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Abstract

We describe a robust, unsupervised method of automatieegend
identification from speech. We first design a baseline gender

classifier based on MFCC features, and add a second classifier

that uses context-dependent but text-independent piathries.
The results of these classifiers are then examined for disagr
ments in gender classification. Any disagreements arevesol
by the use of a novel pitch-shifting mechanism applied taithe
terances. We show how the acoustic context classifier peevid
very good gender identification results, and how these are fu
ther enhanced by the pitch-shifting process. Furthermuse t
enhancement is preserved across a set of different corpora.
Index Terms: gender identification, speaker recognition, pitch

1. Introduction

The problem of automatic gender identification in speech has
been studied using various techniques. Wu and Childerssgl] u
various features (autocorrelation, linear predictionpsteim
and reflection) extracted from clean speech. They claim that
these different features can all effectively be used fordgen
identification. In another study by Pronobis and Magimai [2]
the focus is solely on pitch and cepstral features. Theyrclai
that these work equally well for clean speech, but that capst
features give better gender classification in adverse tiondi
Also high order cepstral features and spectral dynamics giv
more robust results on mismatched training and test data.

Tran and Sharma [3] propose an automatic gender identi-
fication algorithm based on building separate Hidden Markov
Models (HMMs) for the genders. This work makes the assump-
tion that speakers in the training and testing sets havesadlo
vocabulary that they can use for utterances. With a closed vo
cabulary it is possible to construct a HMM for each gender
based on the sequences of observations in the training rset. |
the test case, the utterance is then matched against both gen
der HMMs, and the HMM that gives the highest score is se-
lected. Low error rates were reported in this experimety®.
for male speakers and 6.1% for female speakers). The main
problem with this approach however is that in normal coraers
tional speech, the vocabulary is virtually unlimited, tiusking
gender identification systems built on closed vocabularyNHM
impractical. On the other hand, this work shows that know-
ing the context of a sound (via HMM states, in this case) has
a strong impact on the performance of a gender identification
system. In this approach, training was performed on a velgti
low number of test samples, from a low number of speakers (8
males and 8 females).

Zeng et. al [4] describe a novel Gaussian Mixture Model
(GMM) classifier based on a concatenation of pitch valuel wit
the corresponding RASTA-PLP feature vector. A small order
GMM (4-8 components) is sufficient in their experiments, and
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from different corpora and languages. Other features aas cl
sification methods have been proposed for the gender classifi
cation problem, with results reaching 95% accuracy for ¢isé t
systems [5, 6, 7].

Our approach is designed to find a close acoustic context
to the content that is being analyzed in speech using preukfin
acoustic templates built by MFCC codebooks. Once the acous-
tic context is determined, the pitch information expecteithiv
that acoustic context is compared to male and female pitoh te
plates and a gender decision is made. Furthermore, we &xploi
inconsistencies between gender classifiers by lookingeag¢tth
fect of pitch-based distortions of the original speech aido
give a refined classification where possible.

2. Gender classification methodology
2.1. Baseline classification

In our baseline classifier, we use MFCC feature vectors ex-
tracted from continuous speech, either from the TIMIT [8] or
from the ABI [9] corpora. Two different vector quantizer mod
els are built, one per gender, by clustering (K-Harmonic ivga
the MFCC feature vectors from the training data of each gen-
der. The MFCC vectors utilized had 12 coefficients, where the
0" coefficient was excluded. To classify a test utteraice=
{z1,...,zr} with the reference centroid® = {r1,...,7x}
from the clustering, the standard average quantizatidordisn

is calculated as in Equation (1), wheié, -) is the Euclidean
distance|| z: — r ||. The smaller the distortion for the utter-
ance, the higher the likelihood for the test utteraiceriginat-

ing from the gender model that hold&
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2.2. Context-dependent classification

Some previous work has focused on concatenating various
speech feature vectors into a single vector for genderifitass
cation [10, 7]. However, such a concatenation presentsia pro
lem for many unsupervised learning algorithms, as it regult
exponentially sparser mappings of observations to a statis
model [11].

The centroid models provided by MFCC clustering give an
unlabeled indication of where different units of sound ke i
MFCC space. Rather than using these directly in a classifeer,
construct Gaussian Mixture Models (GMMs) of the pitch value
associated with each MFCC vector that was included in the cal
culation of the centroid. The motivation of this techniga¢hat
the MFCC centroid positions correspond to differeomtextsof
sounds, and these contexts can effect the pitch produced. Th
is evident from various experiments of pitch distributicrsl

the performance is very robust in the presence of speech data ranges for various sounds, and combinations of sounds 812, 1



The algorithm used for pitch tracking is the one described by
Talkin [14], and implemented in the ‘Voicebox' toolkit [15]

In the testing stage, the closest centroid to a test utteranc
MFCC vector is found from both the male and female gender
models. The pitch value associated with the test utteraaece v
tor is determined as described above, and the likelihoodef o
serving this value from both the male and female pitch GMMs
for the chosen MFCC centroids is estimated. Gender is deter-
mined by summing the log-likelihoods from the respectivéema
and female pitch GMMs for the observations within an entire
spoken utterance.

2.3. Classifier comparison

If both the classifiers described above give the same cleasifi
tion, then there is reasonable confidence that the clagmfica
result is correct and the gender is confirmed. However, ifethe
is disagreement, an additional “acoustic loop-back” pssds
utilized.

2.4. Pitch-shifting loop-back classification

Groen et. al [16] perform a number of experiments relatebdo t
human perception of gender in voice for children. Theirrinte
est was in investigating the difference in response timeden
children with high-functioning autism and normal childrérne
main finding of interest to us is that the response time for gen
der perception for both groups changes in specific casebeas t
pitch of a voice is artificially transformed into subsequeitth
categories by shifting formant ratios and median-pitctelgv
from male to female voices. This suggests that the brain pro-
cess that classifies gender can have different cognitivésloa
cases where gender determination is ambiguous. This obser-
vation motivates us to propose an extra layer of processing t
resolve the classification in cases where the two classiisfs
agree, which we take as an indication that the gender informa
tion is ambiguous. This processing can be visualized as mea-
suring whether the ambiguous utterance is in fact closengo t
male or the female gender in the pattern-space. We do this by
small artificial pitch-shifts on the utterance in either thale or
female direction, and then re-classifying it with the twasdi-
fiers described earlier, to see if they now agree.

The process works as follows: in cases where there is a dis-
agreement in the classification results from the two classifi
two copies of the utterance are made. Copy 1 is shifted down-
wards progressively in pitch steps of a semitone, and Copy 2 i
shifted upwards progressively in pitch steps of a semittma,
maximum shift of two semitones. After the first shift, theawtt
ance is re-classified by the two classifiers. If the classifiemw
agree on one gender (only), this gender is taken as the class
and the process ends. If not, another shift is applied. Fig. 1
gives an example. With no pitch-shift applied, the two dlass
fiers disagree. Agreement is reached between the classifiers
two situations: either when the pitch is shifted downwargs b
one semitone, or when shifted upwards by two semitones. Be-
cause the utterance requires only one semitone shift dovdswa
to make the classifiers agree on ‘male’, then this gendekénta
as the correct class. The process of upwards/downwards pitc
shifting and reclassification is iterated until one of thikdfeing
exit conditions is met:

e The classifiers agree on the class ‘male’ after a down-
wards pitch-shift, and this shift is smaller than the last
upwards pitch-shift, after which they still disagreed. In
this case, the gender ‘male’ is chosen.

e The classifiers agree on the class ‘female’ after an up-
wards pitch-shift, and this shift is smaller than the last
downwards pitch-shift, after which they still disagreed.
In this case, the gender ‘female’ is chosen.

e The classifiers agree on the class ‘male’ after a down-
wards pitch-shift of two semitones, and on the class ‘fe-
male’ after an upwards pitch-shift of two semitones. In
this case, the classification made by the acoustic context
classifier result is used.

e The pitch has been shifted by two semitones in both di-
rections and the classifiers still disagree. In this case,
the classification made by the acoustic context classifier
result is used.

Pitch-shifting is done using the ‘SoundTouch’ audio preias
library [17].

3. Results

A number of experiments were performed on the TIMIT [8],
ABI-1 [9] and WSJCAMO [18] corpora. The TIMIT corpus
contains 438 male speakers and 192 female speakers, where
each speaker speaks 10 phonetically rich short utterafdes.
ABI-1 corpus subset used contained 145 male speakers and 140
female speakers, where each speaker speaks 3 extractsof 6 se
onds each from accent diagnostic passages. The WSJCAMO
corpus subset contained 55 female speakers and 70 male speak
ers, where each speaker speaks 5 utterances of around 3-5 sec
onds each. Every experiment, on each corpus, involved éfst s
lecting 100 male and 100 female speakers randomly for trgini
models, whilst the rest were used for testing. At the nexegxp
ment iteration (under the same conditions) other trainésging

sets were randomly chosen. Each experimental condition was
tested with 5 different iterations.

Experiments were of 4 training/testing pairs.
TIMIT/TIMIT is a classification of TIMIT data based on
training over TIMIT data. ABI/ABI is a classification of
ABI-1 data based on training over ABI-1 data. TIMIT/ABI is
a classification of ABI-1 data based on training over TIMIT
data. TIMIT/WSJCAMO is a classification of WSJCAMO
data based on training over TIMIT data. In TIMIT/ABI and
TIMIT/WSJCAMO experiments, training data was collected
from 100 male and 100 female TIMIT speakers, whilst tests
were performed on all the ABI-1 and WSJCAMO speakers.
Also we did not pre-process the audio data using normatiaati
techniques such as CMS (cepstral mean subtraction) which
are usually performed on identification tasks over misnedch
training/testing data.  Experiments were performed over
different GMM sizes that model pitch distributions for the
various MFCC centroids. However, no difference was obgkrve
between 4-GMM and 8-GMM models. The results we present
are therefore limited to 4-GMM models.

3.1. TIMIT/TIMIT & ABI/ABI performance

The performance results for TIMIT/TIMIT and ABI/ABI tests

is shown in Fig 2. The results for TIMIT/TIMIT tests show
that the MFCC classifier performance improves gradually as
the value ofk (number of cluster centroids) increases from
2 to 16. At this point a performance barrier is reached, and
no improvement can be seen at higher valueg.oHowever,

the context-dependent classification as well as the phidtirg
loopback classification maintain a steady performancesaath
values ofk. The variance in the results obtained by the context-
based classifier and the pitch-shifting loopback classifier



Pitch Scale

-2 semitones -1 semitone Neutral +1 semitone +2 semitones
Male bias ‘ ‘ ‘ ‘ ‘ Female bias
MFCC ='m' MFCC ='f MFCC ='f' MFCC ='f
Pitch ='m’ Pitch ='m' Pitch ='m’ : Pitch ='f

Figure 1:Pitch-shifting on an utterance. Shifting to the right frohetneutral position implies an upward shift of pitch towatts
female gender, shifting to the left implies a downwardg stwfards the male gender. After each semitone shift, thisides of the two
classifiers (MFCC’ and ‘Pitch’) are shown. Agreement on tfender is reached after only one semitone shift downwarasafter

two semitones upwards, so the utterance is classified as la”ma
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Figure 2: TIMIT/TIMIT and ABI/ABI test results. The MFCC
classifier improves ag increases to 16, and falls off there-
after, whilst context-dependent classification and p&bifting
are steady across all values bf

are proposing in this paper shows greater stability contpare
to the baseline MFCC classifier, as well as giving higher gen-
der identification performance across all experimentso Aie
pitch-shifting loopback classifier always gives a sligHibtter
performance then the context-dependent classifier. Thdtses
for ABI/ABI tests show that globally, identification ressilon

all classifiers perform worse on the ABI-1 corpus, when com-
pared to performance on the TIMIT corpus. However both the
context-based classifier and the pitch-shifting loopbdaksi-
fier still perform better than the MFCC classifier. The MFCC
classifier performance improves gradually as the valug of
(number of cluster centroids) increases from 2 to 16, angsiro
for k > 16. The overall drop in performance on the MFCC

classifier (compared to TIMIT/TIMIT tests) is associatedhwi
a drop in performance in the other classifiers. Also the pitch
shifting loopback classifier does not always perform bettan
the context-based classifier, unlike in TIMIT/TIMIT tests.

3.2. TIMIT/ABI & TIMIT/WSJCAMO performance

The performance results for  TIMIT/ABI and
TIMIT/WSJCAMO tests is shown in Fig 3. The results
for TIMIT/ABI tests show that the baseline classifier acoyra

is lower than in cases where the training and testing sets are
the same, and is much lower when training is performed on
TIMIT and testing on ABI-1. This indicates that the method
is not very robust for classification on different trainitegting
data sets. The drop in the MFCC classifier is of approximately
30%. On the other hand the context-based classifier maintain
a very high and stable classification score in the range of
93-94% accuracy. The pitch-shifting loopback classifiettfer
boosts the results in almost all cases, with a stable result
of 95% region for values ok > 8, which is very close to
the classification accuracy obtained in TIMIT/TIMIT and
ABI/ABI tests. The gain for this extra classification stage i
therefore greater in TIMIT/ABI tests, and the conclusion is
that it is reconciling many errors that occur due to unmaiche
training/testing data sets. The results for TIMIT/WSJCAMO
tests show that the baseline classifier starts very poorly i
similar way to TIMIT/ABI tests. The performance improves at
higher values of%. However, the performance of the acoustic
context and pitch-shifting classifiers is very high on allues

of k, further again demonstrating the gain these algorithms
have on mismatched training/testing sets.

Table 1:This table shows how pitch-shifting was utilized across
utterances for male and female speakers. Female utterances
require the intervention of the pitch-shifting processlieathan

male utterances, and in the greater majority of cases requir
two pitch-shifts.

| | % 0 shifts | % 1 shift | % 2 shifts |

Males 65.68% 24.55% 9.77%
Females| 46.43% 16.47% 37.10%

The relative number of male and female utterances clas-
sified without pitch-shifting and using 1 or 2 semitone hift
is shown in Table 1. Analysis of results indicated that more
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Figure 3:TIMIT/ABI and TIMIT/WSJCAMO test results. MFCC
classifier improves ak increases, but is very poor compared to
context-dependent classification and pitch-shifting Winain-
tain a high and stable result across all experiments.

than half the utterances from female speakers requiredh-pit
shifting process before classifiers could agree on gendssiel
fication. Also gender-identification on female speech attees
require more intense use of pitch-shifting (2 shifts) thamale
speech utterances. This corroborates the experimentéts by
Groen et. al [16], which concluded that humans take longer to
classify gender for female speakers when it is ambiguous tha
they do for male speakers, and secondly, that more female ut-
terances than male utterances sound ambiguous in pitch.

4. Conclusions

In this paper we have shown how increasing the resolution in
specific acoustic regions of speech can be used to build a ro-
bust gender classifier. Furthermore, we have describedmesim
pitch-shifting process guided by classifier fusion, thatgia
useful gain in gender identification performance, esplycai
unmatched training/testing sets. It would be interestinfjrtd
other speech features that exhibit similar properties orpwa
ing/shifting. In some cases, the upper bound of the accuracy
of the MFCC classifier is holding down the potential of the
context-based classifier. Therefore a replacement of MFREE f
tures with a feature set that is more gender-specific, ralttaer
speaker-specific, could boost the results of the technipgres
sented here.
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