaboration and hold
weekly meetings to steer the working group forward.

� Sep 2018 - CA17137 University of Malta Representative - https://www.g2net.eu/.
Active member within CA17137 - g2net - A network for Gravitational Waves,
Geophysics and Machine Learning, with particular focus to Working Group 2 -
Machine Learning for low-frequency seismic measurement. Research deals with
acquisition, processing and interpretation of seismic data, with the goal of com-
bating the seismic influences at Gravitational Wave detector site, using multi-
disciplinary research focussing on advanced techniques available from state of the
art machine learning algorithms.

130

https://www.g2net.eu/wgs/wg2-machine-learning-for-low-frequency-seismic-measurement
www.g2net.eu/wgs/wg2
https://www.g2net.eu/

Appendix C. Publications and Collaborations C.4. Collaborations

C.4 | Collaborations
� Apr 2020 Short Term Scientific Mission at Istituto Nazionale di Geofisica e Vul-

canologia, Pisa.
In collaboration with Giunchi, C., De Matteo, G., Gaviano, S., developed two CNN
approaches able to classify local earthquakes into 13 classes with different epicen-
tre and magnitude characterizations.

C.5 | Organisation of Events and Guest Lecturing
� Sep 2020 Kaggle Competition - Classification of Gravitational Wave Glitches. Cuoco,

E., Zerafa, C., Messenger, C., Williams, M.
Collaborating with Kaggle and other g2net members to host an international com-
petition using gravitational wave data which could lead to novel was of automatic
detection of gravitational wave detection. In turn, this could directly influence the
next generation of gravitational wave research and better understanding of the
known and unknown universe.

� Mar 2020 CA17137 – g2net – 2nd Training School.
Hosted an international training school for CA17137 within the University of Malta.
Was mainly responsible within the Scientific Organizing Committee, Local Or-
ganizing Committee and one of the lecturers. Classes though included a course
in Machine Learning and hosted a hackathon for all participants. Testimonials,
lecture notes, video recordings and code can be found at https://github.com/
zerafachris/g2net_2nd_training_school_malta_mar_2020.

� Sep 2019 PyMalta: First Steps towards Machine Learning
Hosted a two-part training introductory series on Machine Learning using Python.
All code can be found in the repo https://github.com/PyMalta/Introduction_

to_ML_CZ.

C.6 | Relevant Training & Certification
� Nov 2019 "Oberwolfach Graduate Seminar: Mathematics of Deep Learning", MFO,

Oberwalfach, Germany. Tutorial based course focussing on state-of-the-art mathe-
matical analysis of deep learning algorithms. Training focussed on (i) approxima-
tion theory, (ii) expressivity, (iii) generalization, and (iv) interpretability. See MFO.

131

https://www.kaggle.com/c/g2net-gravitational-wave-detection
https://github.com/zerafachris/g2net_2nd_training_school_malta_mar_2020
https://github.com/zerafachris/g2net_2nd_training_school_malta_mar_2020
https://github.com/PyMalta/Introduction_to_ML_CZ
https://github.com/PyMalta/Introduction_to_ML_CZ
https://www.mfo.de/occasion/1947a
MFO

Appendix C. Publications and Collaborations C.6. Relevant Training & Certification

� Mar 2019 "ML and Statistical Analysis", Distinction, The Data Incubator. Tutorial
based course on the use of ML on real world data set, with a heavy emphasis on
creative use of different data science techniques to solve problems from multiple
perspectives. Projects included NLP, clustering, Time series analysis and anomaly
detection. See DataIncubator.

� Sep 2018 "Full Waveform Inversion: Maths and Geophysics", KIT, Karlsruhe, Ger-
many. Tutorials for high performance computing with specific focus on computa-
tional mathematics. See KIT2018.

� Jul 2018 "International Summer School on Deep Learning", Gdansk University of
Technology, Poland. In-depth training and mini-projects on a range of learning
methods, with particular focus on DNNs. See ISSDL.

� Jun 2018 "Scientific Computing and Python for Data Science", Distinction, The Data
Incubator. Tutorial based course covering linear regression and gradient descent
techniques. Particular emphasis included cost function analysis, dimensionality
reduction, regularization and feature engineering. See DataIncubator.

� Apr 2018 "Graphical Processing Unit-based analytics and data science, Vicomtech
Research Center, Spain. Intensive training on use of GPUs using PyCuda for big
data analytics as applied to machine learning for image processing, segmentation,
de-noising, filtering, interpolation and reconstruction. See BigSkyEarth.

132

https://wqu.org/programs/data-science
DataIncubator
https://www.waves.kit.edu/summerschool2018.php
KIT2018
http://2018.dl-lab.eu/
ISSDL
https://wqu.org/programs/data-science
DataIncubator
https://bigskyearth.eu/apply-to-the-bigskyearth-training-school-2018-gpu-based-analytics-and-data-science/
BigSkyEarth

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur,
M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org.

Adler, J. and Öktem, O. (2017). Solving ill-posed inverse problems using iterative deep neural networks.
Inverse Problems, 33(12):1–24.

Adler, J., Ringh, A., Öktem, O., and Karlsson, J. (2017). Learning to solve inverse problems using Wasser-
stein loss. Iclr 2018, pages 1–13.

Ali, H. B. H., Operto, S., Virieux, J., and Sourbier, F. (2007). 3D acoustic frequency-domain full-waveform
inversion. In SEG Technical Program Expanded Abstracts 2007, pages 1730–1734. Society of Exploration
Geophysicists.

Anderson, G. J. and Lucas, D. D. (2018). Machine Learning Predictions of a Multiresolution Climate Model
Ensemble. Geophysical Research Letters, 45(9):4273–4280.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., Shillingford, B., and de Fre-
itas, N. (2016). Learning to learn by gradient descent by gradient descent. Advances in Neural Information
Processing Systems 29 (NIPS 2016).

Araya-Polo, M., Jennings, J., Adler, A., and Dahlke, T. (2018). Deep-learning tomography. The Leading Edge,
37(1):58–66.

Arridge, S., Maass, P., Öktem, O., and Schönlieb, C.-B. (2019). Solving inverse problems using data-driven
models. Acta Numerica, 28:1–174.

Asnaashari, A., Brossier, R., Garambois, S., Audebert, F. F., Thore, P., and Virieux, J. (2013). Regularized
seismic full waveform inversion with prior model information. Geophysics, 78(2):R25–R36.

133

Appendix C. Publications and Collaborations References

Ben-Hadj-Ali, H., Operto, S., and Virieux, J. (2008). Velocity model building by 3D frequency-domain,
full-waveform inversion of wide-aperture seismic data. Geophysics, 73(5):VE101–VE117.

Ben Hadj Ali, H., Operto, S., Virieux, J., and Sourbier, F. (2007). 3D acoustic frequency-domain full-
waveform inversion. Extended Abstracts, pages 1730–1734.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradient descent is
difficult. IEEE transactions on neural networks, 5(2):157–166.

Bergen, K. J., Johnson, P. A., Maarten, V., and Beroza, G. C. (2019). Machine learning for data-driven
discovery in solid Earth geoscience. Science, 363(6433).

Berthelot, D., Raffel, C., Roy, A., and Goodfellow, I. (2018). Understanding and improving interpolation in
autoencoders via an adversarial regularizer. arXiv preprint arXiv:1807.07543.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Biswas, R. and Sen, M. K. (2017). 2D Full Waveform Inversion and Uncertainty Estimation using the
Reversible Jump Hamiltonian Monte Carlo. SEG Technical Program Expanded Abstracts 2017, pages 1280–
1285.

Biswas, R., Sen, M. K., Das, V., and Mukerji, T. (2019). Pre-stack inversion using a physics-guided convo-
lutional neural network. In SEG Technical Program Expanded Abstracts 2019, pages 4967–4971. Society of
Exploration Geophysicists.

Blanch, J. O., Robertsson, J. O. A., and Symes, W. W. (1995). Modeling of a constant Q: Methodology and
algorithm for an efficient and optimally inexpensive viscoelastic technique. Geophysics, 60(1):176.

Bleibinhaus, F. and Rondenay, S. (2009). Effects of surface scattering in full-waveform inversion. GEO-
PHYSICS, 74(6):WCC69–WCC77.

Boehm, C., Fichtner, A., de la Puente, J., and Hanzich, M. (2015). Lossy Wavefield Compression for Full-
Waveform Inversion. In AGU Fall Meeting Abstracts, volume 2015, pages S23C–2714.

Bogaerts, T., Masegosa, A. D., Angarita-Zapata, J. S., Onieva, E., and Hellinckx, P. (2020). A graph CNN-
LSTM neural network for short and long-term traffic forecasting based on trajectory data. Transportation
Research Part C: Emerging Technologies, 112:62–77.

Born, M. and Wolf, E. (1980). Principles of optics. Pergamon Press, 6:188–189.

Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Optimization methods for large-scale machine learning.
Siam Review, 60(2):223–311.

Boureau, Y.-L., Ponce, J., and LeCun, Y. (2010). A theoretical analysis of feature pooling in visual recogni-
tion. In Proceedings of the 27th international conference on machine learning (ICML-10), pages 111–118.

Boyd, S., Parikh, N., and Chu, E. (2011). Distributed optimization and statistical learning via the alternating
direction method of multipliers. Now Publishers Inc.

Bruna, J., Sprechmann, P., and LeCun, Y. (2015). Super-Resolution with Deep Convolutional Sufficient
Statistics.

134

Appendix C. Publications and Collaborations References

Bryson, A. E. (1961). A gradient method for optimizing multi-stage allocation processes. In Proc. Harvard
Univ. Symposium on digital computers and their applications, volume 72.

Bubba, T. A., Kutyniok, G., Lassas, M., Maerz, M., Samek, W., Siltanen, S., and Srinivasan, V. (2019). Learn-
ing the invisible: a hybrid deep learning-shearlet framework for limited angle computed tomography.
Inverse Problems, 35(6):64002.

Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G. (1995). Multiscale seismic waveform inversion. Geo-
physics, 60(5):1457–1473.

Cai, X.-H., Liu, Y., Ren, Z.-M., Wang, J.-M., Chen, Z.-D., Chen, K.-Y., and Wang, C. (2015). Three-
dimensional acoustic wave equation modeling based on the optimal finite-difference scheme. Applied
Geophysics, 12(3):409–420.

Calde On-Macías, C., Sen, M. K., and Stoffa, P. L. (1997). Hopfield neural networks, and mean field anneal-
ing for seismic deconvolution and multiple attenuation. GEOPHYSICS, 62(3):992–1002.

Caruana, R., Lawrence, S., and Giles, L. (2000). Overfitting in neural nets: Backpropagation, conjugate
gradient, and early stopping. In the 13th International Conference on Neural Information Processing Systems,
pages 402–408.

Chang, J. H., Li, C.-L., Póczos, B., Kumar, B. V. K., and Sankaranarayanan, A. C. (2017). One Network
to Solve Them All—Solving Linear Inverse Problems using Deep Projection Models. IEEE International
Conference on Computer Vision (ICCV).

Chentouf, R. (1997). Construction de reseaux de neurones multicouches pour l’approximation. Ph.D. thesis,
Institut National Polytechnique, Grenoble.

Chollet, F. (2015). Keras. https://github.com/fchollet/keras.

Ciresan, D. C., Meier, U., and Masci, J. (2011). A Committee of Neural Networks for Traffic Sign Classifica-
tion. International Joint Conference on Neural Networks (IJCNN-2011, San Francisco), 1(1).

Ciresan, D. C., Meier, U., Masci, J., and Schmidhuber, J. (2012). Multi-Column Deep Neural Network for
Traffic Sign Classification. Neural Networks, pages 333–338.

Claerbout, J. F. (1971). Toward a unified theory of reflector mapping. Geophysics, 36(3):467–481.

Claerbout, J. F. (1976). Fundamentals of geophysical data processing: McGraw-Hili Book Co. Inc.

Cochrane, G. and Cooper, A. K. (1991). Sonobuoy seismic studies at ODP drill sites in Prydz Bay, Antarctica.
pages 27–43.

Dadvand, P., Lopez, R., and Onate, E. (2006). Artificial Neural Networks for the Solution of Inverse Prob-
lems A Variational Formulation for the Multilayer Perceptron. Proceedings of the International Conference
on Design Optimisation Methods and Applications ERCOFTAC, 2006:1–10.

Dai, H. and MacBeth, C. (1994). Split shear-wave analysis using an artificial neural network. First Break,
12(12):605–613.

135

Appendix C. Publications and Collaborations References

De los Reyes, J. C., Schönlieb, C.-B., and Valkonen, T. (2017). Bilevel parameter learning for higher-order
total variation regularisation models. Journal of Mathematical Imaging and Vision, 57(1):1–25.

Deng, L. and Yu, D. (2013). Deep Learning: Methods and Applications. Foundations and Trends® in Signal
Processing.

Dokmanić, I., Bruna, J., Mallat, S., and de Hoop, M. (2016). Inverse Problems with Invariant Multiscale
Statistics. CoRR.

Dolenko, S., Efitorov, A., Burikov, S., Dolenko, T., Laptinskiy, K., and Persiantsev, I. (2015). Neural Net-
work Approaches to Solution of the Inverse Problem of Identification and Determination of the Ionic
Composition of Multi-component Water Solutions. CCIS, 517:109–118.

Dowla, F. U. and Rogers, L. L. (1996). Solving Problems in Environmental Engineering and Geosciences with
Artificial Neural Networks. MIT Press.

Downton, J. E. and Hampson, D. P. (2018). Deep neural networks to predict reservoir properties from
seismic. Presented at 6th GeoConvention 2018.

Dreyfus, S. (1973). The computational solution of optimal control problems with time lag. IEEE Transactions
on Automatic Control, 18(4):383–385.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(7).

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179–211.

Elshafiey, I. M. (1991). Neural network approach for solving inverse problems.

Fahlman, S. E. (1991). The recurrent cascade-correlation architecture. In Advances in neural information
processing systems, pages 190–196.

Falsaperla, S., Graziani, S., Nunnari, G., and Spampinato, S. (1996). Automatic classification of volcanic
earthquakes by using multi-layered neural networks. Natural Hazards, 13(3):205–228.

Fletcher, R. (1987). Practical Methods of Optimization, Second Edition. pages 3–6.

Fukushima, K. and Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a mecha-
nism of visual pattern recognition. In Competition and cooperation in neural nets, pages 267–285. Springer.

Galliani, S., Lanaras, C., Marmanis, D., Baltsavias, E., and Schindler, K. (2017). Learned Spectral Super-
Resolution.

Gardner, G. H. F., Gardner, L. W., and Gregory, A. R. (1974). Formation Velocity and Density - The diag-
nostic basics for Stratigraphic Traps. GEOPHYSICS, 39(6):770–780.

Gauthier, O., Virieux, J., and Tarantola, A. (1986). Two-dimensional nonlinear inversion of seismic wave-
forms: Numerical results. Geophysics, 51(7):1387–1403.

Gazdag, J. (1981). Modeling of the acoustic wave equation with transform methods. Geophysics, 46(6):854.

136

Appendix C. Publications and Collaborations References

Gerdova, I. V., Churina, I. V., Dolenko, S. A., Dolenko, T. A., Fadeev, V. V., and Persiantsev, I. G. (2002).
New opportunities in solution of inverse problems in laser spectroscopy due to application of artificial
neural networks. SPIE Proceedings, 4749(8):157–166.

Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to forget: Continual prediction with LSTM.

Gerstoft, P. (1994). Inversion of seismoacoustic data using genetic algorithms and a posteriori probability
distributions. The Journal of the Acoustical Society of America, 95(2):770–782.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press, Cambridge MA.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing adversarial examples. CoRR.

Graves, A. (2012). Supervised sequence labelling. In Supervised sequence labelling with recurrent neural net-
works, pages 5–13. Springer.

Grohs, P., Perekrestenko, D., Elbrächter, D., and Bölcskei, H. (2019). Deep Neural Network Approximation
Theory.

Hadamard, J. (1907). Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encas-
trées. Mem. Sav. Etrang., 33:515–641.

Hallström, E. (2016). Backpropagation from the beginning – Erik Hallström. Medium.

Halpert, A. D. (2018). Deep learning-enabled seismic image enhancement. In SEG Technical Program Ex-
panded Abstracts 2018, pages 2081–2085. Society of Exploration Geophysicists.

Hammer, B. (2000). On the approximation capability of recurrent neural networks. Neurocomputing, 31(1-
4):107–123.

Hamshaw, S. D., Dewoolkar, M. M., Schroth, A. W., Wemple, B. C., and Rizzo, D. M. (2018). A New
Machine-Learning Approach for Classifying Hysteresis in Suspended-Sediment Discharge Relation-
ships Using High-Frequency Monitoring Data. Water Resources Research, 54(6):4040–4058.

Haykin, S. S. (2009). Neural Networks and Learning Machines. Number 3rd Edition. PEARSON, Prentice Hall.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for
visual recognition. IEEE transactions on pattern analysis and machine intelligence, 37(9):1904–1916.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for image recognition. Proceedings of
the IEEE.

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity mappings in deep residual networks. In European
conference on computer vision, pages 630–645. Springer.

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. Brain Theory.

Hecht-Nielsen, R. (1989). Theory of the Backpropagation Neural Network. Proceedings Of The International
Joint Conference On Neural Networks, 1:593–605.

Hecht-Nielsen, R. (1990). Neurocomputing. Addison-Wesley Pub. Co.

137

Appendix C. Publications and Collaborations References

Hicks, G. J. and Pratt, R. G. (2001). Reflection waveform inversion using local descent methods: Estimating
attenuation and velocity over a gas-sand deposit. Geophysics, 66(2):598–612.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen,
P., and Sainath, T. N. (2012). Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups. IEEE Signal processing magazine, 29(6):82–97.

Hochreiter, J. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Master’s thesis, Institut fur
Informatik, Technische Universitat, Munchen, pages 1–71.

Hochreiter, S. and Schmidhuber, J. (1996). Bridging long time lags by weight guessing and “Long Short-Term
Memory”. IOP Press.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-term Memory. Neural computation, 9:1735–1780.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal ap-
proximator. Neural Networks, 2:359–366.

Hu, J., Shen, L., and Sun, G. (2017). Squeeze-and-excitation networks. arXiv preprint arXiv:1709.01507, 7.

Hubel, D. H. and Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. The
Journal of physiology, 148(3):574.

Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in
the cat’s visual cortex. The Journal of physiology, 160(1):106.

Hughes, T. W., Williamson, I. A. D., Minkov, M., and Fan, S. (2019). Wave physics as an analog recurrent
neural network. Science advances, 5(12):eaay6946.

Igel, H. (2017). Computational seismology: a practical introduction. Oxford University Press.

Innanen, K. (2014). Quantifying the incompleteness of the physics model in seismic inversion. CREWES
Research Report, 26.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift. 2017-Octob.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and Darrell, T. (2014).
Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093, pages
1097–1105.

Jones, I. F. and Davison, I. (2014). Seismic imaging in and around salt bodies. Interpretation, 2(4):SL1–SL20.

Jozinović, D., Lomax, A., Štajduhar, I., and Michelini, A. (2020). Rapid prediction of earthquake ground
shaking intensity using raw waveform data and a convolutional neural network. Geophysical Journal
International, 222(2):1379–1389.

Kalita, M. and Alkhalifah, T. (2017). Efficient full waveform inversion using the excitation representation
of the source wavefield. Geophysical Journal International, 210(3):1581–1594.

138

Appendix C. Publications and Collaborations References

Kamphorst, J.-P. E. S. O. and Ruelle, D. (1987). Recurrence Plots of Dynamical Systems. Europhysics Letters,
4(9):17.

Kazei, V. and Ovcharenko, O. (2019). Simple frequency domain full-waveform inversion (FWI) regularized
by Sobolev space norm.

Keivan Ekbatani, H., Pujol, O., and Segui, S. (2017). Synthetic Data Generation for Deep Learning in
Counting Pedestrians. In Proceedings of the 6th International Conference on Pattern Recognition Applications
and Methods, volume 2017-Janua, pages 318–323. SCITEPRESS - Science and Technology Publications.

Kelley, H. J. (1960). Gradient Theory of Optimal Flight Paths. ARS Journal, 30(10):947–954.

Kelly, B., Matthews, T. P., and Anastasio, M. A. (2017). Deep Learning-Guided Image Reconstruction from
Incomplete Data. arXiv preprint arXiv:1709.00584.

Khan, A., Sohail, A., Zahoora, U., and Qureshi, A. S. (2020). A survey of the recent architectures of deep
convolutional neural networks. Artificial Intelligence Review, pages 1–62.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Köhler, A., Ohrnberger, M., and Scherbaum, F. (2010). Unsupervised pattern recognition in continuous
seismic wavefield records using Self-Organizing Maps. Geophysical Journal International, 182(3):1619–
1630.

Kolmogoro, A. N. and Tikhomirov, V. M. (1956). On the representation of continuous functions of several
variables as superpositions of functions of smaller number of variables. In Soviet. Math. Dokl, volume
108, pages 179–182.

Kolodzey, J. (1981). CRAY-1 Computer Technology. IEEE Transactions on Components, Hybrids, and Manufac-
turing Technology, 4(2):181–186.

Komatitsch, D. and Tromp, J. (2002). Spectral-element simulations of global seismic wave propagation - I.
Validation. Geophysical Journal International, 149(2):390–412.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification with deep convolutional
neural networks. In Weinberger, F. P., Burges, C. J. C., Bottou, L., and Q., K., editors, Advances in neural
information processing systems, volume 25, pages 1097–1105. Curran Associates, Inc.

Krizhevsky, A., Sutskever, I., Hinton, G. E., Tasci, T., and Kim, K. (2015). ImageNet Classification with Deep
Convolutional Neural Networks. Stanford cs231b.

Kumar, J., Ramrez, A., and Butt, S. (2012a). Preparing Data for Full Waveform Inversion: A Workflow for
Free-surface Multiple Attenuation. 74th EAGE Conference and Exhibition-Workshops.

Kumar, M., Manral, D. S., Banerjee, M. K., Karmakar, K., Das, A., Reddy, B. J., Dasgupta, R., and Singh,
&. S. N. (2012b). High Performance Computing in Geosciences: Promises & Challenges. 9th Biennial
International Confrence & Exposition on Petroleum Geophysics.

Lailly, P. and Bednar, J. (1983). The seismic inverse problem as a sequence of before stack migrations.
Conference on inverse scattering: theory and application.

139

Appendix C. Publications and Collaborations References

Lang, K. J. and Hinton, G. E. (1988). The development of the time-delay neural network architecture for
speech recognition. Technical Report CMU-CS-88-152.

Lang, K. J., Waibel, A. H., and Hinton, G. E. (1990). A time-delay neural network architecture for isolated
word recognition. Neural networks, 3(1):23–43.

Langer, H., Nunnari, G., and Occhipinti, L. (1996). Estimation of seismic waveform governing parameters
with neural networks. Journal Of Geophysical Research-Solid Earth, 101(B9):20109.

Larsson, G., Maire, M., and Shakhnarovich, G. (2016). Learning representations for automatic colorization.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 9908 LNCS, pages 577–593.

Le, T. A., Baydin, A. G., Zinkov, R., Wood, F., Atılım, G., Zinkov, R., and Wood, F. (2017). Using Synthetic
Data to Train Neural Networks is Model-Based Reasoning. ArXiv e-prints, pages 3514–3521.

LeCun, Y. (1989). Generalization and network design strategies. Connectionism in perspective, 19:143–155.

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., and Jackel, L. D.
(1990). Handwritten digit recognition with a back-propagation network. In Advances in neural information
processing systems, pages 396–404.

LeCun, Y., Kavukcuoglu, K., and Farabet, C. (2010). Convolutional networks and applications in vision. In
Proceedings of 2010 IEEE international symposium on circuits and systems, pages 253–256. IEEE.

Lee, C.-Y., Gallagher, P. W., and Tu, Z. (2016). Generalizing pooling functions in convolutional neural
networks: Mixed, gated, and tree. In Artificial intelligence and statistics, pages 464–472.

Lee, K. and Moloney, D. (2018). Evaluation of synthetic data for deep learning stereo depth algorithms on
embedded platforms. In 2017 4th International Conference on Systems and Informatics, ICSAI 2017, volume
2018-Janua, pages 170–176. IEEE.

Lee, M. W., Hutchinson, D. R., Collett, T. S., and Dillon, W. P. (1996). Seismic velocities for hydrate-bearing
sediments using weighted equation. Journal of Geophysical Research: Solid Earth, 101(B9):20347–20358.

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993). Multilayer Feed Forward Networks With A
Nonpolynomial Activation Function Can Approximate Any Function. Neural Networks, 6:861–867.

Levin, L. (1973). Universal sequential search problems. Problemy Peredachi Informatsii, 9(3):115–116.

Lewis, W. and Vigh, D. (2017). Deep learning prior models from seismic images for full-waveform inver-
sion. SEG Technical Program Expanded Abstracts 2017, pages 1512–1517.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018a). Visualizing the Loss Landscape of Neural
Nets. In Neural Information Processing Systems.

Li, H., Yang, W., and Yong, X. (2018b). Deep learning for ground-roll noise attenuation. In SEG Technical
Program Expanded Abstracts 2018, pages 1981–1985. Society of Exploration Geophysicists.

Li, S., Liu, B., Ren, Y., Chen, Y., Yang, S., Wang, Y., and Jiang, P. (2019). Deep-learning inversion of seismic
data. arXiv preprint arXiv:1901.07733.

140

Appendix C. Publications and Collaborations References

Lin, T., Horne, B. G., Tino, P., and Giles, C. L. (1996). Learning long-term dependencies in NARX recurrent
neural networks. IEEE Transactions on Neural Networks, 7(6):1329–1338.

Lines, L. (2014). FWI and the "Noise" Quandary. CREWES Research Report.

Linnainmaa, S. (1970). The representation of the cumulative rounding error of an algorithm as a Taylor
expansion of the local rounding errors. Master’s Thesis (in Finnish), Univ. Helsinki, pages 6–7.

Linnainmaa, S. (1976). Taylor expansion of the accumulated rounding error. BIT, 16(2):146–160.

Lippmann, R. P. (1987). An Introduction to Computing with Neural Nets. IEEE ASSP Magazine, 4(April):4–
22.

Liu, Y., He, B., and Zheng, Y. (2020). Controlled-order multiple waveform inversion. Geophysics, 85(3):R243–
R250.

Liu, Y. and Sen, M. K. (2011). 3D acoustic wave modelling with time-space domain dispersion-relation-
based finite-difference schemes and hybrid absorbing boundary conditions. Exploration Geophysics,
42(3):176–189.

Lucas, A., Iliadis, M., Molina, R., and Katsaggelos, A. K. (2018). Using Deep Neural Networks for Inverse
Problems in Imaging: Beyond Analytical Methods. IEEE Signal Processing Magazine, 35(1):20–36.

Malcolm, A. and Willemsen, B. (2016). Rapid 4D FWI using a local wave solver. The Leading Edge,
35(12):1053–1059.

Mangalathu, S., Jang, H., Hwang, S.-H., and Jeon, J.-S. (2020). Data-driven machine-learning-based seismic
failure mode identification of reinforced concrete shear walls. Engineering Structures, 208:110331.

Martens, J. (2010). Deep learning via Hessian-free optimization. 27th International Conference on Machine
Learning, 951:735–742.

Martin, G. S., Marfurt, K. J., and Larsen, S. (2002). Marmousi-2: An updated model for the investigation of
AVO in structurally complex areas. In SEG Technical Program Expanded Abstracts 2002, pages 1979–1982.
Society of Exploration Geophysicists.

Martin, G. S., Wiley, R., and Marfurt, K. J. (2006). Marmousi2: An elastic upgrade for Marmousi. The
Leading Edge, 25(2):156–166.

McCormack, M. D., Zaucha, D. E., and Dushek, D. W. (1993). First-break refraction event picking and
seismic data trace editing using neural networks. Geophysics, 58(1):67–78.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The
Bulletin of Mathematical Biophysics, 5(4):115–133.

Meinhardt, T., Moeller, M., Hazirbas, C., and Cremers, D. (2017). Learning Proximal Operators: Using
Denoising Networks for Regularizing Inverse Imaging Problems. In Proceedings of the IEEE International
Conference on Computer Vision, volume 2017-Octob, pages 1799–1808.

Menke, W. (1989). Geophysical Data Analysis: Discrete Inverse Theory.

141

Appendix C. Publications and Collaborations References

Michaels, P. and Smith, R. B. R. B. (1992). Recurrent Neural Network representation of the Inelastic Wave
Equation and Full-Waveform inversion without local minima. 62nd Ann. Internat. Mtg, pages 22–25.

Minsky, M. and Papert, S. A. (2017). Perceptrons: An introduction to computational geometry. MIT press.

Mispel, J., Furre, A., Sollid, A., and Maaø, F. A. (2019). High Frequency 3D FWI at Sleipner: A Closer Look
at the CO2 Plume. In 81st EAGE Conference and Exhibition 2019.

Molinari, I., Obermann, A., Kissling, E., Hetényi, G., and Boschi, L. (2020). 3D crustal structure of the
Eastern Alpine region from ambient noise tomography. Results in Geophysical Sciences, 1-4:100006.

Molinari, I., Verbeke, J., Boschi, L., Kissling, E., and Morelli, A. (2015). Italian and A lpine three-dimensional
crustal structure imaged by ambient-noise surface-wave dispersion. Geochemistry, Geophysics, Geosys-
tems, 16(12):4405–4421.

Møller, M. (1993). Exact Calculation of the Product of the Hessian Matrix of Feed-Forward Network Error
Functions and a Vector in 0 (N) Time. DAIMI Report Series, page 14.

Montúfar, G., Pascanu, R., Cho, K., and Bengio, Y. (2014). On the Number of Linear Regions of Deep Neural
Networks. arXiv preprint arXiv:1402.1869.

Morgan, J., Warner, M., Arnoux, G., Hooft, E., Toomey, D., VanderBeek, B., and Wilcock, W. (2016). Next-
generation seismic experiments - II: Wide-angle, multi-azimuth, 3-D, full-waveform inversion of sparse
field data. Geophysical Journal International, 204(2):1342–1363.

Morgan, J., Warner, M., Bell, R., Ashley, J., Barnes, D., Little, R., Roele, K., and Jones, C. (2013). Next-
generation seismic experiments: wide-angle, multi-azimuth, three-dimensional, full-waveform inver-
sion. Geophysical Journal International, 195(3):1657–1678.

Morgan, J. V., Christeson, G. L., and Warner, M. (2009). Using swath bathymetry as an a priori constraint
in a 3D full wavefield tomographic inversion of seismic data across oceanic crust. In AGU Fall Meeting
Abstracts, volume 1, page 7.

Mothi, S., Schwarz, K., and Zhu, H. (2013). Impact of full-azimuth and long-offset acquisition on Full
Waveform Inversion in deep water Gulf of Mexico. SEG Houston 2013 Annual Meeting, (June 2013):924–
928.

Mozer, M. C. (1992). Induction of multiscale temporal structure. In Advances in neural information processing
systems, pages 275–282.

Murat, M. E. and Rudman, A. J. (1992). Automated First Arrival Picking: a Neural Network Approach.
Geophysical Prospecting, 40(6):587–604.

Nath, S. K., Chakraborty, S., Singh, S. K., and Ganguly, N. (1999). Velocity inversion in cross-hole seismic
tomography by counter-propagation neural network, genetic algorithm and evolutionary programming
techniques. Geophysical Journal International, 138(1):108–124.

Nazari Siahsar, M. A., Gholtashi, S., Kahoo, A. R., Chen, W., and Chen, Y. (2017). Data-driven multitask
sparse dictionary learning for noise attenuation of 3D seismic data. Geophysics, 82(6):V385–V396.

142

Appendix C. Publications and Collaborations References

Newton, I. (1687). Philosophiae Naturalis Principia Mathematica. Pan, page 510.

Nguyen, B. and Mcmechan, G. (2015). Five ways to avoid storing source wavefield snapshots in 2D elastic
prestack reverse time migration. GEOPHYSICS, 80:S1–S18.

Nicholson, A. and Gibson, A. (2016). Deeplearning4j: Open-source distributed deep learning for the jvm.
Apache Software Foundation License, 2.

Noble, M., Gesret, A., and Belayouni, N. (2014). Accurate 3-D finite difference computation of traveltimes
in strongly heterogeneous media. Geophysical Journal International, 199(3):1572–1585.

Öktem, O. and Adler, J. (2018). Mathematics of Deep Learning with an Emphasis on Inverse Problems.

Olah, C. (2015). Understanding lstm networks.

Operto, S., Miniussi, A., Brossier, R., Combe, L., Haller, N., Kjos, E., and Metivier, L. (2015). Efficient 3D
Frequency-domain Full-waveform Inversion of Ocean-bottom Cable Data - Application to Valhall in the
Visco-ac. In EAGE Extended Abstracts.

Operto, S., Ravaut, C., Improta, L., Virieux, J., Herrero, A., and Dell’Aversana, P. (2004). Quantitative imag-
ing of complex structures from dense wide-aperture seismic data by multiscale traveltime and waveform
inversions: a case study. Geophysical Prospecting, 52(6):625–651.

Operto, S., Virieux, J., Amestoy, P., L’Excellent, J.-Y., Giraud, L., and Ali, H. B. H. (2007). 3D finite-difference
frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver:
A feasibility study. Geophysics, 72(5):SM195–SM211.

Operto, S., Virieux, J., Dessa, J., and Pascal, G. (2006). Crustal seismic imaging from multifold ocean bottom
seismometer data by frequency domain full waveform tomography: Application to the eastern Nankai
trough. Journal of Geophysical Research: Solid Earth, 111(B9).

Parker, P. B. (1999). Genetic algorithms and their use in geophysical problems. PhD thesis, University of Califor-
nia, Berkeley.

Paszke, A., Chanan, G., Lin, Z., Gross, S., Yang, E., Antiga, L., and Devito, Z. (2017). Automatic differenti-
ation in PyTorch. Advances in Neural Information Processing Systems, 30(Nips):1–4.

Patterson, J. and Gibson, A. (2017). Deep learning: A practitioner’s approach. " O’Reilly Media, Inc.".

Pearlmutter, B. A. (1989). Learning state space trajectories in recurrent neural networks. Neural Computation,
1(2):263–269.

Peng, C., Wang, M., Chazalnoel, N., and Gomes, A. (2018). Subsalt imaging improvement possibilities
through a combination of FWI and reflection FWI. The Leading Edge, 37(1):52–57.

Petersen, P. C., Bölcskei, H., Grohs, P., and Kutyniok, G. (2017). Optimal approximation with sparse deep
neural networks.

Plate, T. A. (1993). Holographic recurrent networks. In Advances in neural information processing systems,
pages 34–41.

143

Appendix C. Publications and Collaborations References

Plessix, R. (2009). Three-dimensional frequency-domain full-waveform inversion with an iterative solver.
Geophysics, 74(6):WCC149–WCC157.

Plessix, R.-E. and Perkins, C. (2010). Thematic Set: Full waveform inversion of a deep water ocean bottom
seismometer dataset. First Break, 28(4):71–78.

Plessix, R.-É., Stopin, A., Milcik, P., and Matson, K. (2014). Acoustic and anisotropic multi-parameter
seismic full waveform inversion case studies. In SEG Technical Program Expanded Abstracts 2014, pages
1056–1060. Society of Exploration Geophysicists.

Poulton, M. M., Sternberg, B. K., and Glass, C. E. (1992). Location of subsurface targets in geophysical data
using neural networks. Geophysics, 57(12):1534–1544.

Pratt, R. G. (1990). Inverse theory applied to multi-source cross-hole tomography - Part 2: Elastoc Wave-
Equation Method. Geophysical Prospecting, 38(3):311–329.

Pratt, R. G. (1999). Seismic waveform inversion in the frequency domain, Part 1: Theory and verification
in a physical scale model. GEOPHYSICS, 64(3):888–901.

Pratt, R. G. and Goulty, N. R. (1991). Combining wave-equation imaging with traveltime tomography to
form high-resolution images from crosshole data. Geophysics, 56(2):208–224.

Pratt, R. G., Song, Z.-M., Williamson, P., and Warner, M. (1996). Two-dimensional velocity models from
wide-angle seismic data by wavefield inversion. Geophysical Journal International, 124(2):323–340.

Pratt, R. G. and Worthington, M. H. (1990). Inverse theory applied to multi-source cross-hole tomography
- Part 1: Acoustic Wave-Equation Method. Geophysical prospecting, 38(March 1989):287–310.

Press, F. (1968). Earth Models Obtained by Monte Carlo Inversion. J. Geophys. Res., 73(16):5223–5234.

Pullammanappallil, S. K. and Louie, J. N. (1994). A generalized simulated-annealing optimization for
inversion of first-arrival times. Bulletin of the Seismological Society of America, 84(5):1397–1409.

Puskorius, G. V. and Feldkamp, L. A. (1994). Neurocontrol of nonlinear dynamical systems with Kalman
filter trained recurrent networks. IEEE Transactions on neural networks, 5(2):279–297.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707.

Randall, P. (2009). Pink Color of Seismic noise in the low frequency limit. [Accessed 10/8/2014].

Ranzato, M., Huang, F. J., Boureau, Y.-L., and LeCun, Y. (2007). Unsupervised learning of invariant feature
hierarchies with applications to object recognition. In 2007 IEEE conference on computer vision and pattern
recognition, pages 1–8. IEEE.

Raschka, S. and Mirjalili, V. (2017). Python machine learning. Packt Publishing Ltd.

Reading, A. M., Cracknell, M. J., Bombardieri, D. J., and Chalke, T. (2015). Combining Machine Learning
and Geophysical Inversion for Applied Geophysics. In ASEG-PESA 2015 24th International Geophysical
Conference and Exhibition, volume 2015, page 1.

144

Appendix C. Publications and Collaborations References

Richardson, A. (2018). Seismic Full-Waveform Inversion Using Deep Learning Tools and Techniques. arXiv
preprint arXiv:1801.07232.

Robinson, A. J. and Fallside, F. (1987). The utility driven dynamic error propagation network. University of
Cambridge Department of Engineering Cambridge, MA.

Robinson, E. A. (1957). PREDICTIVE DECOMPOSITION OF SEISMIC TRACES. GEOPHYSICS, 22(4):767–
778.

Robinson, E. A. (1967). Predictive decomposition of time series with application to seismic exploration.
Geophysics, 32(3):418–484.

Romano, Y., Elad, M., and Milanfar, P. (2016). The Little Engine that Could: Regularization by Denoising
(RED). SIAM Journal on Imaging Sciences, 10(4):1804–1844.

Romeo, G. (1994). Seismic signals detection and classification using artiricial neural networks. Annals Of
Geophysics, 37(3).

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical image computing and computer-assisted intervention,
pages 234–241. Springer.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in
the brain. Psychological Review, 65(6):386–408.

Röth, G. and Tarantola, A. (1994). Neural networks and inversion of seismic data. Journal of Geophysical
Research, 99(B4):6753–6768.

Rothman, D. H. (1985). Large near-surface anomalies, seismic reflection data, and simulated annealing. PhD
thesis, Stanford University.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.

Rumelhart, D. E., Hinton, G. E., Williams, R. J., Vinet, L., and Zhedanov, A. (1986). Learning representations
by back-propagating errors. Nature, 323(6088):533–536.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision, 115(3):211–252.

Russell, S. and Norvig, P. (2008). Artificial Intelligence: A Modern Approach. Prentice Hall.

Rusu, C. and Thompson, J. (2017). Learning fast sparsifying transforms. IEEE Transactions on Signal Pro-
cessing,, 65(16):4376–4378.

Ryan, H. (1994). Ricker, Ormsby, Klauder, Butterworth - A choice of wavelets. CSEG Recorder, pages 8–9.

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2018). How does batch normalization help optimization?
In Advances in Neural Information Processing Systems, pages 2483–2493.

145

Appendix C. Publications and Collaborations References

Schakel, M. D. and Mesdag, P. R. (2014). Fully data-driven quantitative reservoir characterization by broad-
band seismic. In 2014 SEG Annual Meeting. OnePetro.

Schmidhuber, J. (1992a). A fixed size storage O (n 3) time complexity learning algorithm for fully recurrent
continually running networks. Neural Computation, 4(2):243–248.

Schmidhuber, J. (1992b). Learning complex, extended sequences using the principle of history compression.
Neural Computation, 4(2):234–242.

Schmidhuber, J. (2015). Deep learing in neural networks: an overview. Neural Networks, 61.

Schraudolph, N. (2002). Fast curvature matrix-vector products for second-order gradient descent. Neural
Computation, 14(7):1723–1738.

Schultz, P. S., Ronen, S., Hattori, M., and Corbett, C. (1994). Seismic-guided estimation of log properties
(Part 1: A data-driven interpretation methodology). The Leading Edge, 13(5):305–310.

Sen, M. K. and Stoffa, P. L. (1995). Global optimization methods in geophysical inversion. Elsevier.

Sever, A. (2015). An inverse problem approach to pattern recognition in industry. Applied Computing and
Informatics, 11(1):1–12.

Shahnas, M. H., Yuen, D. A., and Pysklywec, R. N. (2018). Inverse Problems in Geodynamics Using Ma-
chine Learning Algorithms. Journal of Geophysical Research: Solid Earth, 123(1):296–310.

Shalova, A. and Oseledets, I. (2020). Tensorized Transformer for Dynamical Systems Modeling. arXiv
preprint arXiv:2006.03445.

Sharma, M., Pachori, R. B., and Rajendra Acharya, U. (2017). Adam: a Method for Stochastic Optimization.
Pattern Recognition Letters, 94:172–179.

Shen, X. and Clapp, R. (2015). Random boundary condition for memory-efficient waveform inversion
gradient computation. GEOPHYSICS, 80:R351–R359.

Sheriff, R. E. and Geldart, L. P. (1985). Exploration seismology. Volume 2. Cambridge University Press, New
York, NY, United States.

Sherstinsky, A. (2020). Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm)
network. Physica D: Nonlinear Phenomena, 404:132306.

Shimshoni, Y. and Intrator, N. (1998). Classification of seismic signals by integrating ensembles of neural
networks. IEEE Transactions on Signal Processing, 46(5):1194–1201.

Shin, C., Koo, N.-H. H., Cha, Y. H., and Park, K.-P. P. (2010). Sequentially ordered single-frequency 2-D
acoustic waveform inversion in the Laplace-Fourier domain. Geophysical Journal International, 181(2):935–
950.

Siahkoohi, A., Louboutin, M., and Herrmann, F. J. (2019). The importance of transfer learning in seismic
modeling and imaging. GEOPHYSICS, 84(6):A47–A52.

146

Appendix C. Publications and Collaborations References

Simonyan, K., Others, and Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image
Recognition. arXiv preprint arXiv:1409.1556, pages 1–14.

Singh, R. V. (2015). ImageNet Winning CNN Architectures – A Review. pages 3–8.

Sirgue, L., Barkved, O. I., Dellinger, J., Etgen, J., Albertin, U., and Kommedal, J. H. (2010). Thematic set:
Full waveform inversion: The next leap forward in imaging at Valhall. First Break, 28(4):65–70.

Sirgue, L., Barkved, O. I., Van Gestel, J. P., Askim, O. J., and Kommedal, J. H. (2009). 3D waveform inversion
on Valhall wide-azimuth OBC. In 71st EAGE Conference and Exhibition incorporating SPE EUROPEC 2009.

Sirgue, L., Etgen, J., Albertin, U., and America, B. P. (2007). 3D full-waveform inversion: Wide-versus
narrow-azimuth acquisitions. SEG Technical Program Expanded Abstracts 2007, pages 1760–1764.

Sirgue, L. and Pratt, R. G. (2004). Efficient waveform inversion and imaging: A strategy for selecting
temporal frequencies. Geophysics, 69(1):231–248.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A Simple
Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15:1929–1958.

Stephens, A. D. (2006). Measurable functions. M3/M4S3 - Statistical Theory II Lecture Notes.

Sun, J., Niu, Z., Innanen, K. A., Li, J., and Trad, D. O. (2019). A theory-guided deep learning formulation of
seismic waveform inversion. In SEG Technical Program Expanded Abstracts 2019, pages 2343–2347. Society
of Exploration Geophysicists.

Sun, Y., Xia, Z., and Kamilov, U. S. (2018). Efficient and accurate inversion of multiple scattering with deep
learning. Optics Express, 26(11):14678.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine learning, 3(1):9–44.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. (2016). Inception-v4, Inception-ResNet and the Impact
of Residual Connections on Learning.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.,
Hill, C., and Arbor, A. (2014). Going Deeper with Convolutions. cv-foundation.org, pages 1–9.

Tanaka, M. M. (2003). Inverse problems in engineering mechanics IV : International Symposium on Inverse Prob-
lems in Engneering Mechanics 2003 (ISIP 2003), Nagano, Japan. Elsevier.

Tarantola, A. (1984a). Inversion of seismic reflection data in the acoustic approximation. GEOPHYSICS,
49(8):1259–1266.

Tarantola, A. (1984b). Linearized inversion of seismic reflection data. Geophysical prospecting, 32(6):998–
1015.

Tarantola, A. (1987). Inverse problem theory: Methods for data fitting and parameter estimation.

Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation.

147

Appendix C. Publications and Collaborations References

Taylor, G., Burmeister, R., Xu, Z., Singh, B., Patel, A., and Goldstein, T. (2016). Training neural networks
without gradients: A scalable admm approach. In International conference on machine learning, pages
2722–2731. PMLR.

Thulasiraman, K. and Swamy, M. N. S. (2011). Graphs: theory and algorithms. John Wiley & Sons.

Tikhonov, A. N. (1963). On the Solution of Incorrectly Stated Problems and a Method of Regularization.
Dokl. Acad. Nauk SSSR, 151:501–504.

Tikhonov, A. N. and Arsenin, V. Y. (1977). Solutions of ill-posed problems. Winston, New York.

Törn, A. and Žilinskas, A. (1989). Global optimization, volume 350. Springer.

Tran, K. T. and Hiltunen, D. R. (2011). Two-dimensional inversion of full waveforms using simulated
annealing. Journal of Geotechnical and Geoenvironmental Engineering, 138(9):1075–1090.

Tran, K. T. and Hiltunen, D. R. (2012). One-Dimensional Inversion of Full Waveforms using a Genetic
Algorithm. Journal of Environmental & Engineering Geophysics, 17(4):197–213.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. arXiv preprint arXiv:1706.03762.

Vigh, D., Starr, B., Kapoor, J., and Li, H. (2010). 3D Full waveform inversion on a Gulf of Mexico WAZ data
set. SEG Technical Program Expanded Abstracts 2010, pages 957–961.

Vigh, D. and Starr, E. W. (2008). 3D prestack plane-wave, full-waveform inversion. GEOPHYSICS,
73(5):VE135–VE144.

Virieux, J. and Operto, S. (2009). An overview of full-waveform inversion in exploration geophysics. Geo-
physics, 74(6):WCC1–WCC26.

Vito, E. D., Rosasco, L., Caponnetto, A., Giovannini, U. D., and Odone, F. (2005). Learning from Examples
as an Inverse Problem. Journal of Machine Learning Research, 6(May):883–904.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. J. (1989). Phoneme recognition using
time-delay neural networks. IEEE transactions on acoustics, speech, and signal processing, 37(3):328–339.

Wang, H. and Tsvankin, I. (2016). Feasibility of waveform inversion in acoustic orthorhombic media. SEG
Technical Program Expanded Abstracts 2016, pages 311–316.

Wang, L. and Mendel, J. M. (1992). Adaptive minimum prediction-error deconvolution and source wavelet
estimation using Hopfield neural networks. Geophysics, 57(5):670–679.

Wang, T., Wu, D. J., Coates, A., and Ng, A. Y. (2012). End-to-end text recognition with convolutional neural
networks. In Proceedings of the 21st international conference on pattern recognition (ICPR2012), pages 3304–
3308. IEEE.

Wang, Y. (2015). Frequencies of the Ricker wavelet. Geophysics, 80(2):A31—-A37.

Wang, Z. and Oates, T. (2015). Encoding time series as images for visual inspection and classification
using tiled convolutional neural networks. In Workshops at the twenty-ninth AAAI conference on artificial
intelligence, volume 1.

148

Appendix C. Publications and Collaborations References

Warner, M., Ratcliffe, A., Nangoo, T., Morgan, J., Umpleby, A., Shah, N., Vinje, V., Štekl, I., Guasch, L.,
Win, C., Conroy, G., and Bertrand, A. (2013). Anisotropic 3D full-waveform inversion. GEOPHYSICS,
78(2):R59–R80.

Warner, M., Stekl, I., and Umpleby, A. (2007). Full Wavefield Seismic Tomography–Iterative Forward Mod-
elling in 3D. In 69th EAGE Conference and Exhibition incorporating SPE EUROPEC 2007.

Warner, M., Stekl, I., and Umpleby, A. (2008). 3D wavefield tomography : synthetic and field data examples.
2008 SEG Annual Meeting, pages 3330–3334.

Webster, G. M. (1978). Deconvolution. Society of Exploration Geophysicists, Tulsa, OK, geophysics edition.

Wei, Q., Fai, K., and Carin, L. (2017). An Inner-loop Free Solution to Inverse Problems using Deep Neural
Networks. Advances in Neural Information Processing Systems, pages 2370–2380.

Werbos, P. J. (1981). Applications of Advances in Nonlinear Sensitivity Analysis. In Proceedings of the 10th
IFIP Conference, 31.8 - 4.9, NYC, pages 762–770.

Werbos, P. J. (1988). Generalization of backpropagation with application to a recurrent gas market model.
Neural networks, 1(4):339–356.

Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural
networks. Neural computation, 1(2):270–280.

Wu, G., Fomel, S., and Chen, Y. (2018a). Data-driven time–frequency analysis of seismic data using non-
stationary Prony method. Geophysical Prospecting, 66(1):85–97.

Wu, Y., Lin, Y., and Zhou, Z. (2018b). InversionNet: Accurate and efficient seismic waveform inversion
with convolutional neural networks. In SEG Technical Program Expanded Abstracts 2018, pages 2096–2100.
Society of Exploration Geophysicists.

Xie, Y., Zhou, B., Zhou, J., Hu, J., Xu, L., Wu, X., Lin, N., Loh, F. C., Liu, L., and Wang, Z. (2017). Orthorhom-
bic full-waveform inversion for imaging the Luda field using wide-azimuth ocean-bottom-cable data.
The Leading Edge, 36(1):75–80.

Xu, Q., Yu, H., Mou, X., Zhang, L., Hsieh, J., and Wang, G. (2012). Low-dose X-ray CT reconstruction via
dictionary learning. IEEE transactions on medical imaging, 31(9):1682–1697.

Yadav, N., Yadav, A., and Kumar, M. (2015). An Introduction to Neural Network Methods for Differential
Equations.

Yao, G., Wu, D., and Wang, S.-X. (2020). A review on reflection-waveform inversion. Petroleum Science,
17(2):334–351.

Yao, Y., Rosasco, L., and Caponnetto, A. (2007). On early stopping in gradient descent learning. Constructive
Approximation, 26(2):289–315.

Yu, S. and Principe, J. C. (2019). Understanding autoencoders with information theoretic concepts. Neural
Networks, 117:104–123.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.

149

Appendix C. Publications and Collaborations References

Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional networks. In European
conference on computer vision, pages 818–833. Springer.

Zhang, D. L., Dai, W., Ge, Z., and Schuster, G. (2013). Multiples waveform inversion. In 75th EAGE Confer-
ence & Exhibition incorporating SPE EUROPEC 2013, pages cp–348. European Association of Geoscientists
& Engineers.

Zhang, J., Lin, Y., Song, Z., and Dhillon, I. S. (2018). Learning Long Term Dependencies via Fourier Recur-
rent Units.

Zhang, X., Jia, Z., Ross, Z. E., and Clayton, R. W. (2020). Extracting dispersion curves from ambient noise
correlations using deep learning. IEEE Transactions on Geoscience and Remote Sensing, 58(12):8932–8939.

Zhang, Y. and Paulson, K. V. (1997). Magnetotelluric inversion using regularized Hopfield neural networks.
Geophys. Prosp., 45(05):725–743.

Zhou, Y.-T. and Chellappa, R. (1988). Computation of optical flow using a neural network. In ICNN, pages
71–78.

Zhu, C. Y., Byrd, R. H., Lu, P. H., and Nocedal, J. (1997). Algorithm 778: L-BFGS-B: Fortran subroutines for
large-scale bound-constrained optimization. Acm Transactions on Mathematical Software, 23(4):550–560.

Zhu, W., Xu, K., Darve, E., Biondi, B., and Beroza, G. C. (2020). Integrating Deep Neural Networks with
Full-waveform Inversion: Reparametrization, Regularization, and Uncertainty Quantification. arXiv
preprint arXiv:2012.11149.

Zimmermann, H. G., Grothmann, R., Schaefer, A. M., and Tietz, C. (2006). Identification and Forecasting of
Large Dynamical Systems by Dynamical Consistent Neural Networks. S. Haykin, J. Principe, T. Sejnowski,
and J. McWhirter, editors, New Directions in Statistical Signal Processing: From Systems to Brain, pages 203–
242.

150

	copyright UM (new logo)
	21PHDGS001
	Introduction
	Literature Review
	Theoretical Considerations
	Numerical Results
	Discussion and Conclusions
	Theoretical Tools
	Code and Additional Results
	Publications and Collaborations
	References

