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The diphenylpyrazole compound anle138b blocks
Ab channels and rescues disease phenotypes in a
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Abstract

Alzheimer’s disease is a devastating neurodegenerative disease
eventually leading to dementia. An effective treatment does not
yet exist. Here we show that oral application of the compound
anle138b restores hippocampal synaptic and transcriptional
plasticity as well as spatial memory in a mouse model for Alzhei-
mer’s disease, when given orally before or after the onset of
pathology. At the mechanistic level, we provide evidence that
anle138b blocks the activity of conducting Ab pores without
changing the membrane embedded Ab-oligomer structure. In
conclusion, our data suggest that anle138b is a novel and promis-
ing compound to treat AD-related pathology that should be
investigated further.
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Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative

disorder causing a severe emotional and economic burden to our

societies. Due to increased life expectancies, the number of those

afflicted with AD is expected to double by 2025. Despite intensive

research, effective therapeutic approaches are still not available.

The pathogenesis of AD has been linked to protein aggregation,

namely the aggregation of amyloid-beta peptides (Ab) and tau

protein. The accumulation of pathogenic aggregates of Ab peptides
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in the brain appears to be a key event in the pathogenesis of AD

(Iversen et al, 1995; Tanzi, 2005; Jakob-Roetne & Jacobsen, 2009;

Goate & Hardy, 2012), and targeting amyloid pathology still repre-

sents a promising therapeutic strategy (Haass & Selkoe, 2007;

Sevigny et al, 2016). The precise molecular events that trigger

amyloid-induced decline of synaptic plasticity and neuronal cell

death are still not entirely resolved and are likely to be multifacto-

rial. One of the first explanations of neuronal dysfunction and toxic-

ity in AD is the channel hypothesis first proposed by Arispe and

coworkers (Arispe et al, 1993), which postulates that unregulated

Ab ion channels result in a loss of ionic homeostasis (primarily

through a gain of Ca2+) that eventually triggers neuronal dysfunc-

tion and cell death. In vivo evidence for this mechanism is, however,

still rare, and a compound that would block pores and be active in

mammalian animal models has not been reported yet. Thus, the

original request by Arispe and coworkers that a useful strategy for

drug discovery for treatment of AD should include screening

compounds for their ability to block or otherwise modify Ab chan-

nels is still left unsatisfied (Arispe et al, 1993).

In this work, we examine the efficacy of the diphenylpyrazole

(DPP) compound anle138b in an animal model of Ab deposition.

Oral application of anle138b ameliorates Ab-induced deficits in

synaptic plasticity and memory formation. Using in vivo and in vitro

approaches, we provide evidence that this effect is linked to the

capacity of anle138b to reduce the conductivity of Ab pores in lipid

bilayer membranes. Although other mechanisms likely contribute to

this effect, our data suggest the functional modulation of the

membrane bound Ab-oligomers as a mechanism for neuroprotection

and support the idea that anle138b should be taken into clinical

trials to treat aggregopathies, including AD.

Results

Synaptic plasticity and memory function in a mouse model
for deposition of amyloid b peptides after oral treatment
with anle138b

To initially test the potential of anle138b as therapeutic strategies to

treat amyloid aggregation in Alzheimer’s disease, we analyzed its

effect in a Drosophila model for amyloid-induced neurotoxicity. We

observed that treatment with anle138b improved survival times

when compared to a vehicle-treated group (Appendix Fig S1). On

the basis of these data, we decided to test the efficacy of anle138b in

a mouse model for amyloid deposition. We like to state that none of

the currently employed animal models for AD fully recapitulate the

phenotypes seen in AD patients, and thus, care has to be taken

when interpreting such data. In our study, we employed APPPS1D9
mice (Jankowsky et al, 2001), a well-established model for AD-

linked amyloid deposition. Since in the patients therapeutic inter-

vention is normally initiated only after the onset of amyloid plaque

formation, we decided to test anle138b in two experimental cohorts.

In the “pre-plaque group,” treatment was initiated before the onset

of pathology when mice were 2 months of age, while in the “post-

plaque group” treatment was initiated after the onset of amyloid

deposition and memory disturbances in 6-month-old mice (Fig EV1;

Jankowsky et al, 2004; Lalonde et al, 2005; Reiserer et al, 2007). In

both cohorts, anle138b was continuously provided via food pellets.

Thus, in the pre-plaque group, mice were subjected to anle138b or

placebo treatment from 2 months of age, and electrophysiological,

behavioral, and biochemical analyses were initiated at 6 months of

age. A group of wild-type mice (WT) treated with anle138b served

as an additional control. We first measured synaptic plasticity by

analyzing hippocampal long-term potentiation (LTP). While robust

hippocampal LTP at the Schaffer collateral synapse was observed in

WT control mice treated with anle138b (Fig 1A), LTP was signifi-

cantly impaired in APPPS1D9 mice that received placebo (Fig 1B).

Notably, this LTP deficit was completely rescued in APPPS1D9 mice

treated with anle138b (Fig 1C). These data suggest that oral applica-

tion of anle138b protects against Ab-induced impairment of

hippocampal synaptic plasticity. To test whether the effect of

anle138b on hippocampal plasticity also improved hippocampus-

dependent memory function, another group of anle138b and

placebo-treated mice were subjected to the Morris water maze test,

a well-established paradigm to assay spatial memory in rodents

(Morris, 1984). Anle138b-treated WT mice displayed robust spatial

learning as indicated by decreasing escape latency throughout the

8 days of training (Fig 1D). In contrast, APPPS1D9 mice treated

with placebo showed a significantly impaired escape latency

(Fig 1D). This deficit was partially rescued in APPPS1D9 mice that

received anle138b. Spatial reference memory was analyzed in a

probe test performed after 8 days of training. While WT mice

showed a significant preference for the target quadrant, no such

effect was observed in placebo-treated APPPS1D9 mice (Fig 1E),

confirming memory impairment in APPPS1D9 mice. In contrast,

anle138b-treated APPPS1D9 mice displayed a significant prefer-

ence for the target quadrant indicating restored spatial memory

(Fig 1E). Swim speed was similar amongst the groups (Fig 1F).

We also examined if anle138b would affect basal explorative

behavior (Fig 1G) or basal anxiety (Fig 1H). No difference was

found amongst the groups suggesting that oral administration

of anle138b can protect APPPS1D9 mice from deteriorating

hippocampal synaptic plasticity and hippocampus-dependent

memory consolidation.

Encouraged by these findings, we investigated whether anle138b

could also reinstate synaptic plasticity and memory function when

significant amyloid deposition had already occurred employing the

post-plaque group (Fig EV1). To this end, 6-month-old APPPS1D9
mice were treated with either anle138b or placebo for 4 months.

Wild-type mice treated with anle138b served as an additional

control group. Analysis was performed when mice were 10 months

of age. In a first cohort, we measured hippocampal LTP. WT mice

treated with anle138b showed robust LTP (Fig 2A), while LTP was

significantly impaired in placebo-treated APPPS1D9 mice (Fig 2B).

Notably, a complete restoration of hippocampal LTP was seen in

APPPS1D9 mice treated with anle138b (Fig 2C). In conclusion, simi-

lar to the pre-plaque group treatment with anle138b had a marked

ameliorating effect on LTP even after the onset of plaque deposition.

To analyze whether reinstatement of hippocampal plasticity

would also correlate with improved memory function, we subjected

mice to the Morris water maze test. WT mice treated with anle138b

rapidly learned the task as indicated by reduced escape latency

throughout the 8 days of training (Fig 2D). Placebo-treated 10-

month-old APPPS1D9 mice display impaired spatial learning as

indicated by the escape latency that did not significantly decrease

during the training (Fig 2D). When compared to the placebo group,
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Figure 1. Anle138b rescues hippocampal LTP deficits spatial memory in the pre-plaque group.

A In wild-type mice of the pre-plaque group (treated from 2 to 6 months of age with anle138b), robust LTP that lasts for at least 3 h is elicited upon a strong
tetanization (STET) (3 trains of 100 pulses at 100 Hz given 10 min apart, arrows) at the Schaffer collateral CA3-CA1 synapse (t-test, P = 0.00005; n = 16 comparing
before vs. after STET).

B LTP is not maintained in APPPS1D9 mice treated with placebo. Here, the potentiation declined to baseline after 3 h (t-test, P = 0.08; n = 20 comparing before vs.
after STET).

C APPPS1D9 treated with anle138b show a rescue of the LTP impairment (t-test, P = 0.0001; n = 23 comparing before vs. after STET).
D Escape latency in the Morris water maze test is impaired in placebo- but not in anle138b-treated APP mice (one-way ANOVA F = 16.01, **P = 0.0008; n = 15/group).
E Probe test performed 24 h after the last training session. The lower panel shows representative swimming path during the probe test. T = target quadrant compared

vs. other quadrants (t-test, ***P = 0.00002; n = 15/group).
F Average swim speed during water maze training (n = 15/group).
G Explorative behavior in the open field test. Upper panel: Representative motion tracks during the test session. Lower panels show the total distance travelled during

the 5-min test session (n = 15/group).
H Bar graph showing the time spent in the center vs. the corner of the open field (n = 15/group).

Data information: Error bars indicate SEM.
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APPPS1D9 mice treated with anle138b showed improved spatial

learning (Fig 2D). A probe test was performed after 8 days of train-

ing. WT mice treated with anle138b showed a significant preference

for the target quadrant indicative of intact spatial reference memory

(Fig 2E). Placebo-treated APPPS1D9 mice exhibited severely

impaired memory function (Fig 2E) and displayed no target prefer-

ence (Fig 2E). In APPPS1D9 mice treated with anle138b (Fig 2E),

target preference was improved significantly but did not reach WT

levels. Of note, swim speed was not different between the experi-

mental groups (Fig 2F). Explorative behavior (Fig 2G) and basal

anxiety (Fig 2H) were measured in the open field test. There was no

significant difference amongst groups. We also tested whether

anle138b treatment would affect memory function in wild-type mice

but did not observe any significant difference (Appendix Fig S2).

Thus, oral administration of anle138b partially restores hippocam-

pal plasticity and memory function in APPPS1D9 mice even at an

advanced stage of pathology.

Anle138b reinstate transcriptional homeostasis and ameliorates
amyloid pathology

Pathological alterations often lead to aberrant changes in transcrip-

tional plasticity indicating deregulated cellular homeostasis (Fischer,

2014a). In support of this, numerous studies demonstrated that AD

pathogenesis correlates with altered gene expression in various

brain regions (Fischer, 2014b; Benito et al, 2015; Matarin et al,

2015). Moreover, monitoring gene expression changes can inform

about the efficacy of therapeutic intervention (Benito et al, 2015). In

keeping with this idea, we performed RNA sequencing from

hippocampal tissue dissected from mice in the pre- and post-plaque

(Fig EV1) cohorts. Notably, there were no differences in hippocam-

pal gene expression when comparing WT placebo- vs. WT

anle138b-treated mice, suggesting that anle138b has no direct effect

on transcriptome plasticity. Thus, we first compared gene expres-

sion in placebo-treated WT and placebo-treated APPPS1DE9 mice of

the pre-plaque group. We identified 202 differentially expressed

genes of which 73 were up- and 129 were down-regulated (Fig 3A;

Dataset EV1). Pathway analysis shows that down-regulated genes

are linked to reduced energy metabolism, mitochondria function,

cytoskeleton integrity, and synaptic plasticity, while pathways

linked to cell growth were increased (Fig 3B). These data are in line

with previous reports of gene expression changes in AD (Benito

et al, 2015; Matarin et al, 2015) and were confirmed via qPCR

(Appendix Fig S3A).

Because anle138b restored LTP and spatial memory functions in

pre-plaque mice (see Fig 1), we hypothesized that the transcriptome

of APPPS1DE9 mice treated with anle138b may more closely resem-

ble that of wild-type mice. Indeed, a wild-type-like gene expression

profile is to a large extent reinstated in anle138b-treated APPPS1DE9
and only 27 genes were deregulated when comparing wild-type

mice treated with anle138b vs. APPPS1DE9 mice treated with

anle138b groups (Fig 3A). Thus, none of the pathways deregulated

in response to amyloid pathology (Fig 3B) remained significant after

anle138b treatment. Accordingly, no enrichment for any specific

pathway could be detected. The possibility remained that anle138b

treatment may simply reduce the expression levels of the APP and

PS1 transgenes specifically in APPPS1DE9. However, the RNA-seq

data showed that APP and PS1 are increased in placebo-treated

APPPS1DE9 mice when compared to placebo-treated wild-type mice

(see Dataset EV1). Similarly, APP and PS1 transgenes were elevated

in anle138b-treated APPPS1DE9 mice compared to anle138b-treated

wild-type mice (see Dataset EV1). These data were confirmed via

qPCR showing that the expression of APP and PS1 transgenes is

similar in placebo- and anle138b-treated APPPS1DE9 mice (Fig 3C);

the gene expression data are in line with the electrophysiological

and behavioral findings. It also shows that in the pre-plaque group,

anle138b treatment reinstates cellular homeostasis in the hippocam-

pus of APPPS1DE9 mice.

We next analyzed hippocampal gene expression in the post-

plaque group (Fig EV1). When comparing WT placebo and

APPPS1DE9 placebo mice, we found 130 differentially expressed

genes of which the majority (124) were up-regulated (Fig 3D), a

finding confirmed via qPCR (Appendix Fig S3A). The comparison of

anle138b-treated WT and anle138b-treated APPPS1DE9 mice revealed

220 differentially expressed genes, 207 up-regulated, and 13 down-

regulated (Fig 3D). Around half of these, 103 were also deregulated

in the comparison WT placebo vs. APPPS1DE9 placebo (Fig 3E), a

finding confirmed via qPCR (Appendix Fig S3B). Pathway analysis

revealed that gene expression changes almost exclusively represent

an induction of neuroinflammatory processes (Fig 3F) in response to

the APP and PS1 transgenes and this induction is not changed by

treatment with anle138b. These data suggest that anle138b treatment

does not have a major impact on inflammatory processes when given

at a stage of advanced amyloid pathology. Since anle138b treatment

nevertheless reinstated hippocampal synaptic plasticity and also

partially restored memory function, these findings indicate that the

therapeutic efficacy of anle138b is most likely not solely due to the

dampening of amyloid-induced inflammation.

A previous study reported that anle138b exhibits therapeutic

effect in TauP301S mice, a mouse model for Tau pathology

(Wagner et al, 2015). Taking into account that Tau and amyloid

pathology represent the two major causative factors for AD, we

wondered if anle138b would affect brain homeostasis as measured

by hippocampal gene expression also in TauP301S mice. To this

end, we obtained hippocampal brain tissue from the same experi-

ment using anle138b or vehicle-treated wild-type and TauP301S

mice as described by Wagner et al (2015). The experimental

design employed by Wagner et al is similar to our pre-plaque

group, since anle138b was feed to mice upon weaning. Similar to

our data, feeding anle138b to wild-type mice had a neglectable

effect on hippocampal gene expression when compared to vehicle

fed wild-type mice (Appendix Fig S4, Dataset EV1). The compar-

ison of vehicle-treated wild-type to vehicle-treated TauP301S mice

revealed 257 differentially expressed genes that mainly represent

increased pathways linked to neuroinflammation (Appendix Fig

S4). Of note, this gene expression signature was significantly

ameliorated in anle138b-treated TauP301S mice and only 16 genes

were differentially expressed when comparing vehicle- vs.

anle138b-treated TauP301S mice (Appendix Fig S4). These data

allow for a number of interesting conclusions. First, at the

hippocampal gene expression level, the overexpression of the

human Tau gene carrying the P301S mutation leads to inflamma-

tory response but in contrast to the data observed in APPPS1DE9
mice has very limited impact on the expression of genes linked to

synaptic plasticity and learning and memory. Second, treatment

with anle138b in TauP301S mice ameliorates the gene expression

EMBO Molecular Medicine ª 2017 The Authors

EMBO Molecular Medicine Ab-pore blocker anle138b rescues APPPS1D9 mice Ana Martinez Hernandez et al

4

Published online: December 5, 2017 



A

D

F

G

H

E

B C

Figure 2. Anle138b rescues hippocampal LTP deficits and spatial memory in the post-plaque group.

A Wild-type mice of the post-plaque group (treated from 6 to 10 months of age) display robust LTP upon STET (arrows) that was maintained throughout the recording
session (t-test, P = 0.00006; n = 30 comparing before vs. after STET).

B Lasting LTP induced by STET was not observed in 10-month-old APPPS1D9 placebo-treated mice. The potentiation decayed to baseline after 3 h (t-test, P = 0.16;
n = 19 comparing before vs. after STET).

C Treatment with anle138b starting at 6 months of age rescues LTP deficit in 10-month-old APPPS1D9 mice (t-test, P = 0.0003; n = 20 comparing before vs. after
STET).

D Escape latency in the Morris water maze test is impaired in placebo-treated APP mice and partially restored to WT levels in anle138b-treated APP mice (one-way
ANOVA, F = 35.94, P = 0.00006; *P = 0.0309 for APP + anle138b vs. APP + placebo and P = 0.4 for APP + placebo vs. WT + anle138b; n = 7/group).

E Probe test performed 24 h after the last training session. The lower panel shows representative swimming path during the probe test. T = target quadrant compared
vs. other quadrants (t-test, **P = 0.0007, *P = 0.0031; n = 7/group).

F Average swim speed during water maze training (n = 7/group).
G Explorative behavior in the open field test. Upper panel: Representative motion tracks during the test session. Lower panels show the total distance travelled during

the 5-min test session (n = 7/group).
H Bar graph showing the time spent in the center vs. the corner of the open field (n = 7/group).

Data information: Error bars indicate SEM. In panels (A–C), triplets of arrows represent STET applied for inducing L-LTP. Insets in each graph represent typical fEPSP
traces recorded 15 min before (dotted line), 30 min after (broken line), and 3 h after (full line) STET.
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Figure 3. Hippocampal transcriptome analysis in anle138b-treated mice.

A Upper panel: Heat map showing differentially expressed genes in placebo-treated WT (n = 4), placebo-treated APPPS1DE9 mice (n = 4), and anle138b-treated
APPPS1DE9 mice (n = 4) of the pre-plaque group. Note that a WT-like gene expression profile is to a large extent reinstated in APPPS1DE9 mice upon treatment with
anle138b. Lower panel: Bar graph showing the number of up and down-regulated genes.

B Pathways down-regulated (blue) or up-regulated (red) in 6-month-old APPPS1DE9 mice when compared to age-matched WT controls (pre-plaque group; see Fig EV1).
C Expression of APP and PS1 genes in WT and APPPS1DE9 transgenic mice, placebo- or anle138b-treated in pre- and post-plaque groups. Note that anle138b treatment

does not affect the expression level of APP or PS1. Post hoc analysis revealed a significantly increased expression of APP and PS1 in transgenic mice when compared
to wild-type mice (*P < 0.05). Error bars indicate SEM.

D Upper panel: Heat map showing differentially expressed genes in placebo-treated WT (n = 4), placebo-treated APPPS1DE9 mice (n = 5), and anle138b-treated
APPPS1DE9 mice (n = 5) of the post-plaque group. Lower panel: Bar graph showing the number of up- and down-regulated genes.

E Venn diagram showing that 10-month-old mice treated with placebo or anle138b show very similar changes in hippocampal gene expression (post-plaque group; see
Fig EV1).

F Pathway analysis based on the 103 genes commonly increased in placebo- and anle138b-treated APPPS1DE9 mice at 10 months of age. Note that the pathways are
exclusively linked to neuroinflammation.
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changes, at least when treatment is initiated before the onset of

pathology, further confirming that treatment with anle138b helps

to reinstate hippocampal homeostasis.

Given that anle138b was shown to counter aggregation in models

for a-synuclein and prion toxicity (Wagner et al, 2013), it is likely

that at least part of the therapeutic effect observed in this study is

due to anle138b interfering with amyloid aggregation. To test this

hypothesis, we prepared brain slices for histochemical analysis. We

used thioflavin S, a common stain to quantify Ab plaques (Fig 4A).

We first assayed the amyloid plaques pathology in the hippocampus

and cortex in the pre-plaques group. Since no amyloid pathology

was detectable in WT mice, these mice served as negative control.

We observed a significant reduction in the number of plaques and

the total area covered by plaques in anle138b-treated mice (Fig 4A

and B). Similar results were obtained when we analyzed plaque

load in the post-plaques group (Fig 4B and C), although the pathol-

ogy was generally more severe in the post-plaque group. Thus, oral

administration of anle138b reduces amyloid pathology when given

before or after the onset of pathology.

Biophysical characterization of Ab in the presence of anle138b

To better understand the mechanisms that underlie the therapeutic

effect of anle138b, we analyzed its impact on Ab-induced pore

formation (Arispe et al, 1993). To this end, we employed black lipid

membranes (BLM) using a mixture of POPE and DOPS in a 1:1 ratio

or oxidized cholesterol/n-decane, an assay in which the current

passing through a membrane is a measure of membrane integrity

(Appendix Fig S5A). We first established that the conductance and

the morphology of POPE and DOPS lipids, as measured by atomic

force microscopy (AFM), lipid bilayers are not affected in the pres-

ence of anle138b or Ab peptides (Appendix Fig S6).

When we examined the effect of Ab1–42 in DOPS/POPE (1:1)

membranes, we observed a stepwise growth of bulk membrane

conductance. Such activity is indicative of the combined action of

many individual pores (Fig 5A). Pore “stacking” is likely the result

of prolonged open lifetimes and the formation and/or opening of

additional conducting pores. Anle138b-doped membranes demon-

strated fewer simultaneously active pores and significantly reduced

bulk conductance (Fig 5A and B, Appendix Fig S5) compared to

membranes lacking the anle138b compound (Fig 5A and B,

Appendix Fig S5). Our results indicate that treatment with anle138b

alters the pore dynamics, resulting in less stable and shorter lived

“open” pores. Decreased pore stability leads to a reduction in the

total number of simultaneously conducting pores and significantly

decreased conductance across the membrane. AFM data revealed

that anle138b treatment did not affect the surface structure of Ab1-42
pores (Fig EV2), suggesting that anle138b does not simply prevent

Ab1-42 from entering lipid bilayer membranes and forming pores.

Rather anle138b appears to render conducting Ab pores to non-

conducting ones—likely through structural change to the membrane

embedded region of Ab1–42—thereby providing one possible mecha-

nism by which anle138b ameliorates LTP and learning deficits in

APPPS1DE9 mice. Similar effects were observed when the conduc-

tance measurements were repeated in oxidized cholesterol

(Appendix Fig S5B).

To provide in vivo evidence for pore formation, we treated

primary hippocampal neurons with Ab1-40 monomers or oligomers

in the absence or presence of anle138b and assayed membrane

integrity. While the addition of Ab1-40 oligomers but not Ab1-40
monomers significantly damaged membrane integrity, this effect

was reversed by anle138b (Fig 5C). This restoration is not simply

due to an anle138b-mediated reduction in cell death, since the cell

viability of hippocampal neurons measured in the MTT assay was

identically affected by Ab1-40 monomer and oligomer treatment in

our experimental setting (Fig 5D). In this context, it is important

to state that different protocols for Ab treatment of neurons have

been used to study various effects of Ab on neuronal plasticity and

integrity. The concentration of Ab oligomers employed in our

study is within the range of these studies. Nevertheless, such data

always need to be interpreted with care since a cell culture system

cannot not fully recapitulate the situation observed in human

patients. Interestingly, anle138b treatment was also able to amelio-

rate the effect of toxic Ab species on membrane integrity if added

after neurons had been incubated with Ab oligomers and already

exhibited impaired viability, which is in line with our data show-

ing that anle138b completely ameliorated LTP and partially

restored memory defects in the post-plaque group (Appendix Fig

S7A and B). We also employed another experimental system to

test the effect of Ab1-42 oligomers and anle138b on biological

membranes. To this end, we employed the cytochrome release

assay (CRA) on isolated mitochondria that were exposed to either

a-synuclein, tau, or Ab1-42 oligomer in the presence or absence on

anle138b. Our data reveal a substantial damage to mitochondrial

membranes in all conditions that is attenuated by anle138b

(Appendix Fig S7C), suggesting that anle138b has general effect on

membrane integrity.

Discussion

In this work, we investigated the effect of anle138b in the estab-

lished APPPS1DE9 mouse model of AD. The APPPS1DE9 mouse

model is characterized by dysfunction of neurons and detected by

memory decline after 4 months and severe plaques formation after

6 months (Kummer et al, 2014). The most important findings of the

present study were that anle138b treatment completely restored

hippocampal LTP in the pre- and post-plaque groups of APPPS1DE9
mice. In line with this observation, spatial reference memory was

fully or partially restored in the pre- and post-plaque groups, respec-

tively. There have been numerous pre-clinical studies aiming to

restore synaptic plasticity and memory function in mouse models

for amyloid pathology. These range from therapeutic approaches

that aim to modulate causative factors including Ab-toxicity via anti-

body-based therapies (Selkoe & Hardy, 2016), small molecules that

modulated APP processing (Vassar et al, 2014), small molecules

that are thought to target toxic amyloid species directly (Doig &

Derreumaux, 2015) to symptomatic treatments not directly targeted

toward amyloids (Fischer, 2016). Anle138b belongs to the first cate-

gory. Its therapeutic effect resembles that of other small molecule

drugs. For example, epigallocatechin gallate (EGCG) was shown to

affect Ab toxicity by redirecting toxic Ab-structures into off-pathway

oligomers (Ehrnhoefer et al, 2008; Bieschke et al, 2010). This agent

was able to ameliorate spatial memory deficits in APP mice after the

onset of amyloid deposition (Liu et al, 2014). In this context, it is

interesting to note that when administered via dry food anle138b
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was previously found to be taken up to reach levels of 100 lM in

the brain (Wagner et al, 2015). Anle138b metabolites are very

hydrophilic, and they were detected in multiple organs but were

absent in brain (Wagner et al, 2013). This indicates that anle138b is

not metabolized in the brain. Anle138b was also found to be

non-toxic in mice up to a dose of 2 g/kg. Mice receiving similar

concentrations of anle138b as used in our study lived without any

detectable toxicity, even when the drug was given longer than a

year (Wagner et al, 2015). Also in our study, no negative or positive

effects of anle138b on WT mice were observed.

A

B

C

Figure 4. Amyloid plaque pathology is ameliorated by anle138b treatment in the pre-plaque (A) and post-plaque (B) groups.

A Reduced amyloid pathology as indicated by reduced number of plaques (left panel) and reduced area covered by plaques (right panel) in the pre-plaque group (t-test
***P = 0.00003; n = 5/group).

B Reduced amyloid pathology as indicated by reduced number of plaques (left panel) and reduced area covered by plaques in the post-plaque group (t-test
***P = 0.00007, **P = 0.005; n = 5/group).

C Representative images showing thioflavin S staining in the hippocampus and cortex of mice of the pre- and post-plaque groups. Scale bar = 200 lm.

Data information: Error bars indicate SEM.
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In addition to the restoration of hippocampal LTP and spatial

reference memory, we also observed restoration of physiological,

wild-type-like gene expression profile in the pre-plaque group, indi-

cating that hippocampal cells reinstate homeostasis. In APPPS1DE9
mice that received normal chow, genes linked to metabolic function

and neuronal plasticity were markedly down-regulated. Feeding with

anle138b-containing chow completely reversed this effect on gene

expression. Even in the placebo-treated pre-plaque group, we

observed little evidence for neuroinflammatory processes, which is

in contrast to the data from the post-plaque group. In fact, the gene

expression changes observed in the placebo-treated post-plaque

group were dominated by increased inflammation. These data

suggest that in APPPS1DE9 mice, the decline of synaptic plasticity

precedes inflammatory processes. Of note, anle138b treatment had

A

C D E

B

Figure 5. Anle138b ameliorates Ab1-40 and Ab1-42-induced membrane integrity.

A Ab1-42 induces pore-like step ionic current increases across lipid bilayer membranes and grows with inverted sign after voltage inversion to amplifier saturation
current. In the presence of anle138b, the current remains at low amplitude and does not increase beyond 30 pA.

B Expanded trace of anle138b-treated membrane presented in (A). Discreet conductance levels are highlighted suggesting multiple opening and closing events for three
individual pores.

C Hippocampal neurons (DIV 10) were treated with anle138b (1 lM) or vehicle before Ab1-40 oligomers or monomers were added (10 lM, n = 4/group). After 48 h,
membrane integrity was measured as fluorescence intensity using a CyQUANT assay (Thermo Fisher). In the vehicle group, membrane integrity was significantly
impaired when treated with Ab oligomers comparing with control neurons or Ab monomer-treated neurons, anle138b-treated neurons did not exhibit a difference
between addition of Ab monomers or Ab oligomers (t-test, **P = 0.007).

D Same experimental setting as in (C) but cell viability was measured using the MTT assay (t-test, *P = 0.002 vs. control). No difference in cell viability was observed for
Ab monomer or oligomer treatment in the absence or presence of anle138b.

E Schematic of potential mechanisms of activity inhibition for anle138b. In the absence of anle138b, Ab monomers and/or oligomers insert in the membrane and form
conducting pores. Treatment with anle138b renders these conductive channels inactive most probably due to reduced life time of the open state.

Data information: Error bars indicate SEM.
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no effect on pathological gene expression pattern in the post-plaque

group, yet hippocampal LTP was completely restored and spatial

memory was partially restored. These data suggest that therapeutic

strategies that aim to reduce amyloid toxicity—at least in the

APPPS1DE9 model—may have little influence on neuroinflammation

when applied at an advanced stage of the disease. Nevertheless, a

significant therapeutic effect could be observed in the post-plaque

group. This might be explained by removal of toxic Ab species which

can lead to the restoration of synaptic function in neurons even in a

detrimental inflammatory environment. These data are highly inter-

esting, since one argument for the failure of clinical trials targeting

amyloid deposition or modulation of Ab cleavage is that such

treatments are ineffective when given at an advanced stage of

the diseases. Our data suggest, however, that anle138b targets Ab-
related pathological events that allow recovery of synaptic function

even if secondary pathological events such as inflammation

persist.

The finding that anle138b treatment ameliorates synaptic plastic-

ity and learning deficits in APPPS1DE9 is of utmost importance.

These data are in line with previous observations showing that the

same compounds have beneficial effects in animal models for

Creutzfeld-Jakob, Parkinson’s disease, and Tau pathology. Specifi-

cally, the latter finding is intriguing, since Tau and Ab pathology are

believed to be the main causative factors of AD pathogenesis. While

Wagner et al (2015) showed that anle138b in Tau P301S mice

rescues synaptic and neuronal loss, we could further substantiate

these data by showing that anle138b treatment also ameliorates

defects in hippocampal transcriptome plasticity in the same Tau

P301S mice. Taken together, these data suggest the revealing possi-

bility that anle138b is able to ameliorate Tau and Ab pathology.

Therefore, to the best of our knowledge, anle138b would be the first

small molecule that has a direct effect on the two major hallmarks

of AD.

These data are also important from a translational point of view.

Taking into account that the various animal models for AD only

recapitulate part of the pathogenesis observed in human patients, it

is intriguing that anle138b was able to rescue disease progression in

various different AD models and models for aggregopathies, raising

the hope that anle138b could also be effective in human patients.

The mechanism by which toxic Ab species induce synaptic

dysfunction and neurotoxicity is still unresolved. Proposed mecha-

nisms include NMDA receptor endocytosis (Shankar et al, 2007), a-
amino-3-hydroxy-5-methyl-4-isoxazole propionic acid surface recep-

tor modulation (Querfurth & LaFerla, 2010), and Ab pore formation

(Arispe et al, 1993). Moreover, the presence of amyloid plaques was

shown to change structural plasticity of neurons (Spires & Hyman,

2004). Nevertheless, amyloid plaques are unlikely the sole reason

for disturbed synaptic function and memory consolidation in AD

and it has even been suggested that they present a compensatory

mechanism of the brain in order to deal with toxic Ab species

(Selkoe & Hardy, 2016). This is further supported by our findings

that anle138b treatment in the post-plaque group was able to restore

hippocampal LTP and spatial reference memory, although the

plaque load was even higher when compared to placebo-treated

APPPS1DE9 mice of the pre-plaque group suggesting that the reduc-

tion in amyloid plaque load cannot be the main mechanisms by

which anle138b exerts its therapeutic action. The pore formation

hypothesis has long been proposed but tested experimentally to a

very limited degree, which is also due to the fact that an array of

various in vitro and in vivo methods needs to be combined to

address this issue. We focused on the question whether anle138b

modulates the pore forming activity of Ab because synaptic function

relies on the integrity of membranes and their ability to modulate

ion fluxes in a voltage-dependent way. This pore-based mechanism

has been envisaged to underlie impaired neuronal function and cell

death (Arispe et al, 1993). Modulation of pore formation was also

implicated in cell-based models for EGCG mode of action (Diaz

et al, 2009) and of its congeners MRS2481 and MRS2485 (Diaz et al,

2009). The observed stepwise growth of bulk membrane conduc-

tance in the presence of Ab (without anle138b) indicates that activ-

ity increases through the combined action of many individual pores.

Numerous molecular dynamics (MD) simulations (Jang et al,

2008; Arce et al, 2011; Gillman et al, 2014) and NMR spectroscopy-

based investigations (Sarkar et al, 2014) of Ab pores have pointed

to a b-barrel structure for the intramembrane region of the pore. It

was previously shown that Ab containing a point substituted proline

(F19P) showed pore structure by AFM but did not demonstrate ionic

conductance (Capone et al, 2012; Connelly et al, 2012b). The chem-

ical structure of proline introduces a “kink” in the peptide’s

secondary structure, which is known to disrupt b-sheet formation.

MD simulations of F19P barrel structure showed that b-sheet desta-
bilization led the highly charged N-terminal regions to bind at the

peptide mouth and collapsed the pore (Umehara et al, 2010;

Connelly et al, 2012a). Our data are consistent with such a model

and suggest that anle138b induces a conformational change within

Ab pores that greatly reduces or, in most pores eliminates, ionic

flux. Steric blockage by anle138b without a conformational change

of the pore is energetically unfavorable due to the hydrophobicity of

anle138b, as this scenario would require anle138b to be in contact

with water molecules inside the pore. The above-mentioned mecha-

nisms provide further insight into the method of action in prevent-

ing pore activity and reducing Alzheimer’s pathogenicity (Fig 5E).

It has to be mentioned, however, that all of the above-described

experiments are based on in vitro approaches using lipid bilayers. In

vivo evidence further supporting the notion that anle138b counter-

acts the detrimental effect of toxic Ab species on membrane integrity

stems from our finding that Ab1-40 administration to cultured

hippocampal neurons compromised membrane integrity, an effect

which was attenuated by anle138b. Our interpretation that conver-

sion of conducting to non-conduction Ab pores is one possible mode

of anle138b action. It may also explain that anle138b ameliorated all

tested disease phenotypes in the pre-plaque group, while in the

post-plaque group only LTP was completely restored. Hence, in the

post-plaque group, the presence of toxic Ab species may already

have induced secondary processes such as inflammation that persis-

tently affects memory function even if membrane integrity and LTP

are restored in neurons. Yet, we like to reiterate that while our data

point to the existence of Ab pores in vivo, a definite proof is still

missing. Further evidence in support of the Ab pores stems from a

study in which Ab oligomers induce single-channel calcium fluores-

cence transients in Xenopus oocytes (Demuro et al, 2011). Never-

theless, we cannot exclude that anle138b affects other cellular

processes than Ab-mediated conducting pores in membranes. Thus,

it is also possible for example that in vivo Ab sequesters membrane

lipids, thereby affecting membrane integrity, which is then

prevented by the action of anle138b.
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In conclusion, our data show that anle138b can reinstate

synaptic plasticity and memory function in a mouse model for

amyloid pathology via mechanisms that—at least in part—appear

to involve the blockage of Ab-induced pores in membranes. Care-

ful analysis of this activity indicates that the oligomers are still in

the membrane, but pores have a changed conductivity profile,

mainly staying open for shorter time and lacking the possibility of

building up large currents as seen when anle138b was absent.

Taking into account that anle138b was also shown to ameliorate

disease phenotypes in a mouse model for Tau pathology, thus

being to the best of our knowledge one of the first compounds

that seems to causatively interfere with both of the two major

hallmarks of AD, we suggest that anle138b to further be validated

in clinical trials for its potential to treat AD and perhaps other

aggregopathies.

Materials and Methods

Mouse experiments

The APP(Swe)/PS1ED9 (henceforth called: APPPS1DE9) mouse

model of AD was used for this study. The age of the animals is indi-

cated for each experiment. In brief, mice of the pre-plaque group

were analyzed at 6 months of age, while mice of the post-plaque

group were 10 months of age. Upon completion of treatment, these

and control mice underwent cognitive assessment by a behavior

battery of tests. Electrophysiology, RNA sequencing, and histochem-

ical analysis of plaque burden were also assessed. All mice were

male and were maintained on a C57BL/6 background. They were

kept in a 12-h dark/light cycle and housed in groups under constant

standard conditions of temperature and humidity. Mice had ad libi-

tum access to food and water. Animal care and handling were

carried out in compliance with the Declaration of Helsinki and

approved by local ethical committees.

Anle138b treatment

In order to investigate the prophylactic effect of anle138b, we

treated healthy, plaque-free, adult, APPPS1D9 mice with placebo-

or anle138b-containing dry food pellets for 4 months from 2 to

6 months of age (pre-plaque group; Fig EV1). Age- and sex-

matched wild-type littermates were also treated and served as

controls. Similarly, in order to investigate the therapeutic effect of

anle138b, we treated symptomatic APPPS1DE9 mice and treated

them for 4 months from 6 to 10 months of age (post-plaque group;

Fig EV1). Controls were age- and sex-matched wild-type litter-

mates treated with anle138b or placebo. Anle138b was adminis-

tered orally. Dry food pellets were prepared containing 2g

anle138b per kg food (SSNIFF). This amounted to an estimated

daily dose of 500 mg/kg (at an approx. 6-g daily food consumption

and a 25-g average body weight). Based on pharmacokinetic stud-

ies, 40–70 lM anle138b reached the brain during most of the wake

phase (Wagner et al, 2015). Placebo food was prepared from the

same batch but without anle138b (SSNIFF). Of note, our previous

PK studies in mice have shown that after a single bolus the half-

life of anle138b in the brain is approximately 4 h (Wagner et al,

2013).

Morris water maze (MWM)

Mice were single-caged and brought into the testing room at

least 1 week prior to the beginning of the experiment to allow

them to acclimate. In the MWM, mice were trained to find a

submerged 10 × 10 cm platform in a pool (1.10 m in diameter)

of milky water using spatial cues by the pool sides as orienta-

tion points. Mice were trained over 8 consecutive days with four

trials per day per mouse. Time and path to platform were

tracked and recorded (TSE systems). On day 9 (probe test), the

platform was removed and quadrant preference was recorded

(target quadrant being the one where the platform was previ-

ously located).

Open field

Mice were allowed to spend 5 min in an open arena (40 × 40 cm).

Path length while exploring and time in the center or corners were

quantified using the VideoMot2 System (TSE).

RNA sequencing

Library preparation and cluster generation for mRNA sequencing

were performed according to Illumina standard protocols (TruSeq,

Illumina). Libraries were quality-controlled and quantified using a

Nanodrop 2000 (Thermo Scientific), Agilent 2100 Bioanalyzer (Agi-

lent Technologies), and Qubit (Life Technologies). Data will be

made available upon publication via GEO (accession number

GSE104424). Base calling from raw images and file conversion to

fastq-files was achieved by Illumina pipeline scripts. Subsequent

steps included quality control (FastQC, https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/), mapping to reference genome

(mm10, STAR aligner v2.3.0 (Djebali et al, 2012) non-default

parameters), read counting on genes or exons (HTSeq, http://www-

huber.embl.de/users/anders/HTSeq, mode: intersection-non-

empty), and differential gene (DESeq2_1.4.5; Love et al, 2014)

usage biostatistical analysis. PCA and distance heat maps were

generated in R following instructions in the vignette for DESeq2.

Genes were considered differentially expressed with an adjusted

P-value lower than 0.05 (Benjamini-Hochberg). Gene set overlaps

were calculated using Venny (http://bioinfogp.cnb.csic.es/tools/ve

nny/). Pathway analysis was performed using Cytoscape (www.cy

toscape.com) and Cytoscape extension ClueGO.

Electrophysiology on hippocampal slices

Slice preparation

Acute hippocampal slices prepared from WT mice and APPPS1DE9
mice were used for electrophysiological recordings. All the proce-

dures were carried out in compliance to the guidelines from the

Animal Committee on Ethics in the Care and Use of Laboratory

Animals of TU-Braunschweig. Briefly, after anesthetization using

CO2, the mice were decapitated and the brains were quickly

removed and cooled in 2–4°C artificial cerebrospinal fluid (aCSF).

The hippocampi were dissected, and transverse hippocampal slices

(400 lm) were prepared by using a manual tissue chopper. Then,

slices were incubated for 3 h at 32°C in an interface chamber (Scien-

tific System Design), which was continuously perfused with
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oxygenated aCSF at a flow rate of 0.8 ml/min. The aCSF contained

the following (in mM): 124 NaCl, 4.9 KCl, 1.2 KH2PO4, 2.0 MgSO4,

2.0 CaCl2, 24.6 NaHCO3, 10 D-glucose, equilibrated with 95%

O2–5% CO2 (32 L/h).

Slice recordings

To evoke field EPSP (fEPSP) from Schaffer collateral/commissural-

CA1 synapses, one monopolar lacquer-coated, stainless-steel elec-

trode (5 MΩ; AM Systems) was positioned at the stratum radiatum

layer of the CA1 region. For recording fEPSP (measured as its initial

slope function), one electrode (5 MΩ; AM Systems) was placed in

the CA1 apical dendritic layer and signals were amplified by a dif-

ferential amplifier (Model 1700, AM Systems). The signals were

digitized using a CED 1401 analog-to-digital converter (Cambridge

Electronic Design). After the preincubation period, an input–output

curve (afferent stimulation vs. fEPSP slope) was generated. Test

stimulation intensity was adjusted to elicit fEPSP slope of � 40% of

the maximal fEPSP response. Four 0.2-Hz biphasic constant current

pulses (0.1 ms/polarity) were used for baseline recording and test-

ing at each time point. Long-term potentiation (LTP) was elicited by

“strong” tetanus (STET) consisting of three stimulus trains of 100

pulses at 100 Hz delivered at 10-min intervals (300 pulses in total).

Data (fEPSP slope) were normalized to baseline and plotted as aver-

age � SEM. The average values of the slope function of the fEPSP

(millivolts per milliseconds) for each time point were analyzed

using paired t-test; P < 0.05 was considered as statistically

significant.

Thioflavin S staining

Thioflavin S staining was performed as previously described with

the some modifications (Guntern et al, 1992; Sun et al, 2002).

Briefly, mice were sacrificed and their brain quickly removed on ice.

Left hemispheres were embedded in OCT (Tissue TEK) and stored

at �80°C until ready to section. Sagittal, 25-lm-thick sections were

cut using a cryostat. And, five sets of five slides per brain containing

four sections/slide were made by taking every 5th section on the

same slide, so that each set consisted of 20 representative sections

throughout the brain. Sets to be used for thioflavin S staining were

then fixed with 4% PFA for 25 min at room temperature, washed

twice with 0.9% NaCl, and quickly rinsed with PBS. Staining was

performed using filtered 0.05% thioflavin S in 50% ethanol for

8 min in the dark and differentiated with two changes of 80%

ethanol for 10 s. This was followed by three washes with large

volumes of distilled water and an incubation step in high-concen-

trated phosphate buffer (411 mM NaCl, 8.1 mM KCl, 30 mM

Na2HPO4, 5.2 mM KH2PO4, pH 7.2) at 4°C for 30 min. Finally, slides

were briefly rinsed in PBST and covered with coverslips using

Vectashield Hard Set mounting media with DAPI (Vector). Slides

were allowed to set in the dark at 4°C and imaged immediately

thereafter. To control for background, unspecific staining, or tissue

auto-fluorescence, slides from age-matched wild-type brains were

used as negative controls. Images at 4× magnification of hippocam-

pus and cortex were captured using an Olympus IX70 fluorescence

microscope. Quantification of number of plaques, area covered by

the plaque, and average plaque size was performed using the parti-

cle analysis tool of the ImageJ software. Statistical analysis was

carried out using GraphPad Prism7.

Biophysical experiments on Ab1-42

Materials

Ab1–42 was purchased from Bachem and Anaspec (Fremont, CA).

The phospholipids 1.2-dioleoyl-sn-glycero-3-phosphoserine

(DOPS) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine

(POPE) were purchased from Avanti Polar Lipids (Alabaster, AL).

All other chemicals were purchased from Sigma-Aldrich (St. Louis,

MO).

Peptide handling

For BLM experiments, Ab1–42 peptides were dissolved in Milli-Q

water to a concentration of 1 mg/ml prior to being aliquoted for

storage. These 50-ll aliquots were stored at �80°C for a maximum

of 60 days before use. Samples were thawed only once. For AFM

experiments, powder form of Ab1-42 (Bachem, Torrance, CA) was

first dissolved in 1% ammonium hydroxide until the peptides were

completely dissolved. They were subsequently sonicated for approx-

imately 2 min. Small volume of peptides were then aliquoted and

lyophilized using a lyophilizer (Labconco FreeZone 2.5 Plus, Kansas

City, KS). The aliquots were stored at �80°C until used. For every

experiment, aliquoted peptides were thawed and hydrated in

20 mM NaOH and HEPES buffer solutions at pH 7.4, sequentially.

The peptide concentration was measured using the 280 nm UV

absorbance (e = 1,490 M�1 cm�1).

Peptide aggregation

Synthetic Ab1-40 and Ab1-42 powders were dissolved in 20 mM

NaOH at 2 mg/ml concentration and incubated at 4°C for 1 h to

dissolve their pre-existing aggregates. The Ab stock solutions

were then brought to PBS, pH 7.4, at a final peptide concentra-

tion of 0.4 mg/ml, around 90 lM. After a short centrifugation

(16,000 g, 30 min), the supernatants were used either directly, as

the monomeric Ab, or following a 3-h incubation at 37°C (with-

out agitation), as the oligomeric-enriched Ab samples. The mono-

meric and oligomeric-enriched Ab samples were then added to

primary neuronal cultures for membrane integrity and viability

assays.

Electrical recording of planar lipid bilayer made of oxidized cholesterol/

n-decane

We prepared planar lipid bilayers using the Müller-Rudin technique

(Benz et al, 1978). The membranes were formed from a 1% (w/v)

solution of oxidized cholesterol in n-decane. Oxidized cholesterol

was prepared according to an established procedure (Benz et al,

1978). The lipid membranes were formed using a Teflon loop to

spread the lipid solution across a hole with a surface area of approx-

imately 0.3 mm2 in the wall dividing the two aqueous compart-

ments in a Teflon cell. After the membrane had turned black, the

Ab1–42 peptide-containing protein fractions were added to the aque-

ous phase on one or both sides of the membrane at final concentra-

tions 1 and 40 lM. For doping lipid bilayers with anle138b, the

compound was dissolved in chloroform. The chloroform of a sample

was then evaporated under vacuum. The lipid solution was added

to the dry anle138b in such an amount that a final concentration of

1 mM in the lipid solution was obtained. This lipid solution was

used for the normal protocol of bilayer formation as described

above.
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The current across the lipid bilayer membranes was measured

with a pair of Ag/AgCl electrodes with salt bridges switched in

series with a voltage source and a highly sensitive current amplifier

Keithley 427 (Keithley Instruments, INC. Cleveland, OH). The

output signal of the amplifier was recorded by a strip chart recorder

(Rikadenki Electronics GmbH, Freiburg, Germany). The temperature

was kept at 20°C throughout the experiment.

Planar lipid bilayer electrical recording using DOPS and POPE

We prepared planar lipid bilayers using the so-called painted

technique (Mueller et al, 1962). Anle138b was mixed with a 1:1

(w/w) solution of DOPS and POPE in chloroform at a concentra-

tion of 10 mM with respect to the volume of the lipids. A lipid

specific gravity of 0.8 was used for the calculation. This mixture

was subsequently dried in a Rotavapor R-210 (Buchi) and resus-

pended in decane at a total lipid concentration of 20 mg/ml.

Bilayers with embedded anle138b were formed from this solution.

Spontaneous membrane formation occurs following the addition

of lipid directly over a pore with a diameter of ~250 lm in a

Delrin septum (Warner Instruments, Delrin perfusion cup, volume

1 ml). In previous studies, this membrane composition was

shown to be stable for long recording times (~4 h; Capone et al,

2012). Control experiments establishing the stability of

membranes formed with the addition of anle138b were

performed. We used 150 mM KCl, 10 mM HEPES (pH 7.4), and

1 mM MgCl2 as the electrolyte.

We observed the following difficulty in the preparation of

anle138b loaded lipids. Anle138b was dissolved in decane along

with the lipids prior to membrane painting. Since anle138b is

soluble in both the decane and the lipids, the distribution of

compound in the lipid membrane that spontaneously forms upon

lipid deposition over the aperture can vary. Lipid monolayers bind

to either side of the partition and the bilayer membrane forms as the

monolayers fuse together at the center, excluding the decane solvent

to the perimeter. This solvent annulus acts as a bridge to the Delrin

partition and is essential for membrane stability (White, 1972). If a

significant proportion of the anle138b is mobile in the decane, the

compound could be partitioned to the solvent annulus rather than

incorporated into the membrane leading to BLM results that appear

similar to that seen with Ab1-42 in the absence of compound. This

can explain why anle138b modulated the activity of the pores in

only 50% of the cases.

Before performing electrical recordings, we verified that the

bilayer was stable for several minutes with low conductance

(<10 pS) across � 100 mV applied voltage and that the system

capacitance was >110 pF. When both criteria were met, peptide was

added directly to the cis (hot wire) side and stirred for 5 min.

Peptide concentration in the bilayer chamber was approximately

10 lM. Bilayer stability was monitored by periodic capacitance

measurements throughout the course of the experiment.

All traces were recorded in voltage clamp mode using the 2 kHz

built-in filter cutoff of our BC-535 amplifier (Warner Instruments,

Hamden, CT). A sampling frequency of 15 kHz was used for all data

acquisition. We used a custom-made LabVIEW program to record

the current and Clampfit 10.2 (Molecular Devices, Sunnyvale, CA)

to analyze traces. We have filtered the recorded current versus time

traces with a digital Gaussian low-pass filter and a cutoff frequency

of 50 Hz for representation in figures.

Lipid bilayer preparation for AFM imaging

For liposome preparation, DOPS and POPE lipids were used in a 1:1

ratio (Avanti Polar Lipids, Alabaster, Al). Liposomes were prepared

by mixing 20 ll of each lipid (5 mg/ml) dissolved in chloroform,

and anle138b, also in chloroform, was added to a 1,000:1 lipid to

anle138b molar ratio. Then, liposomes were allowed to dry over-

night in vacuum. The dried lipid film (and anle138b) was hydrated

with peptide solution (1:60 peptide to lipid molar ratio) to facilitate

peptide incorporation in the lipid bilayer, resulting in proteolipo-

some formation. For controls, the dried lipid film (and anle138b)

was hydrated with 200 ll of HEPES buffer and vortexed occasion-

ally for an hour. The large multilamellar vesicles formed with this

procedure were sonicated for 5 min. Supported lipid bilayers were

formed by (proteo)liposome rupture and fusion on the mica

substrate (Lin et al, 2001; Quist et al, 2005; Liu et al, 2006;

Umehara et al, 2010; Connelly et al, 2012a,b). Lipid concentrations

of 0.1–1 mg/ml were deposited on freshly cleaved mica and incu-

bated for ~10 min on a hot plate above the lipid transition tempera-

ture to facilitate fusion of the ruptured proteoliposomes on the mica

surface. As a last step, samples were rinsed with buffer to remove

unruptured proteoliposomes still in solution.

AFM imaging on membranes

Topographic images were acquired using a Multimode AFM

equipped with a Nanoscope V controller (Bruker, Santa Barbara,

CA). Silicon nitride cantilevers with nominal spring constants of

0.08 N/m (OMCL-TR400, Olympus) were employed for imaging in

fluid using the tapping mode. Resonance frequencies of � 8 kHz

and drive amplitudes under 100 mV were used. All experiments

were performed at room temperature. Actual spring constants were

measured to be within 10% of its nominal value using thermal tune

before the experiments. To measure outer pore diameters, tip broad-

ening was taken into account by modeling the inserted oligomers as

a spherical cap protruding a height h above the surface of the lipid

bilayer in contact with a spherical tip of radius R (Lee et al, 2014).

Cell membrane integrity and viability

CyQUANT

Primary neuronal cultures were produced from E17.5 CD1 Swiss

embryos. On DIV, 10 cultures were treated conditioned medium

supplemented with anle138b to a final concentration of 1 lM in

0.05% DMSO (Roth, A994.2) or 0.05% DMSO as vehicle. After 24 h

Ab1-40 oligomers, monomers or buffer (n = 4 each) was applied at

10 lM and incubated for 48 h. CyQUANT� Direct Cell Proliferation

Assay (Thermo Fisher, C35011) was used according to manufac-

turer’s protocol to determine membrane integrity. After 30-min incu-

bation, fluorescence was measured with a Tecan infinite 200.

Statistical analysis was performed in GraphPad Prism.

MTT assay

Cell viability was measured using the MTT assay with the same

sample preparation as for the CyQUANT assay. Briefly, after anle138b

and Ab1-40 treatment, the cell culture medium was supplemented

with MTT to a final concentration of 0.5 mg/ml and incubated for

1 h at 37°C in a standard cell culture incubator. Subsequently,

medium was removed and metabolites suspended in 500 ll DMSO.

Absorption at 800 nm was measured using a Tecan infinite 200.
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Transgenic flies and survival assays

w[1118]; P{UAS-Arctic Ab 1-42 (Glu22Gly)}(arc2E) transgenic flies

were kindly provided by D. Crowther (Cambridge, UK; Crowther et al,

2005). The co-expression of Gal4 under a tissue specific promotor

leads to activation of an upstream activating sequence (UAS)

element that activates the transcription of Ab42 upon Gal4-UAS

binding (Brand & Perrimon, 1993). We controlled the temporal

expression of the Gal4-UAS system by a temperature-sensitive

Gal80ts under a ubiquitously expressing tubulin promoter (tub-

Gal80ts) (McGuire et al, 2003). Gal80ts represses the transcriptional

activity of Gal4 at the permissive temperature (18°C). Upon a shift

to the non-permissive temperature (30°C), Gal80ts becomes

dysfunctional and releases the Gal4-UAS system to allow transgene

expression. Neuron-specific and temperature-inducible expression

of Ab42 was achieved by crossing the w[1118]; Gal4-elav/CyO;

TM2/TM6 and w[1118]; Sp/CyO; tubGal80ts/TM2 lines obtained

from Bloomington (Bloomington Drosophila Stock Center (BDSC),

Indiana University, USA) to generate w[1118]; Gal4-elav/(CyO);

tubGal80ts/(TM6). The w[11118]; P{UAS-Arctic Ab 1-42 (Glu22Gly)}

line was crossed with w[1118]; Gal4-elav/(CyO);tubGal80 ts/(TM6).

w[1118]; Gal4-elav/UAS-arc2E;tubGal80/+ were used for subsequent

survival assays. As an overexpression control, we crossed w[1118];

Gal4-elav/(CyO);tubGal80/(TM6) with w[1118]; P{w[+mC]=UAS-

lacZ.NZ}20b (Bloomington Drosophila Stock Center (BDSC), Indi-

ana University, USA) to obtain w[1118]; Gal4-elav/+; tubGal80ts/

UAS-lacZ.

Survival assay

Male flies expressing Ab42 Glu22Gly arctic mutation and control

flies expressing lacZ were collected and maintained under a 12-h

light–dark cycle in 60% relative humidity and equal population

density per vial. Within 24 h after eclosion from the pupae, all flies

were transferred to the restrictive temperature. Compounds were

dissolved at 10 mM in DMSO and mixed with yeast. Fresh food was

added every 2nd–3rd day. As a control, Ab42 Glu22Gly transgenic

and lacZ control flies were treated with DMSO food without addition

of compounds. Surviving flies were counted every 2nd–3rd day. The

resulting Kaplan–Meier survival curves were calculated using SSPS

software. Differences between the genotypes were assessed by log-

rank test (SSPS software).

Statistical analysis

Unless specifically mentioned otherwise, data were analyzed by

unpaired Student’s t-test, two tailed t-test, Bonferroni test for multi-

ple comparisons, or one and two-way and ANOVA (analysis of vari-

ance) when appropriate. Errors are displayed as standard error of

mean (SEM). Unless otherwise stated, analysis was performed using

GraphPad Prism.

Data availability

RNA-sequencing datasets are available via GEO accession number:

GSE104424.

Expanded View for this article is available online.
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The paper explained

Problem
A hallmark of Alzheimer’s disease is the aggregation of Ab, yet the
mechanism of dysfunction of neurons and neuronal death is unclear
and disease-modifying therapeutic intervention is not yet possible.

Results
Using the APPPS1 overexpression model in mice, we show that the
diphenylpyrazole compound anle138b, an orally available small mole-
cule reaching 30 lM concentration in the brain when given orally,
ameliorated disease phenotypes such as hippocampal LTP, spatial
reference memory, and transcriptional homeostasis. Biophysical analy-
sis suggests that pore formation contributes to the dysfunctionaliza-
tion and death of neurons, while anle138b prevents pore formation
and thereby rescues these effects.

Impact
Our work provides evidence of the molecular mechanisms by which
Ab aggregation is contributing to Alzheimer’s disease, namely pore
formation in membranes by Ab oligomers whose conductivity is
reduced by more than a factor of 10 by anle138b treatment. The pore
conductivity reduction correlates with the full refunctionalization as
measured by LTP when anle138b is given before or after the onset of
amyloid deposition. Also memory function is improved. Our data
suggest that therapeutical effects can be expected to be achieved in
AD patients with anle138b.
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