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Abstract
We describe a robust, unsupervised method of automatic gender
identification from speech. We first design a baseline gender
classifier based on MFCC features, and add a second classifier
that uses context-dependent but text-independent pitch features.
The results of these classifiers are then examined for disagree-
ments in gender classification. Any disagreements are resolved
by the use of a novel pitch-shifting mechanism applied to theut-
terances. We show how the acoustic context classifier provides
very good gender identification results, and how these are fur-
ther enhanced by the pitch-shifting process. Furthermore this
enhancement is preserved across a set of different corpora.
Index Terms: gender identification, speaker recognition, pitch

1. Introduction
The problem of automatic gender identification in speech has
been studied using various techniques. Wu and Childers [1] use
various features (autocorrelation, linear prediction, cepstrum
and reflection) extracted from clean speech. They claim that
these different features can all effectively be used for gender
identification. In another study by Pronobis and Magimai [2]
the focus is solely on pitch and cepstral features. They claim
that these work equally well for clean speech, but that cepstral
features give better gender classification in adverse conditions.
Also high order cepstral features and spectral dynamics give
more robust results on mismatched training and test data.

Tran and Sharma [3] propose an automatic gender identi-
fication algorithm based on building separate Hidden Markov
Models (HMMs) for the genders. This work makes the assump-
tion that speakers in the training and testing sets have a closed
vocabulary that they can use for utterances. With a closed vo-
cabulary it is possible to construct a HMM for each gender
based on the sequences of observations in the training set. In
the test case, the utterance is then matched against both gen-
der HMMs, and the HMM that gives the highest score is se-
lected. Low error rates were reported in this experiment (2.4%
for male speakers and 6.1% for female speakers). The main
problem with this approach however is that in normal conversa-
tional speech, the vocabulary is virtually unlimited, thusmaking
gender identification systems built on closed vocabulary HMMs
impractical. On the other hand, this work shows that know-
ing the context of a sound (via HMM states, in this case) has
a strong impact on the performance of a gender identification
system. In this approach, training was performed on a relatively
low number of test samples, from a low number of speakers (8
males and 8 females).

Zeng et. al [4] describe a novel Gaussian Mixture Model
(GMM) classifier based on a concatenation of pitch values with
the corresponding RASTA-PLP feature vector. A small order
GMM (4-8 components) is sufficient in their experiments, and
the performance is very robust in the presence of speech data

from different corpora and languages. Other features and clas-
sification methods have been proposed for the gender classifi-
cation problem, with results reaching 95% accuracy for the test
systems [5, 6, 7].

Our approach is designed to find a close acoustic context
to the content that is being analyzed in speech using predefined
acoustic templates built by MFCC codebooks. Once the acous-
tic context is determined, the pitch information expected within
that acoustic context is compared to male and female pitch tem-
plates and a gender decision is made. Furthermore, we exploit
inconsistencies between gender classifiers by looking at the ef-
fect of pitch-based distortions of the original speech signal to
give a refined classification where possible.

2. Gender classification methodology
2.1. Baseline classification

In our baseline classifier, we use MFCC feature vectors ex-
tracted from continuous speech, either from the TIMIT [8] or
from the ABI [9] corpora. Two different vector quantizer mod-
els are built, one per gender, by clustering (K-Harmonic Means)
the MFCC feature vectors from the training data of each gen-
der. The MFCC vectors utilized had 12 coefficients, where the
0th coefficient was excluded. To classify a test utteranceX =
{x1, . . . , xT } with the reference centroidsR = {r1, . . . , rK}
from the clustering, the standard average quantization distortion
is calculated as in Equation (1), whered(·, ·) is the Euclidean
distance‖ xt − rk ‖. The smaller the distortion for the utter-
ance, the higher the likelihood for the test utteranceX originat-
ing from the gender model that holdsR.

Dq(X,R) =
1

T

T∑

t=1

min
1≤k≤K

d(xt, rk) (1)

2.2. Context-dependent classification

Some previous work has focused on concatenating various
speech feature vectors into a single vector for gender classifi-
cation [10, 7]. However, such a concatenation presents a prob-
lem for many unsupervised learning algorithms, as it results in
exponentially sparser mappings of observations to a statistical
model [11].

The centroid models provided by MFCC clustering give an
unlabeled indication of where different units of sound lie in
MFCC space. Rather than using these directly in a classifier,we
construct Gaussian Mixture Models (GMMs) of the pitch values
associated with each MFCC vector that was included in the cal-
culation of the centroid. The motivation of this technique is that
the MFCC centroid positions correspond to differentcontextsof
sounds, and these contexts can effect the pitch produced. This
is evident from various experiments of pitch distributionsand
ranges for various sounds, and combinations of sounds [12, 13].



The algorithm used for pitch tracking is the one described by
Talkin [14], and implemented in the ‘Voicebox’ toolkit [15].

In the testing stage, the closest centroid to a test utterance
MFCC vector is found from both the male and female gender
models. The pitch value associated with the test utterance vec-
tor is determined as described above, and the likelihood of ob-
serving this value from both the male and female pitch GMMs
for the chosen MFCC centroids is estimated. Gender is deter-
mined by summing the log-likelihoods from the respective male
and female pitch GMMs for the observations within an entire
spoken utterance.

2.3. Classifier comparison

If both the classifiers described above give the same classifica-
tion, then there is reasonable confidence that the classification
result is correct and the gender is confirmed. However, if there
is disagreement, an additional “acoustic loop-back” process is
utilized.

2.4. Pitch-shifting loop-back classification

Groen et. al [16] perform a number of experiments related to the
human perception of gender in voice for children. Their inter-
est was in investigating the difference in response time between
children with high-functioning autism and normal children. The
main finding of interest to us is that the response time for gen-
der perception for both groups changes in specific cases, as the
pitch of a voice is artificially transformed into subsequentpitch
categories by shifting formant ratios and median-pitch levels,
from male to female voices. This suggests that the brain pro-
cess that classifies gender can have different cognitive loads in
cases where gender determination is ambiguous. This obser-
vation motivates us to propose an extra layer of processing to
resolve the classification in cases where the two classifiersdis-
agree, which we take as an indication that the gender informa-
tion is ambiguous. This processing can be visualized as mea-
suring whether the ambiguous utterance is in fact closer to the
male or the female gender in the pattern-space. We do this by
small artificial pitch-shifts on the utterance in either themale or
female direction, and then re-classifying it with the two classi-
fiers described earlier, to see if they now agree.

The process works as follows: in cases where there is a dis-
agreement in the classification results from the two classifiers,
two copies of the utterance are made. Copy 1 is shifted down-
wards progressively in pitch steps of a semitone, and Copy 2 is
shifted upwards progressively in pitch steps of a semitone,to a
maximum shift of two semitones. After the first shift, the utter-
ance is re-classified by the two classifiers. If the classifiers now
agree on one gender (only), this gender is taken as the class,
and the process ends. If not, another shift is applied. Fig. 1
gives an example. With no pitch-shift applied, the two classi-
fiers disagree. Agreement is reached between the classifiersin
two situations: either when the pitch is shifted downwards by
one semitone, or when shifted upwards by two semitones. Be-
cause the utterance requires only one semitone shift downwards
to make the classifiers agree on ‘male’, then this gender is taken
as the correct class. The process of upwards/downwards pitch-
shifting and reclassification is iterated until one of the following
exit conditions is met:

• The classifiers agree on the class ‘male’ after a down-
wards pitch-shift, and this shift is smaller than the last
upwards pitch-shift, after which they still disagreed. In
this case, the gender ‘male’ is chosen.

• The classifiers agree on the class ‘female’ after an up-
wards pitch-shift, and this shift is smaller than the last
downwards pitch-shift, after which they still disagreed.
In this case, the gender ‘female’ is chosen.

• The classifiers agree on the class ‘male’ after a down-
wards pitch-shift of two semitones, and on the class ‘fe-
male’ after an upwards pitch-shift of two semitones. In
this case, the classification made by the acoustic context
classifier result is used.

• The pitch has been shifted by two semitones in both di-
rections and the classifiers still disagree. In this case,
the classification made by the acoustic context classifier
result is used.

Pitch-shifting is done using the ‘SoundTouch’ audio processing
library [17].

3. Results
A number of experiments were performed on the TIMIT [8],
ABI-1 [9] and WSJCAM0 [18] corpora. The TIMIT corpus
contains 438 male speakers and 192 female speakers, where
each speaker speaks 10 phonetically rich short utterances.The
ABI-1 corpus subset used contained 145 male speakers and 140
female speakers, where each speaker speaks 3 extracts of 6 sec-
onds each from accent diagnostic passages. The WSJCAM0
corpus subset contained 55 female speakers and 70 male speak-
ers, where each speaker speaks 5 utterances of around 3-5 sec-
onds each. Every experiment, on each corpus, involved first se-
lecting 100 male and 100 female speakers randomly for training
models, whilst the rest were used for testing. At the next experi-
ment iteration (under the same conditions) other training/testing
sets were randomly chosen. Each experimental condition was
tested with 5 different iterations.

Experiments were of 4 training/testing pairs.
TIMIT/TIMIT is a classification of TIMIT data based on
training over TIMIT data. ABI/ABI is a classification of
ABI-1 data based on training over ABI-1 data. TIMIT/ABI is
a classification of ABI-1 data based on training over TIMIT
data. TIMIT/WSJCAM0 is a classification of WSJCAM0
data based on training over TIMIT data. In TIMIT/ABI and
TIMIT/WSJCAM0 experiments, training data was collected
from 100 male and 100 female TIMIT speakers, whilst tests
were performed on all the ABI-1 and WSJCAM0 speakers.
Also we did not pre-process the audio data using normalization
techniques such as CMS (cepstral mean subtraction) which
are usually performed on identification tasks over mismatched
training/testing data. Experiments were performed over
different GMM sizes that model pitch distributions for the
various MFCC centroids. However, no difference was observed
between 4-GMM and 8-GMM models. The results we present
are therefore limited to 4-GMM models.

3.1. TIMIT/TIMIT & ABI/ABI performance

The performance results for TIMIT/TIMIT and ABI/ABI tests
is shown in Fig 2. The results for TIMIT/TIMIT tests show
that the MFCC classifier performance improves gradually as
the value ofk (number of cluster centroids) increases from
2 to 16. At this point a performance barrier is reached, and
no improvement can be seen at higher values ofk. However,
the context-dependent classification as well as the pitch-shifting
loopback classification maintain a steady performance across all
values ofk. The variance in the results obtained by the context-
based classifier and the pitch-shifting loopback classifierwe



Figure 1: Pitch-shifting on an utterance. Shifting to the right from the neutral position implies an upward shift of pitch towardsthe
female gender, shifting to the left implies a downwards shift towards the male gender. After each semitone shift, the decisions of the two
classifiers (‘MFCC’ and ‘Pitch’) are shown. Agreement on thegender is reached after only one semitone shift downwards, but after
two semitones upwards, so the utterance is classified as a ‘male’.

Figure 2: TIMIT/TIMIT and ABI/ABI test results. The MFCC
classifier improves ask increases to 16, and falls off there-
after, whilst context-dependent classification and pitch-shifting
are steady across all values ofk.

are proposing in this paper shows greater stability compared
to the baseline MFCC classifier, as well as giving higher gen-
der identification performance across all experiments. Also the
pitch-shifting loopback classifier always gives a slightlybetter
performance then the context-dependent classifier. The results
for ABI/ABI tests show that globally, identification results on
all classifiers perform worse on the ABI-1 corpus, when com-
pared to performance on the TIMIT corpus. However both the
context-based classifier and the pitch-shifting loopback classi-
fier still perform better than the MFCC classifier. The MFCC
classifier performance improves gradually as the value ofk

(number of cluster centroids) increases from 2 to 16, and drops
for k > 16. The overall drop in performance on the MFCC

classifier (compared to TIMIT/TIMIT tests) is associated with
a drop in performance in the other classifiers. Also the pitch-
shifting loopback classifier does not always perform betterthan
the context-based classifier, unlike in TIMIT/TIMIT tests.

3.2. TIMIT/ABI & TIMIT/WSJCAM0 performance

The performance results for TIMIT/ABI and
TIMIT/WSJCAM0 tests is shown in Fig 3. The results
for TIMIT/ABI tests show that the baseline classifier accuracy
is lower than in cases where the training and testing sets are
the same, and is much lower when training is performed on
TIMIT and testing on ABI-1. This indicates that the method
is not very robust for classification on different training/testing
data sets. The drop in the MFCC classifier is of approximately
30%. On the other hand the context-based classifier maintains
a very high and stable classification score in the range of
93-94% accuracy. The pitch-shifting loopback classifier further
boosts the results in almost all cases, with a stable result
of 95% region for values ofk > 8, which is very close to
the classification accuracy obtained in TIMIT/TIMIT and
ABI/ABI tests. The gain for this extra classification stage is
therefore greater in TIMIT/ABI tests, and the conclusion is
that it is reconciling many errors that occur due to unmatched
training/testing data sets. The results for TIMIT/WSJCAM0
tests show that the baseline classifier starts very poorly, in a
similar way to TIMIT/ABI tests. The performance improves at
higher values ofk. However, the performance of the acoustic
context and pitch-shifting classifiers is very high on all values
of k, further again demonstrating the gain these algorithms
have on mismatched training/testing sets.

Table 1:This table shows how pitch-shifting was utilized across
utterances for male and female speakers. Female utterances
require the intervention of the pitch-shifting process earlier than
male utterances, and in the greater majority of cases require
two pitch-shifts.

% 0 shifts % 1 shift % 2 shifts

Males 65.68% 24.55% 9.77%
Females 46.43% 16.47% 37.10%

The relative number of male and female utterances clas-
sified without pitch-shifting and using 1 or 2 semitone shifts
is shown in Table 1. Analysis of results indicated that more



Figure 3:TIMIT/ABI and TIMIT/WSJCAM0 test results. MFCC
classifier improves ask increases, but is very poor compared to
context-dependent classification and pitch-shifting which main-
tain a high and stable result across all experiments.

than half the utterances from female speakers required a pitch-
shifting process before classifiers could agree on gender classi-
fication. Also gender-identification on female speech utterances
require more intense use of pitch-shifting (2 shifts) than in male
speech utterances. This corroborates the experimental results by
Groen et. al [16], which concluded that humans take longer to
classify gender for female speakers when it is ambiguous than
they do for male speakers, and secondly, that more female ut-
terances than male utterances sound ambiguous in pitch.

4. Conclusions
In this paper we have shown how increasing the resolution in
specific acoustic regions of speech can be used to build a ro-
bust gender classifier. Furthermore, we have described a simple
pitch-shifting process guided by classifier fusion, that gives a
useful gain in gender identification performance, especially on
unmatched training/testing sets. It would be interesting to find
other speech features that exhibit similar properties on warp-
ing/shifting. In some cases, the upper bound of the accuracy
of the MFCC classifier is holding down the potential of the
context-based classifier. Therefore a replacement of MFCC fea-
tures with a feature set that is more gender-specific, ratherthan
speaker-specific, could boost the results of the techniquespre-
sented here.
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