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Hidradenitis suppurativa is a chronic, suppurative condition of the pilosebaceous unit
manifesting as painful nodules, abscesses, and sinus tracts mostly in, but not limited to,
intertriginous skin. Great strides have been made at elucidating the pathophysiology of
hidradenitis suppurativa, which appears to be the product of hyperkeratinization and
inflammation brought about by environmental factors and a genetic predisposition. The
identification of familial hidradenitis suppurativa has sparked research aimed at identifying
underlying pathogenic variants in patients who harbor them. The objective of this review is
to provide a broad overview of the role of genetics in various aspects of hidradenitis
suppurativa, specifically the pathophysiology, diagnosis, and clinical application.
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INTRODUCTION

Hidradenitis suppurativa (HS) is a chronic, suppurative disorder characterized by inflammation and
hyperkeratinization at the pilosebaceous unit (PSU). The condition manifests as tender nodules,
draining abscesses and sinuses mostly in (but not limited to) intertriginous skin (von Laffert et al.,
2011; Danby et al., 2013). The latest estimate of overall HS prevalence is 0.4% (95%CI, 0.26–0.63%)
(Jfri et al., 2021). HS can arise as an isolated condition, in a syndromic form or in the setting of other
cutaneous conditions (for example Dowling-Degos Disease). The pathophysiology of HS is complex
and is strongly determined by environmental and lifestyle factors such as smoking and obesity. These
factors interact with specific physical triggers, namely friction, sweat, increased temperature, and
changes in the cutaneous microbiome to drive disease risk (Mintoff et al., 2021a).

HS has an underlying genetic etiology. The link between HS and a genetic predisposition has long
been suspected. In the 1980s Fitzsimmons and Guilbert published evidence in favor of autosomal
dominant or familial HS (fHS) (Fitzsimmons et al., 1984; Fitzsimmons et al., 1985; Fitzsimmons and
Guilbert, 1985); however the causative gene remained elusive. Initial studies performed by Gao et al.
suggested a possible HS locus at 1p21.1-1q25.3 (Gao et al., 2006). Based on these findings, linkage
analysis was performed on HS-patients with a strong family history however, the results obtained
failed to identify the causative locus (Saleh Al-Ali et al., 2010). Following the advent of whole exome
sequencing (WES), Gao et al later described the c.210_211delAG NCSTN variant which segregated
with disease in multiple family members affected by HS (Liu et al., 2011). Since then, several other
investigators have provided evidence supporting a monogenic etiology in fHS, mostly involving loci
encoding proteins of the γ-secretase complex (GSC) (OMIM #142690, #613736, #613737). These
initial discoveries have fueled a strong drive to explore the role of genetic susceptibility in HS with the
aim of better characterizing the pathophysiology of the disease.
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The mechanisms and extent to which the combination of
genomic and non-genomic factors determine disease
manifestation, its phenotype and response to therapy are not
fully understood. The increasing availability and affordability of
genomic sequencing in both clinical and research settings, as well
as more robust methods of interrogating the human genome has
resulted in a surge of genetic data on HS. This genetic data is
supported by in vitro and in vivo functional studies in a minority
of cases. Nevertheless, a comprehensive understanding of the role
of rare vs. common genetic factors that drive HS is lacking.

This systematic review aims to compile, analyze and present
the extant literature pertaining to the genetic architecture of HS.
Specifically, we aim to 1) comprehensively describe genetic
variants that have been associated with HS phenotypes 2)
evaluate the impact of selected missense variants on protein
structure and stability using in-silico tools 3) explore genotype-
phenotype associations and 4) discuss HS genetics in the context
of disease subtypes.

METHODS

Literature Search
A systematic literature search pertaining to hidradenitis
suppurativa and genetic variation was conducted in PubMed/
MEDLINE, Science Direct and Google Scholar databases. A
comprehensive search strategy was based on the following
combinations of free text keywords and Medical Subject
Heading (MeSH) terms: “hidradenitis”, “suppurativa”, “acne”,
“inversa”, “genetic”, “familial”, “secretase”, “nicastrin”, “NCSTN”,
“PSENEN”, “presenilin”, “PSEN”, “APH”, “NOD2”, “PSTPIP1”,
“MEFV”, “Syndrome”, “PASH”, “PAPASH”, “Pyoderma”,
“SAPHO”, “PASS”, “Dowling-Degos”, “Mediterranean”. The
Boolean operators used were “AND” and “OR”. The search
covered articles published between January 1980 and January
2022, and was restricted to articles published in the English,
Italian and Spanish languages. Furthermore, handsearching and
citation review of relevant studies was also conducted to identify
studies that were not captured by the electronic database search.
Published original studies investigating the genetics of HS in its
isolated or syndromic forms through both targeted and
untargeted genomic approaches were eligible for inclusion. We
excluded studies with 1) absent genetic data 2) duplicate data
pertaining to the same proband in separate publications 3)
conference proceedings, reviews, editorial letters or comments
and 4) studies not directly investigating the association of specific
genes with HS phenotypes.

Data Extraction
Articles identified from the literature search were screened for
duplicates. All studies deemed to be potentially eligible for
inclusion were reviewed and data extracted by the
investigators. Any discrepancies were resolved by consensus.

The following information was extracted from each eligible
article 1) primary author and year of publication 2) locus, the
specific genetic variant identified and segregation data when
available 3) age at presentation of first lesion 4) primary

anatomic sites affected and 5) data on comorbid risk factors,
specifically obesity and smoking status.

Data Analysis
Identified variants were categorized as missense, nonsense,
frameshift indels, splice-site and non-coding regions according
to their effect on translation. VarSeq software (Golden Helix) was
used for variant interpretation and annotation (Kopanos et al.,
2019). Variant pathogenicity was classified according to
guidelines from the American College of Medical Genetics/
Association for Molecular Pathology (ACMG/AMP) (Richards
et al., 2015). These guidelines standardize variant classification by
stratification into five categories (pathogenic, likely pathogenic,
uncertain significance, likely benign, benign) based on a
combination of computational, population, functional and
segregation data. Rare variants were considered to be of
uncertain significance (VUS) if there is limited or
contradictory clinical or functional evidence for pathogenicity.
The Human Gene Mutation Database, (HGMD), dbSNP and
ClinVar databases (ncbi.nlm.nih.gov/clinvar/) were also
interrogated to identify any respective studies and ontologies.
To explore genotype-phenotype associations, variants in the GSC
genes were considered as an aggregate category and contrasted
against variants in genes not forming part of this complex.

Protein Structure Analysis and Molecular
Modelling
The impact of missense variants on protein structure was
evaluated through molecular modelling. The DynaMut
webserver was used to predict the effects of amino acid
substitutions on protein stability, flexibility and to analyze
interactions amongst amino acid residues (Rodrigues et al.,
2018). The predicted change in stability between the wild type
and variant structures derived from SDM, DUET, and mCSM
algorithms is reported as ΔΔG in kcal/mol, with negative values
indicative of destabilizing variants. Dynamut also reports
vibrational entropy changes (ΔΔSVib in kcal mol−1K−1)
calculated by ENCoM using normal-mode analysis to depict
the substitution’s effect on structure flexibility or rigidity. To
further categorize the structural impact of missense variants, the
Missense3D and HOPE webservers were used. Missense3D
assesses 17 different structural features that are essential for
protein conformation and stability, such as stearic clashes and
disallowed phi/psi angles (Venselaar et al., 2010; Ittisoponpisan
et al., 2019). A comprehensive graphical summary of identified
GSC variants was generated using ProteinPaint (Zhou C et al.,
2016).

Statistics
The characteristics of the cohort are summarized using
descriptive statistics. Normality of age at first lesion was
assessed by the Shapiro–Wilk and Kolmogorov-Smirnoff tests.
This exhibited a skewed non-normal distribution; non-
parametric statistics with medians and interquartile ranges are
presented. To compare differences in quantitative variables
between two categories, the independent-samples
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Mann–Whitney U test was applied. The chi-square test was used
to compare categorical variables. A p-value of <0.05 was
considered statistically significant.

RESULTS

In total, the literature search identified 88 published variants
implicated in HS. Approximately 83% of published variants
involve the four genes encoding protein subunits of the
multimeric GSC (NCSTN 54.5%, PSENEN 24%, PSEN 3.4%
and APH 1%) (Figure 1). The remaining variants localized to
PSTPIP1, MEFV, NLRP3, IL1RN, NOD2 and POFUT loci, which
have been variably associated with non-syndromic forms of HS. A
summary of the identified variants, their pathogenicity classifiers
and phenotypes are provided in Table 1. The reported median
age at first lesion was 17 years (min 10 years—max 67 years). The
axillae and groin were the most frequently reported affected sites.
Clear segregation with the HS phenotype was documented by
78% of reports. The identified variants were classified as
pathogenic or likely pathogenic in 66% of cases, and as VUS
or VUS leaning pathogenic in 18% of cases according to the
ACMG-AMP consensus criteria. At the protein level, variants
were classified as missense (29.5%), nonsense (24%), frameshift
indels (28.4%), splice donor/acceptor site (15.9%) and in non-
coding regions (2.3%). Lifestyle factors that associate with HS
predisposition and outcome, such as obesity and smoking status
were inconsistently reported in the literature.

No significant difference in the reported age at first lesion was
identified between carriers of variants in GSC and other loci (17

vs. 19 years, p = 0.112). Similarly, no difference in age at first
lesion between NCSTN variant carriers and non-NCSTN variant
carriers was identified (17 vs. 18 years, p = 0.345). Carriers of
pathogenic variants had a marginally lower age at first lesion than
carriers of VUS or benign variants (16 vs. 18 years p = 0.048). A
significantly higher proportion of pathogenic variants was located
in GSC genes compared to other loci (74 vs. 26.7%, χ2 = 12.1, p =
0.001). As expected, variants that disrupt translation through
nonsense, frameshift or splice-altering effects are more likely to be
pathogenic than missense variants (91.4% vs. 8.6%, χ2 = 42.2, p <
0.01). No significant difference in obesity or smoking status was
noted when probands carrying pathogenic variants were
compared to those carrying non-pathogenic variants, although
these parameters were inconstantly reported in the literature. No
association between the primary anatomic sites involved by HS
lesions and gene (NCSTN vs. non-NCSTN) or the ACMG
pathogenicity classifier (pathogenic vs. non-pathogenic
variants) was noted. Table 2 contrasts the salient clinical and
genetic features between GSC variant carriers and non-carriers.

For selected missense variants we explored the structural
impacts of the substitution and assessed the change in ΔΔG
and Δ vibrational entropy energy predictions between the wild-
type and mutant structures. An overview of the findings is
presented in Supplementary Table S1. Only five of 23
(21.73%) missense variants were predicted to exert
conformationally deleterious effects as they impact critical
structural residues (NCSTN p. Gly61Val, p. Gln216Pro, p.
Glu296Gly, p. Gly576Val and APH p. His170Arg). Four of
these variants have VUS/VUS leaning pathogenic
classifications while the fifth (NCSTN p. Glu296Gly) is

FIGURE 1 | HS-associated variants in genes encoding proteins of the gamma secretase complex.
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TABLE 1 | A summary of described genetic variants, their protein effect, ACMG classification and phenotypic associations. *SAPHO ▲ PASH • PAPASH $PPHSF +HS-DDD.

Gene Exon/
Intron

Variant Protein ACMG
classification

Variant
Segregation

Age of
1st Lesion

in the
Proband

Involved
Skin

Obesity
and smoking

Status

Group

NCSTN 1 NM_015331.3:c.38delG p.Gly13GlufsTer15 Likely pathogenic Sporadic 10 Axilla, inguinal, gluteal Not Specified Vural et al. (2021)
NCSTN 2 NM_015331.3:c.97G > A p.Gly33Arg Uncertain

significance with
some pathogenic
evidence

Yes Not Specified Axilla, neck, trunk,
axilla, gluteal,
extremity

Not specified Takeichi et al. (2020)

NCSTN 2 NM_015331.3:c.182G > T p.Gly61Val Uncertain
significance
leaning
pathogenic

Yes 17 Not Specified Obese, Non-
smoker

Duchatelet et al.
(2020)

NCSTN 3 NM_015331.3:c.210_211delAG p.Val72TyrfsTer16 Pathogenic Yes Not specified Abdomen, back,
gluteal

Not Specified Liu et al. (2011)

NCSTN 3 NM_015331.3:c.218delC p.Pro93LeufsTer15 Pathogenic Yes 24 Face, Neck, Back,
Gluteal, Groin

Not specified Wu et al. (2018)

NCSTN 3 NM_015331.3:c.223G > A p.Val75lle Benign Yes 16 Face, Neck, Mons
pubis, Genitals

Not Specified Zhang et al. (2013)

NCSTN 3 NM_015331.3:c.278del * p.Pro93LeufsTer15 Pathogenic Sporadic 40 Neck, Back, Axilla,
Gluteal

Not obese Li et al. (2018)

NCSTN 4 NM_015331.3:c.344_351del ▲ p.Thr115AsnfsTer20 Pathogenic Proband
adopted

11 Not Specified Not obese Duchatelet et al.
(2015)

NCSTN 4 NM_015331.3:c.349C > T p.Arg117Ter Pathogenic Yes Not Specified Not Specified Not specified Wang et al. (2010)
NCSTN 5 NM_015331.3:c.450_459del p.Ser151GlnfsTer48 Pathogenic Yes 11 Axilla, back, gluteal Not specified Wu et al. (2020)
NCSTN 5 NM_015331.3:c.477C > A p.Cys159Ter Pathogenic Yes 17 Neck, Axillae, Gluteal,

Popliteal fossae
Not obese Xiao et al. (2016)

NCSTN 5 NM_015331.3:c.487delC p.Gln163SerfsTer39 Likely Pathogenic Yes Not Specified Axillary, inguinal and
perineal fold

Not obese Miskinyte et al. (2012)

NCSTN 5 NM_015331.3:c.497C > A p.Ser166Ter Likely pathogenic Yes 14 Axillae, buttocks,
groin and neck

Not Specified Ma et al. (2014)

NCSTN 5 NM_015331.3:c.553G > A p.Asp185Asn Uncertain
Significance

Sporadic 13 Axillae, chest, groin,
buttocks

Smoker, Obese Pink et al. (2012)

NCSTN Exon5/
intron5
Donor

splice site

NM_015331.3:c.582+1delG Not applicable Pathogenic Yes Not Specified Neck and perineal
region

Not Specified Nomura et al. (2013)

NCSTN 6 NM_015331.3:c.617C > A p.Ser206Ter Pathogenic Yes 17 Head, Face, Axilla,
Groin, Buttocks

Not obese Shi et al. (2018)

NCSTN 6 NM_015331.3:c.632C > G p.Pro211Arg Likely Pathogenic Sporadic 38 Axilla, trunk, buttock,
groin

Not obese Li et al. (2011)

NCSTN 6 NM_015331.3:c.647A > C p.Gln216Pro Uncertain
Significance
leaning
pathogenic

Yes 18 Neck, Axillae,
buttocks, and groin

Not specified Zhang et al. (2013)

NCSTN 6 NM_015331.3:c.671_682del p.Val224_Thr227del Likely pathogenic Yes 13 Axilla, Breast,
Antecubital fossae,
Neck

Not obese,
Smoker

Mintoff et al. (2021c)

NCSTN 6 NM_015331.3:c.686_687dup p.Cys230ProfsTer31 Pathogenic Yes Not Specified Not specified Not specified Ratnamala et al.
(2016)
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TABLE 1 | (Continued) A summary of described genetic variants, their protein effect, ACMG classification and phenotypic associations. *SAPHO ▲ PASH • PAPASH $PPHSF +HS-DDD.

Gene Exon/
Intron

Variant Protein ACMG
classification

Variant
Segregation

Age of
1st Lesion

in the
Proband

Involved
Skin

Obesity
and smoking

Status

Group

NCSTN 7 NM_015331.3:c.751_752del p.Leu251ValfsTer2 Pathogenic Yes 13 Axilla, groin, buttock,
back, lower
abdomen, jaw

Not Specified Zhang et al. (2021)

NCSTN 8 NM_015331.3:c.887A > G p.Glu296Gly Benign Yes Not Specified Not specified Not specified Xu et al. (2016)
NCSTN 8 NM_015331.3:c.944C > T p.Ala315Val Uncertain

significance
leaning
pathogenic

Yes 17 Buttock, Groin, Face,
Scalp, Axillae, Back

Not specified Zhang S et al. (2016)

NCSTN 8 NM_015331.3:c.996+1G > A p.Glu333_Gln367del Pathogenic Not Specified Not specified Not Specified Not Specified Pink et al. (2016)
NCSTN Intron 8 NM_015331.3:c.996+7G > A Not Applicable Benign Sporadic 35 Axillae, Groin,

Buttocks
Smoker, Obese Pink et al. (2012)

NCSTN Exon 9/
intron 9
donor

splice site

NM_015331.3:c.1101+1G > A Not applicable Pathogenic Yes 16 Axillae, suprapubic
area, groin, buttocks,
thighs and neck

Smoker, Obese Pink et al. (2011)

NCSTN Donor
Splice site
of exon 9

NM_015331.3:c.1101 + 10A > G Not Applicable Uncertain
significance

Sporadic 16 Axillae, Groin,
Buttocks, Genitalia

Smoker, Not
obese

Pink et al. (2012)

NCSTN 11 NM_015331.3:c.1229C > T p.Ala410Val Benign Sporadic 32 Severe Non-smoker,
Not obese

Liu et al. (2016)

NCSTN 11 NM_015331.3:c.1258C > T p.Gln420Ter Pathogenic Yes Not specified Neck, Hip Non-Obese Jiao et al. (2013)
NCSTN 11 NM_015331.3:c.1285C > T p.Arg429Ter Pathogenic Yes 15 Face, abdomen,

limbs, Gluteal
Non-smoker Nishimori et al. (2020)

NCSTN 11 NM_015331.3:c.1294C > T p.Arg432Ter Pathogenic Not Specified Not specified Gluteal, Groin and
Perineum

Not obese Lin et al. (2021)

NCSTN 11 NM_015331.3:c.1300C > T p.Arg434Ter Pathogenic Yes Puberty Axillary, inguinal and
perineal fold

Non-Obese Miskinyte et al. (2012)

NCSTN 11 NM_015331.3:
c.1325_1326insGTTGTTCTGTAGTGGC

p.Asp443LeufsTer6 Pathogenic Not Specified Not Specified Not Specified Not Specified Plenary Lectures,
(2019)

NCSTN Intron 11
Splice

donor site

NM_015331.3:c.1352+1G > A Not applicable Pathogenic Yes Not Specified Not Specified Not Specified Liu et al. (2011)

NCSTN Intron 13
Splice site

NM_015331.3:c.1551+1G > A p.Ala486_Thr517del Pathogenic Yes Not Specified Typical and Atypical
areas

Not specified Wang et al. (2010)

NCSTN 13 NM_015331.3:c.1534C > T p.Gln512Ter Pathogenic Not specified Not Specified Not Specified Not specified He et al. (2019)
NCSTN 14 NM_015331.3:c.1555dupA p.Thr519AsnfsTer9 Pathogenic Not specified 19 Neck, axillae, back,

upper chest, gluteal
and buttocks

Not specified Qian et al. (2021)

NCSTN 14 NM_015331.3:c.1635C > G ▲ p.Tyr545Ter Pathogenic Yes 10 Axillae, Chest Not specified Faraji Zonooz et al.
(2016)

NCSTN 15 NM_015331.3:c.1695T > G p.Tyr565Ter Likely pathogenic Yes 26 Neck, axillae, gluteal
and groins

Not obese Li et al. (2011)

NCSTN 15 NM_015331.3:c.1702C > T p.Gln568Ter Pathogenic Yes 15 Face, Neck, Buttocks Not specified Nomura et al. (2014)
NCSTN 15 NM_015331.3:c.1727G > T p.Gly576Val Uncertain

significance
Familial but
not studied

23 Not specified Not obese, Non
smoker

Duchatelet et al.
(2020)
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TABLE 1 | (Continued) A summary of described genetic variants, their protein effect, ACMG classification and phenotypic associations. *SAPHO ▲ PASH • PAPASH $PPHSF +HS-DDD.

Gene Exon/
Intron

Variant Protein ACMG
classification

Variant
Segregation

Age of
1st Lesion

in the
Proband

Involved
Skin

Obesity
and smoking

Status

Group

leaning
pathogenic

NCSTN 15 NM_015331.3:c.1747C > T p.Arg583Ter Pathogenic Yes 25 Inguinal, genital Non obese,
Non-smoker

Garcovich et al. (2020)

NCSTN 15 NM_015331.3:c.1752delG p.Glu584AspfsTer44 Pathogenic Yes Not specified Typical and atypical
areas

Not specified Wang et al. (2010)

NCSTN 15 NM_015331.3:c.1768A > G p.Ser590AlafsTer3 Likely benign Yes Not specified Axillary, inguinal and
perineal fold

Non-obese Miskinyte et al. (2012)

NCSTN 16 NM_015331.3:c.1800_1801delTG p.Tyr600Ter Likely pathogenic Yes Not Specified Not specified Not specified Ratnamala et al.
(2016)

NCSTN 16 NM_015331.3:c.1876C > T p.Arg626Ter Pathogenic Not Specified Not Specified Not Specified Not Specified Plenary Lectures,
(2019)

NCSTN 16 NM_015331.3:c.1912_1915delCAGT p.Ser638fs Pathogenic Yes Before 20 Axillary, Inguinal,
Back, nape and
auricular region

Ex-Smoker,
non-obese

Vossen et al. (2020b)

NCSTN 3′UTR NM_015331.3:c.2584_2585delCA Reduced expression Pathogenic* Sporadic Not specified Gluteal Not Specified Xiao et al. (2018)
PSEN1 7 NM_000021.4:c.725delC p.Pro242LeufsTer11 Pathogenic Yes Not specified Axilla, groin and

Gluteal
Not specified Wang et al. (2010)

PSEN1 9 NM_000021.4:c.953A > G p.Glu318Gly Likely benign Not specified Not specified Not specified Not specified Ingram et al. (2013)
PSEN1 11 NM_000021.4:c.1167_1168insGA p.Gly390GlufsTer20 Pathogenic Yes 17 3 Obese, smoker Duchatelet et al.

(2020)
PSENEN 2 NM_172341.4:c.13C > T p.Arg3Ter Pathogenic Yes 11 Not Specified Not Specified Qian et al. (2021)
PSENEN 2 NM_172341.4:c.35T > A+ p.Leu12Ter Pathogenic Yes Not specified Inguinal folds,

Genitals
Obese, smoker Ralser et al. (2017)

PSENEN 2 NM_172341.4:c.43_56del p.Cys15ProfsTer101 Pathogenic Yes 54 Axilla and buttocks Not obese
(according to
pictures)
smoking history
not specified

Kan et al. (2018)

PSENEN Splice Site NM_172341.4:c.62-1G > C + Not applicable Pathogenic Yes Not Specified Axillae, inguinal folds,
genitals

Obese, Smoker Ralser et al. (2017)

PSENEN Splice Site NM_172341.4:c.62-1G > T + Not applicable Pathogenic Not specified 16 Axillae, Face and
trunk

Not obese,
Smoking history
not specified

Peter et al. (2021)

PSENEN Splice Site NM_172341.4:c.66dup + p.Phe23ValfsTer98 Pathogenic Sporadic Not specified Not specified Not specified Duchatelet et al.
(2020)

PSENEN 3 NM_172341.4:c.66delG p.Phe23LeufsTer46 Pathogenic Yes 16 Nape, upper back
and buttocks

Not obese
according to
clinical photos,
Smoking history
not specified

Xiao et al. (2020)

PSENEN 3 NM_172341.4:c.66_67insG p.Phe23ValfsTer98 Pathogenic Yes 15 Inframammary fold,
axillae, groin

Not obese,
Non-smoker

Pink et al. (2011)

PSENEN 3 NM_172341.4:c.115C > T + p.Arg39Ter Pathogenic Yes Not Specified Not Specified Obese, Smoker Ralser et al. (2017)
PSENEN Intronic NM_172341.4:c.166+2T > C + Not applicable Pathogenic Yes 13 Not Specified Not obese,

Non-smoker
Duchatelet et al.
(2020)
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TABLE 1 | (Continued) A summary of described genetic variants, their protein effect, ACMG classification and phenotypic associations. *SAPHO ▲ PASH • PAPASH $PPHSF +HS-DDD.

Gene Exon/
Intron

Variant Protein ACMG
classification

Variant
Segregation

Age of
1st Lesion

in the
Proband

Involved
Skin

Obesity
and smoking

Status

Group

PSENEN Intronic NM_172341.4:c.167–2A > G + Not applicable Pathogenic Yes 15 Face, neck, trunk Not specified Zhou X et al. (2016)
PSENEN 4 NM_172341.4:c.168T > G + p.Tyr56Ter Pathogenic Sporadic Second

decade
“Flexural areas” Not Specified Pavlovsky et al. (2018)

PSENEN 4 NM_172341.4:c.194T > G + p.Leu65Arg Pathogenic Yes Not specified Axilla, Neck,
Perineum

Not Specified Li et al. (2017), Zhou C
et al. (2016)

PSENEN 4 NM_172341.4:c.228_229insCACC ▲ p.Ile77HisfsTer45 Pathogenic Yes 22 Nape, Axilla,
buttocks

Not specified Zhang et al. (2020)

PSENEN 4 NM_172341.4:c.229_230insCACC p.Ile77ThrfsTer45 Pathogenic Not specified Not Specified Not Specified Not specified Zhou et al. (2021)
PSENEN 4 NM_172341.4:c.271delT p.Tyr91ThrfsTer54 Pathogenic No Incomplete

penetrance
“Mean 15.15” Not Specified Not Specified Theut Riis et al. (2020)

PSENEN 4 NM_172341.4:c.279delC p.Phe94SerfsTer51 Pathogenic Yes Not specified “Typical and atypical” Not specified Wang et al. (2010)
PSENEN NM_172341.4:c.292del p.Leu98TrpfsTer47 Pathogenic No Incomplete

penetrance
“MEAN15.5” Not Specified Not Specified Theut Riis et al. (2020)

PSENEN 4 NM_172341.4:c.304T > A+ p.Ter102ArgxtTer50 Likely pathogenic Not specified 18 Hurley 3 Not-obese,
non-smoker

Duchatelet et al.
(2020)

PSENEN Splice Site NM_172341.4:g.1412T > C + Not applicable Pathogenic Yes Not Specified Axillae,
Inframammary
region, inguinal folds

Non-smoker,
obese

Ralser et al. (2017)

APH1B 5 NM_031301.4:c.509A > G p.His170Arg Uncertain
Significance

Incomplete
penetrance

Mean 15.5 Typical and atypical Not specified Theut Riis et al. (2020)

PSTPIP1 Promotor
region

ENST00000558012.6:c.-413_-
402dupCCTGCCTGCCTG •

Not applicable Benign Not specified 15 Hurley Stage III Not specified Vural et al. (2019)

PSTPIP1 11 ENST00000558012.6:c.748G > C • p.Glu250Gln Likely pathogenic Sporadic Not specified Does not look
obese on
pictures,
Smoking history
not specified

Kotzerke et al. (2021)

PSTPIP1 11 ENST00000558012.6:c.764C > T$ p.Thr255Met Benign Not Specified 67 Buttocks, Hips Not Specified Hieta et al. (2021)
PSTPIP1 10 ENST00000558012.6:c.831G > T • p.Glu277Asp Uncertain

Significance
leaning
pathogenic

Not specified 14 Axilla N/A Marzano et al. (2013)

PSTPIP1 14 ENST00000558012.6:c.1034A > G ▲ p.Tyr345Cys Uncertain
significance

Yes 18 Axillae, Groin Not Specified Saito et al. (2018)

PSTPIP1 15 ENST00000558012.6:c.1213C > T▲ p.Arg405Cys Conflicting
interpretation of
pathogenicity

Sporadic 27 Sacrococcygeal
region, Intergluteal
folds, perineal region

Non-smoker/
Not obese

Calderón-Castrat
et al. (2016)

POFUT1 4 NM_015352.2:c.430-1G > A * Consensus splice site
mutation

Pathogenic Not Specified 23 Groin and Axillae Not Specified González-Villanueva
et al. (2018)

MEFV 10 NM_000243.3:c.2177T > C p.Val726Ala Pathogenic Yes 18 Back, thighs, groin Non-smoker
Non-obese

Jfri et al. (2020)

NLRP3 4 ENST00000336119.8:c.2107C > A ▲ p.Gln703Lys Benign Not specified Not specified
(Age at
diagnosis
given)

Face, trunk, lower
extremities, axillary
and inguinal folds,
anogenital area

Not specified Marzano et al. (2014)

IL1RN 4 NM_000577.5:c.370G > A▲ p.Ala106Thr Benign Not specified Not specified Marzano et al. (2014)
(Continued on following page)
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classified as benign based on allele frequency cut-offs. However,
most missense variants reported in the literature demonstrated
destabilizing effects with changes in conformational flexibility.
These findings suggest that missense variants in HS-associated
loci may contribute to disease by modulating protein activity in a
variety of ways.

DISCUSSION

This review provides a comprehensive summary of individual
studies that investigate the genomic etiology of HS in its
various forms; published variants to date are collated and
appraised using the conservative ACMG-AMP criteria,
genotype-phenotype associations assessed, and the structural
impact of missense variants evaluated computationally. Our
findings expound the locus and allelic heterogeneity underlying
this inflammatory disorder and demonstrate a lack of robust
correlation with clinical phenotypes. Herein we outline the
physiological relevance of the HS-associated loci.

Despite the high heritability estimates of HS (77–80%) only a
minority of HS patients demonstrate a strongmonogenic etiology in
the context of familial or syndromicHS (5%) (KjaersgaardAndersen
et al., 2021). Nevertheless, common forms of the disease
demonstrate familial segregation. A family history of HS was
documented in 41% in a cohort of 271 pediatric HS patients
(Liy-Wong et al., 2021). The high heritability estimates reported
by van Straalen et al suggest that sporadic forms of HS have a strong
genetic element that contributes to their causality, despite the
absence of fully penetrant variants causing multigenerational
disease (Straalen et al., 2020). To date, the exact nature of the
genetic variants driving common forms of HS remains unelucidated.

Based on Existing Knowledge on the
Genomics of Hidradenitis Suppurativa, the
Disease can Be Categorized as
1. Sporadic HS: HS with no identified genetic variation to date
2. Familial HS: HS with a strong family history and established

underlying monogenic etiology
3. Syndromic HS: HS in the setting of constellation of other

clinical manifestation (PASH, PAPASH, SAPHO)
4. HS+: HS in the setting of Dowling-Degos Disease (HS-DDD)

or Familial Mediterranean Fever (HS-FMF).

Familial Hidradenitis Suppurativa: Variation
in γ-Secretase Complex Protein-Coding
Genes; Knocked down a Notch
Genetic variants in the GSC account for the majority of identified
variants in fHS and sHS cases, but for only a minority of cases of
sporadic HS. Cohort studies showed a low prevalence of GSC
variants in sporadic forms of HS. The largest multicenter study in
cases of predominantly Caucasian ethnicity identified pathogenic
GSC variation in only 12 out of 188 (6.4%) patients with HS, of
which 51% had fHS (Duchatelet et al., 2020). Smaller scale cohort
studies in the United Kingdom revealed no GSC pathogenicT
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variants in HS patients irrespective of family history of the disease
(Ingram et al., 2013).

The human GSC is a multimeric, intramembrane-cleaving
proteases composed of four subunit domains namely: Nicastrin
(NCSTN), Presenilin Enhancer 2 (PEN2), Presenilin 1 (PSEN1)
or PSEN2 and Anterior Pharynx Defective (APH) 1A or B. This
gives rise to at least six different GSCs, which assemble fully in the
endoplasmic reticulum and are transported to the cell membrane
(Capell et al., 2005). The GSCs are dynamic and can exist in three
conformational states; extended, intermediate and compact (Elad
et al., 2015). Cryo-electron-microscopy single-particle analysis
has elucidated the three-dimensional structure of human GCS,
which was shown to have a horseshoe-shaped transmembrane
domain (spanning 19 transmembrane segments) and a large
extracellular domain (Lu et al., 2014).

The most widely reported variants in fHS lie in the nicastrin-
coding gene NCSTN (OMIM #142690). Nicastrin is the largest
subunit of the GSC (accounting for two-thirds of the molecular
mass of the entire complex), and is postulated to be the substrate-
recruiting protein of the GSC [specifically at the DYIGS and
peptidase-like (DAP) region in the ectodomain (ECD)] (Shah
et al., 2005). Nicastrin is essential for the assembly (particularly of
the transmembrane domain) (Shah et al., 2005), maturation and
stability of the GSC (Elad et al., 2015). The protein has a bilobed
ECD and a single transmembrane domain (TMD) at its
C-terminus (Xie et al., 2014). The interface between the two
lobes is maintained by extensive van der Waals contacts, amongst
which those formed between Phe287 (of the large loop) nestled
within a pocket of hydrophobic amino acids Phe103, Leu171,
Phe176 and Ile180 (of the small loop), is highly conserved (Xie
et al., 2014). A loop extending from the core of the small lobe of
the nicastrin ECD forms a lid which covers the putative substrate
binding site within the large lobe, amongst which the residue
Trp164 is vital (Xie et al., 2014). This amino acid, as well as Pro-
141, Trp-164, Asn-165 and Gly-168 have been shown to be highly

conserved in the NCST “lid” domain, but not essential for
regulating GSC activity, including Notch (Zhang X et al.,
2016). Fluorescence imaging microscopy of intact cells
detected conformational change of the nicastrin ECD, which is
brought closer to the membrane core upon binding an inhibitor
(Elad et al., 2015). Residues Tyr337 and Glu333 (Shah et al., 2005)
are both located within the substrate biding pocket ECD (Xie
et al., 2014). The importance of Glu333 in proteolysis has been
confirmed by mutagenesis studies, demonstrating abolished GSC
cleavage, activity and maturation after substituting the residue
(Shah et al., 2005; Dries et al., 2009), thus dispelling assertions
that Glu333 is only involved in GSC maturation (Chávez-
Gutiérrez et al., 2008). Nicastrin also forms complexes with
PSEN1 and PSEN2, establishing a “secretasome” which allows
for intramembranous proteolysis of the transmembrane proteins,
including Notch (Yu et al., 2000).

The Notch signaling pathway is a highly conserved pathway
involved in cell-cell communication. It regulates cellular
differentiation and proliferation in continually renewing adult
tissues such as skin. In these tissues, the notch receptor is
activated by various ligands and cleaved by the GSC, releasing
its intracellular domain which translocates to the nucleus to
regulate gene expression (Mumm and Kopan, 2000). Because
of the important roles played by Notch in epidermal and follicular
homeostasis as well as inflammation, Notch dysregulation has
been touted to underpin the molecular basis of HS in patients
with pathogenic variants in GSC-protein coding genes (Okuyama
et al., 2008; Melnik and Plewig, 2013). Interaction of the Notch
receptor with its ligand (delta or jagged) results in two subsequent
proteolytic cleavages of the receptor, the first of which is catalyzed
by ADAM-family metalloproteinases and the second by the GSC.
The product of the second cleavage, Notch intracellular domain
(NICD), subsequently translocates to the nucleus where it acts as
a transcriptional regulator for various genes (Borggrefe and
Oswald, 2009) after complexing with CBF1-Suppressor of

TABLE 2 | A comparison of the salient clinical and genetic findings between HS cases bearing variants in γ-secretase complex genes and HS cases with variants at other loci.
All non-GSC genes (PSTPIP, MEFV, NOD2, IL1RN and NLRP3) that have been associated with HS subtypes are considered as an aggregate category.

GSC Genes (n = 73) Non-GSC Genes (n = 15)

Age of first lesion (years) Median (IQR) 17 (9) 19 (9)

Protein effect Missense 17.8% 86.7%
Nonsense 28.8% 0.0%
Frameshift indels 34.2% 0.0%
Splice site 17.8% 6.7%
UTR/non-coding 1.4% 6.7%

ACMG/AMP classification Pathogenic 74.0% 26.7%
VUS 20.5% 20.0%
Benign 5.5% 53.3%

Segregation Segregation 79.7% 60.0%
Sporadic 15.3% 40.0%
Incomplete Penetrance 5.1% 0.0%

% Obese 32.3% 0.0%
% Smokers 50.0% 0.0%

Abbreviations GSC - γ-secretase complex. IQR, interquartile range; VUS, variants of uncertain significance; UTR, untranslated region.
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Hairless-LAG1 (CSL) and the co-activator mastermind (Wilson
and Kovall, 2006).

In human models, downregulation of Notch signaling
pathway has been shown to perturb keratinocyte
differentiation and result in uncontrolled proliferation,
disorganization of the suprabasal layers of the epidermis as
well as dermal invasion (Thélu et al., 2002). These findings
were also replicated in murine models wherein alteration in
notch signaling resulted in altered sebaceous gland
differentiation and terminal differentiation of the epidermis
(Pan et al., 2004; Blanpain et al., 2006; Wang et al., 2008).
Loss of ADAMS10 (responsible for notch receptor cleavage)
(Groot and Vooijs, 2012) in murine models has been shown
to result in impaired epidermal differentiation resulting in
various pathologies including epidermal hyperproliferation and
cyst formation as a result of altered notch signaling (Weber et al.,
2011). Studies have also demonstrated that ADAMS10 is
downregulated in HS (Frew and Navrazhina, 2020).
Dysregulation of ADAM10-Notch signaling axis has been
shown to impair the epithelial barrier and favor cutaneous
dysbiosis (favoring Corynebacterium spp) (Sakamoto et al.,
2021). Potentially, the altered microbiome promotes chronic
inflammation by triggering the innate lymphoid cell
population in an IL-17R dependent manner (Sakamoto et al.,
2021). These findings may partly underpin the dysregulated
cutaneous microbiome that accompanies HS (Mintoff et al.,
2021a). Murine models have also demonstrated that disruption
of notch nuclear target RBP-J results in cyst formation and
epidermal hyperkeratinization (Yamamoto et al., 2003). A
study scrutinizing publicly available genomic data revealed
significant downregulation of Notch 1–4, and suggests
ADAM17 as a key mediator in the pathogenesis of HS (Frew
and Navrazhina, 2020).

Evidence for the role of Notch in HS can also be drawn from
HS + disease such as HS-DDD. DDD is an autosomal dominant
genodermatosis characterized by flexural and reticulated
pigmentation. The condition is attributed to heterozygous
variants in KRT5 (DDD1, OMIM #179850) at 12q13 and
POFUT1 (DDD2, OMIM #615327) at 20q11. (Crovato et al.,
1983; Stephan et al., 2021). Dubbed as “clinical collision” diseases,
HS-DDD provides avenues for understanding pathophysiology
and phenotypes (McGrath, 2018). Both POGLUT1 and POFUT1,
causative genes in DDD, are established regulators of Notch
pathway activity through their respective protein products
namely protein-O glucosyltransferase 1 and protein
O-fucosyltransferase 1 (Li et al., 2013; Basmanav et al., 2014).
Congruently, patients with HS-DDD having underling
POGLUT1 pathogenic variants demonstrate abnormal
expression of genes encoding the critical element of the Notch
pathway (Pavlovsky et al., 2018). Further molecular evidence is
derived from two patients with HS-DDD, where reduced
expression of NOTCH1 and NCSTN mRNA was demonstrated
in lesional skin when compared to non-lesional skin, (Penha
et al., 2020). HS-DDD with underlying POFUT1 pathogenic
variants has been suggested to share similar Notch
disturbance; however robust serological and in-vitro studies
are lacking (González-Villanueva et al., 2018). Indirect

evidence supporting the role of Notch downregulation in HS
is provided by a case report in which a patient treated with a notch
signaling inhibitor AL101 (BMS-906024) developed HS (Wiggins
and Chon, 2020).

Conflicting findings have also been reported. Nicastrin, Notch
1–3, PIK3R3 and AKT3 levels were found to be significantly
higher in lesional skin of 60 HS patients when compared to
healthy controls. In lesional skin, these proteins were significantly
higher in patients with mild (Hurley stage 1) disease compared to
those with moderate and severe disease (Hurley stage II and III),
despite excluding smoking and obesity as confounding factors
(Hessam et al., 2021). Nicastrin overexpression (particularly
dermal) has been associated with hypertrophic scarring as well
as with inhibition of Notch signaling resulting in the suppressed
production of fibrotic factors such as collagen 1 and 3 and TGF-
β1 (Chen et al., 2021). Functional studies have shown that various
HS-inducing nicastrin missense variants are active and sustain
Notch signaling, and therefore do not fully support the concept of
notch as being the singular pathophysiological processes involved
in NCSTN-associated HS (Zhang and Sisodia, 2015). Indirect
evidence for upregulation of notch can be drawn from other
inflammatory pathologies. In patients with psoriasis, the
proinflammatory cytokine serum amyloid A (SAA), known to
be highly elevated in sera of HS patients (Witte-Händel et al.,
2019), has been shown to upregulate Notch1 activity (Rooney
et al., 2014).

PSEN has also been implicated in Notch signaling. The
homologs PSEN1/PSEN2 are the catalytic subunit of the GSC.
PSEN1/GSC is widely distributed in the cell (including its plasma
membrane) whilst PSEN2/GSC is mostly restricted to late
endosomes and lysosomes (Sannerud et al., 2016). Auto-
compensatory mechanisms maintain PSEN levels in
equilibrium (Stanga et al., 2018). In animal models, only
zebrafish affected by the familial acne inversa-like indel
mutation psen1. ptrp233fs (equivalent to human PSEN1 codon
P242) had shown a significant alteration in Notch signaling (as
opposed to early onset familial Alzheimer disease mutants).
Upregulation of genes involved in inflammation was also
observed in these mutants (Barthelson et al., 2021). The
apparent upregulation of Notch signaling may possibly be
accounted for by transcriptional adaptation, the process by
which fragments of mutated mRNA translocate to the nucleus
leading to transcriptional modulation of “adapting genes” (Sztal
and Stainier, 2020). HS patients with underlying PSEN variants
are designated OMIM # 613737.

Variants of Presenilin enhancer 2 (PSENEN), which codes for
presenilin enhancer 2 (PEN2) have also been described in both
sporadic HS as well as HS + DDD. The role of PEN2 in GSC
function and Notch signaling was found to be conserved across
species (Francis et al., 2002). PEN2 is the last unit to be
incorporated within the GSC, with a PEN2 “retention
mechanism” ensuring that only fully assembled GSCs are
released from the endoplasmic reticulum to the plasma
membrane (Capell et al., 2005; Christoph et al., 2007). The
incomplete penetrance of PSENEN pathogenic variants has
been described in three families by Riis et al (Theut Riis et al.,
2020). Potentially, this can be attributed to the fact that PEN2 is
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not part of the GSC proteolytic domain. Additionally, it is
possible that monoallelic pathogenic variants may not cause
disease in the absence of other risk factors. In silico studies
further support the concept that heterozygous pathogenic
variants in NCSTN and PSENEN are not sufficient to cause
disease (Nomura et al., 2014; Theut Riis et al., 2020).

APH-1 is the least well-characterized locus in the setting of
HS, with a single APH-1B variant (p.His170Arg) having been
associated with HS (Theut Riis et al., 2020). The authors postulate
that this variant is unlikely to be causative of HS, citing studies
which demonstrate much higher APH-1A expression in skin and
fibroblast models in which APH-1A exclusively is involved in
Notch signaling (Theut Riis et al., 2020). APH1 is a 7-
transmembrane helix protein expressed as two homologous
isoforms in humans, encoded by two genes (APH1a on
chromosome 1; APH1b on chromosome 15). Both APH-1A
and APH-1B adopt a water channel topology and transport
water across the plasma membrane (Aguayo-Ortiz and
Dominguez, 2019). The conserved His170 residue together
with His196 play a major role in water transportation across
the lipid bilayer (Aguayo-Ortiz and Dominguez, 2019; Dehury
and Kepp, 2021).

The significance of GSC variants and the disruption in Notch
signaling pathways and its targets in HS, is still evolving. Further
functional and multiomic studies are required to determine the
definitive role of the Notch signaling pathway in skin disease,
including HS (Brandão et al., 2021). A working model of HS
pathophysiology suggests that underlying genetic variants lead to
lower protein expression which becomes functionally relevant
under cellular stress mediated by friction (obesity), temperature
and dysbiosis (Pink et al., 2016).

Syndromic Hidradenitis Suppurativa
In a subset of patients, HS develops as part of a constellation of
other inflammatory, conditions (sHS). The classical HS
syndromes in which genetic variation has been described
include PASH (pyoderma gangrenosum, acne and suppurative
hidradenitis), PAPASH (pyogenic arthritis + PASH) and SAPHO
(synovitis, acne, pustulosis, hyperostosis and osteitis) syndromes
(Garcovich et al., 2021a). A PSTPIP1 pathogenic variant was
recently identified in a patient with proctitis, pyoderma
gangrenosum, HS and fever (dubbed “PPHSF” syndrome)
(Hieta et al., 2021). Supplementary Table S2 summarizes the
genetic variants associated with sHS.

Braun-Falco et al., had documented the first two families with
PASH. No pathogenic variants in PSTPIP1 were detected;
however afflicted patients had hemi-allelic increase of the
CCTG microsatellite motif (Braun-Falco et al., 2012). Other
cases of PASH without PSTPIP1 pathogenic variants have also
been reported (Gracia-Cazaña et al., 2015; Niv et al., 2017;
Lamiaux et al., 2018). Similarly, no pathogenic variants were
described in other forms of sHS namely, PsAPASH (Psoriatic
arthritis and PASH) syndrome (Saraceno et al., 2015), PsAPSASH
(Psoriasis, arthritis, pyoderma gangrenosum, synovitis, acne,
suppurative hidradenitis) (Nikolakis et al., 2021) and PASS
(pyoderma gangrenosum, acne, hidradenitis suppurativa and
ankylosing spondylitis) (Bruzzese, 2012; Leuenberger et al.,

2016) syndromes. Follicular occlusion syndromes such as the
follicular occlusion triad [HS, acne conglobata and dissecting
cellulitis of the scalp (Perifolliculitis capitis abscedens et
suffodiens)] (Chicarilli, 1987) and the follicular tetrad
(Vasanth and Chandrashekar, 2014) (follicular triad and
pilonidal sinus) are described but likewise, they also lack an
identified genetic driver.

PSTPIP1 is the locus most frequently implicated in sHS that
features in PASH, PAPASH and PPHSF syndromes.
Interestingly, PSTPIP1 variants have not been described in
isolated forms of HS. PSTPIP1 codes for Proline-serine-
threonine phosphatase-interacting protein 1. It has been
demonstrated that PSTPIP1 regulates the transition of
macrophage’s podosomes to filopodia-like protrusions and
modulates their invasive migration (Starnes et al., 2014).
Cellular studies have also demonstrated that pyrin modulates
the intracellular distribution of PSTPIP1, and co-localizes at the
leading edge of cells mitigating cell migration (Shoham et al.,
2003; Waite et al., 2009; Akkaya-Ulum et al., 2015). In fact,
PTSPIP1 mutant T-cells were shown to have altered f-actin
polymerization (Janssen et al., 2018).

MEFV variants have been shown to be more frequent in
patients with HS than healthy controls (Vural et al., 2019). A
patient of Turkish origin suffering from comorbid PASH and
familial Mediterranean fever (FMF) has been described.
Targeted analysis in the MEFV gene identified the two
heterozygous pathogenic variants (p.M680I and p. V726A);
assessment of the rest of his genome was therefore lacking
(Vural et al., 2017). Interestingly, a patient with PAPASH
was heterozygous for a microsatellite elongation in the
PSTPIP1 promotor region, and homozygous for the
pathogenic MEFV p. Met694Val variant. However, he was
asymptomatic for FMF. The authors suggest that this could
possibly be the result of aberrant mutant Pyrin-PTSPIP1
interaction (Vural et al., 2019). The cause-effect relationship
underlying the coexistence of a systemic proinflammatory
susceptibility typical of FMF with inflammation of the PSU
remains to be established.

Cytokine IL-1β may be the common denominator linking
variants described in sHS or HS in combination with pyoderma
gangrenosum (Galimberti et al., 2016; Witte-Händel et al., 2019).
The protein products encoded by PSTPIP1 andMEFV interact in
a multimeric protein complex that regulates assembly and
activation of the inflammasome by promoting ASC
oligomerization and Caspase-1 activation (Yu et al., 2007).
The inflammasome regulates innate immunity and epithelial
barrier defenses. On the other hand, gain of function
mutations in NLRP3 result in increased IL-1 [a defining
feature of Cryopyrin-associated periodic syndrome (CAPS)]
(Kuemmerle-Deschner et al., 2017). Conflicting results have
been observed with regards to IL-1β levels in patients with
sHS. No statistically significant differences in serum Il-1β
levels were described between patients with PASH syndrome
and healthy controls (Marzano et al., 2014). Conversely, PASS has
been characterized as an IL-1-driven autoinflammatory disease
which responds to treatment with the Il-1 Receptor antagonist
anakinra (Leuenberger et al., 2016). Anakinra has been proven to
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be ineffective in the treatment of a young female with PASH
syndrome (Staub et al., 2015).

HS has also been documented to manifest in the setting of
specific chromosomal disorders, where it does not constitute a
classical diagnostic feature. It has been speculated that diminished
Notch receptor processing and signaling could account for HS is
the setting of Trisomy 21; however a definitive functional
correlation remains elusive (Gasparic et al., 2017). A case
report also describes the occurrence of unilaterally distributed
HS, possibly due to constitutional mosaicism in a patient with
trisomy 1q (Skroza et al., 2019).

Hidradenitis Suppurativa +
HS has been independently described in the setting of two other
heritable conditions namely, HS-DDD and Familial
Mediterranean Fever (HS-FMF).

A distinctive subtype of Dowling-Degos with HS (HS-DDD) is
defined by heterozygous variants in PSENEN (OMIM # 613736)
on 19q13. Patients having underlying PSENEN variants but
suffering from DDD exclusively have been described (Ralser
et al., 2017; Ren and Zeng, 2020). Interestingly, only obese
family members harboring the pathogenic PSENEN c.62-1G >
C splice variant manifested HS + DDD, whilst their lean, non-
smoking relative who also harbored the same mutation
manifested DDD exclusively (Ralser et al., 2017). Non-
smoking, lean patients from another family having PSENEN
84_85insT variant manifested DDD without HS (Ralser et al.,
2017). On the other hand, the c.216delC PSENEN variant was
described in non-smoking, lean patients from two separate
families manifesting DDD exclusively but also in an unrelated
patient with DDD-HS, whose smoking history and weight were
not documented (Ralser et al., 2017; Ren and Zeng, 2020; Theut
Riis et al., 2020). This suggests that in the context of HS, PSENEN
pathogenic variants exhibit incomplete penetrance and variable
expressivity, and possibly only manifest disease in the setting of
specific triggers such as obesity. A pathogenic NCSTN nonsense
variant p. Arg583Ter (c.1747C > T) has also been described in a
lean, non-smoking patient with HS-DDD. The variant segregated
with the DDD phenotype, but not HS, in the proband’s daughter
(Garcovich et al., 2020; Garcovich et al., 2021b). However, the
pathogenicity of this variant and its relevance to HS-DDD has
been disputed, mainly because the significance of co-existing
KRT5 variants was downplayed and deemed benign
(Hermasch et al., 2020).

HS can occur in combination with other inherited
autoinflammatory syndromes. Two patients with co-morbid
HS - mevalonate kinase deficiency (Benhadou et al., 2021), an
autosomal recessive inborn error of metabolism which leads to
chronic inflammation, have been described. Various studies have
also described the co-existance of an HS phenotype in patients
bearing pathogenic variation at the MEFV locus (Abbara et al.,
2017; Vural et al., 2017; Jfri et al., 2019; Vural et al., 2019). This
gene encodes pyrin, a protein which modulates the activity of the
GSC. These studies suggest that HS and FMF are
autoinflammatory disorders that may possibly share
converging pathophysiologic processes. Despite the systemic

proinflammatory state in these conditions, proof of causal
associations remains lacking.

Genotype-Phenotype Correlations
Patients with HS exhibit extensive phenotypic heterogeneity
making genotype-phenotype correlations difficult to establish
(Kent, 2009). The task is further complicated by poor
interrater reliability of HS phenotypes (van Straalen et al.,
2018), differences in severity scoring (Zouboulis et al., 2019)
as well as evidence of pleiotropism (Gratton et al., 2020).
Notwithstanding, some general patterns are emerging, and
encouraging results are emerging even from relatively low-
powered studies (Marzano et al., 2022). HS patients having
underlying NCSTN variants appear to have a follicular-type
HS, in which comedones, papules and folliculitis
predominate. Patients with this subtype of HS are likelier
to manifest lesions in the nape and back and have co-morbid
pilonidal sinus disease (PND) (Xu et al., 2016), a common co-
morbidity and a possible intergluteal localization of disease in
HS patients (Benhadou et al., 2019). Similarly, phenotyping of
a large cohort of HS patients showed that cases exhibiting a
follicular (LC2) type phenotype, typified by epidermal cysts,
PND and comedones were more likely to have a family history
of HS when compared to the patients with axillary-mammary
(LC1) and gluteal (LC3) phenotypes (Canoui-Poitrine et al.,
2013). An inverse correlation between LC1 HS phenotypes
and NCSTN variants has been described (Frew et al., 2019).
Patients with an endotype defined by GSC pathogenic variants
and higher levels of serum IL-10 are more likely to be non-
obese males with predominantly nodular lesions on the trunk
and posterior sites and have a history of PND (referred to as
“Cluster 1” HS patients). On the other hand, patients with
high serum IL-1, IL-17, IL-16 and CRP are more likely to be
obese and have later-onset disease, with tunnels and abscesses
predominating (Cluster 2) (González-Manso et al., 2020).
With regards to patients with sHS, both promoter and
PSTPIP1 variants were found to be significantly associated
with syndromic forms of disease (Frew et al., 2019).

In a broader sense, HS patients having an affected first-degree
relative develop more severe disease at a younger age than their
parents. The gender of the affected parents also influences the
resulting phenotype in the offspring, with patients having an
affected mother more frequently reporting axillary involvement,
and patients with affected fathers being significantly more likely
to involve the buttocks and the genitals. The mean number of
affected body sites was found to be significantly higher in patients
whose father has HS then those with a maternal history of the
condition (Plenary Lectures, 2019).

Patients who are obese and smokers and without any
underlying genetic variants are more likely to present with a
“wet” phenotype characterized by draining abscesses in
intertriginous regions. Conversely, lean non-smokers with a
known family history are more likely to develop a “dry”
phenotype characterized by follicular lesions in atypical
regions such as the nuchal area and antecubital fossae (Vossen
et al., 2020a; Mintoff et al., 2021b), or with syndromic HS.
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Hidradenitis Suppurativa
Genomics—Caveats and Challenges
The interpretation of genetic findings in HS presents several
limitations. When compared to other common complex traits,
there is a deficiency of large-scale genomic studies on
ethnically diverse cohorts. The relative contribution of
common vs. rare polymorphisms remains unascertained.
Applying high-throughput sequencing studies to kindreds
with early-onset familial or atypical HS phenotypes is a
valid approach. However, variant prioritization and
pathogenicity scoring can be complicated by pitfalls such as
the overreliance on in-silico predictors and the use of
inappropriate allele frequency cut-offs. Additionally, limited
conclusions about the role of monoallelic variants causing
recessive disorders can be drawn. It must be acknowledged
that the assessment of allele frequencies in aggregate datasets
unselected for disease, such as GnomAD, is a valuable
approach. However, the presence of rare variants causative
of late-onset disease in genomic databases can confound
variant classification (Lek et al., 2016). Attributing causality
to variants remains a considerable challenge, particularly for
missense substitutions that are not structurally deleterious.
Functional evaluation using in-vitro or in-vivo models are
required to support pathogenicity and robustly define gene-
disease associations for disputed loci. This is reinforced by
conflicting interpretations of pathogenicity attributed to some
variants in clinical databases. Furthermore, studies based on
exome capture and sequencing may fail to identify deep
intronic variants that modulate splicing or pathogenic
structural variation. In the broader context of HS genomic
architecture, it is essential to consider that studies sequencing
cases with multigenerational early-onset disease are likely to
skew towards the identification of high-penetrance variants.
These represent the ‘low-hanging fruit’ of genomic discovery,
at the expense of variants that lack adequate penetrance to
drive familial segregation of disease. Plausibly, such
intermediate penetrance variants predispose to later onset
or milder disease.

This review is intrinsically limited by study selection criteria,
and it is possible that some studies may not have been included
(language other than English, Italian and Spanish, articles missing
key data and conference proceedings). In addition, key
phenotypic data, such as obesity and smoking status, as well
as familial segregation of identified variants was not reported by
some investigators.

CONCLUSION

The extent to which HS pathogenesis and risk are driven by the
shared overlap between comorbid clinical risk factors, such as
obesity and smoking, and one’s genetic predisposition remains
unknown. The degree to which different variants contribute to
the two main pathophysiological processes at the PSU namely

hyperkeratosis and inflammation (Nomura, 2020) also remains
unelucidated. The weak genotype-phenotype associations
observed in HS are similar to other complex diseases.
Potentially, this can be attributed to diagnostic delays,
phenotypic heterogeneity and pleiotropic genetic effects acting
against background modifiers such as changes in the composition
of the skin microbiome.

Notwithstanding, the limited number of studies investigating
HS by whole exome sequencing, and to a lesser extent by whole
genome sequencing, show promising results and highlight the
need for patients at the extreme ends of the HS phenotypic
spectrum to be identified and prioritized for rare variant
screening. To this end, phenotypic evaluation and
categorization criteria need to be standardized to facilitate
their use and interpretation in clinical care settings (Daxhelet
et al., 2020; Frew et al., 2021).

The incompletely understood genomic risk factors of HS
warrants further study, possibly by alternative approaches such
as genome-wide association studies (GWAS). GWAS should
elucidate the contribution of common genomic variants to HS
and potentially identify new loci associated with this trait. Such
endeavors require large-scale multicenter, collaborative genomic
efforts (Daxhelet et al., 2021; Jabbour et al., 2021) which will allow
for endotyping (González-Manso et al., 2020), deep phenotyping
and, ultimately precision medicine (Robinson, 2012; Delude,
2015) for HS patients. Genetic variables also have the
propensity to act as diagnostic and predictive HS biomarkers
(Der Sarkissian et al., 2022). The evidence outlined in this review
suggests that considering HS as a single disease may be
misleading. Conversely, considering a precision-medicine
approach tailored to every individual may be unrealistic in
health care systems burdened by limited access to genetic
testing and escalating health care costs. Important lessons can
be derived from studies of other complex traits. Several
investigators have shown that precision phenotyping of
polygenic disease based on disease mechanisms is superior to
traditional clinical classifications as it better identifies patients at
risk of complications and can guide therapeutic choices (Ahlqvist
et al., 2018). Whether or not dissecting the phenotypic
heterogeneity of HS improves clinical outcomes remains to be
assessed.
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