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1 |  INTRODUCTION

Oculodentodigital dysplasia (ODDD) (OMIM#164200) is 
a rare disorder characterized by various ophthalmic, dental, 
skeletal, and craniofacial anomalies. It has a high penetrance 
but its phenotypic expression is variable (Judisch, Martin‐
Casals, Hanson, & Olin, 1979). ODDD is primarily an au-
tosomal dominant disorder caused by mutations in the gap 
junction protein alpha 1 (GJA1, OMIM#121014, HGNC ID: 
4274, NM_000165.5) gene, which encodes the connexin 43 
(Cx43) transmembrane protein (Paznekas et al., 2003).

The phenotypic features characteristic of ODDD are well 
described (Hennekam, Allanson, & Krantz, 2010). Typical 
ophthalmologic abnormalities include microphthalmia, 

microcornea, and various anomalies that involve the iris, 
which can lead to glaucoma, cataracts, and optic neuropa-
thy. Dental features involve both the primary and second-
ary dentition and include enamel hypoplasia, microdontia, 
hypodontia, and premature loss of teeth. Typical skeletal 
anomalies include bilateral syndactyly of the 2nd to 4th toes 
and/or of the 4th and 5th fingers, camptodactyly and clino-
dactyly. Affected individuals also exhibit craniofacial dys-
morphic features, including a thin nose, narrow anteverted 
nares, short palpebral fissures, and microcephaly. A variety 
of neurological manifestations have been reported, includ-
ing lower limb spastic paraparesis, ataxic gait, seizures, 
neurogenic bladder, and uncommonly, psychomotor retar-
dation. These neurological features of ODDD involve 30% 
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Abstract
Background: Oculodentodigital dysplasia (ODDD) is a rare disorder with pleio-
tropic effects involving multiple body systems, caused by mutations in the gap 
junction protein alpha 1 (GJA1) gene. GJA1 gene encodes a polytopic connexin 
membrane protein, Cx43, that is a component of connexon membrane channels.
Methods: We describe two unrelated female probands referred for a  genetic  
review in view of a dysmorphic clinical phenotype.
Results: Two novel missense mutations in GJA1 that substitute conserved amino 
acids in the first and second transmembrane domains (NM_000165.5: c.77T>C 
p.Leu26Pro and NM_000165.5:c.287T>G p.Val96Gly) were detected through  
targeted sequencing of GJA1. These variants were detected in the heterozygous state 
in the two Maltese probands and segregated with the disease phenotype.
Conclusion: This report further expands the mutational spectrum of ODDD.
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of cases (De Bock, Kerrebrouck, Wang, & Leybaert, 2013). 
ODDD exhibits extensive phenotypic pleiotropy, and ab-
normalities involving the heart, lymphatics, and skin have 
also been reported (Brice et al., 2013; Kogame et al., 2014; 
Paznekas et al., 2003).

Connexin 43 (Cx43) is a ubiquitously expressed protein 
that forms hexameric connexin hemichannels, which interact 
with connexin hemichannels on apposed membranes to form 
gap junctions. Gap junctions play critical physiological roles, 
allowing intercellular exchange of ions, metabolites and sec-
ond messengers (Laird, 2006). The human genome encodes 
21 connexin genes, which are co‐expressed in diverse combi-
nations to form different channels. Each connexin protein is 
composed of four transmembrane domains, two extracellular 
loops and cytoplasmic amino‐ and carboxyl termini (Yeager 
& Gilula, 1992). The transmembrane and extracellular do-
mains are highly conserved. Cx43 is the most widely studied 
connexin, in view of its widespread expression in most body 
tissues and its extensive interactions with other proteins.

A wide array of human pathologies are caused by muta-
tions in connexin genes, including peripheral neuropathies, 
skin disorders, non‐syndromic hearing loss and congenital 
cataract (Abrams & Scherer, 2012; Krutovskikh & Yamasaki, 
2000; Lee & White, 2009). Mutations in GJA1 lead to an array 
of developmental abnormalities in ODDD. The mutational 
spectrum in GJA1 has been extensively reviewed (Laird, 
2014). Most changes are dominant missense mutations that 
alter the sequence of the first two‐thirds of the Cx43 protein. 
Additionally, dominant frameshift, deletion, and duplication 
variants have also been described, as well as two autosomal 
recessive variants. The functional effect of a number of GJA1 
variants has been evaluated using in vitro cell models, and 
these studies have shown that even slight sequence changes 
in Cx43 can compromise gap junction function (Shao et al., 
2012).

In this report, we describe two unrelated patients with 
clinical features of ODDD. Sanger sequencing of GJA1 gene 
in the probands and family members identified two novel 
variants that segregate with the phenotype, suggestive of 
causality.

1.1 | Ethical compliance
This study was approved by the local institutional ethics re-
view board and written informed consent was obtained.

1.2 | Clinical presentation
The undiagnosed probands were referred to the genetics clinic 
for review in view of multiple dysmorphic features that had 
presented at birth. Both probands are female, the offspring 
of healthy Maltese Caucasian non‐consanguineous parents. 
The respective clinical phenotypes are listed in Table 1 and 

selected clinical features from proband 1 are shown in Figure 
1. Proband 2 was lost to clinical follow‐up.

Proband 1 presented at the age of 22 years with facial dys-
morphism, hair and weight loss, bone pain, and recent onset 
of unsteady gait and spastic paraparesis. Clinical features in-
cluded the absence of subcutaneous fat, mild psychomotor 
delay, absence of pubic hair and hypoplastic carious teeth 
which required the use of dentures. She was also being in-
vestigated for amenorrhea. Proband 2 presented at the age of 
8  years. Her clinical phenotype included various abnormal 
craniofacial and skeletal features; these included microphthal-
mia, a bilateral convergent squint, nystagmus, micrognathia, 
and bilateral fifth finger clinodactyly. She was intellectually 
normal and showed no neurological signs. Palmoplantar ker-
atosis was absent in proband 1, while proband 2 had palmar 
keratosis at presentation. Both probands were born at term 
with birth weights of 2,800 grams (proband 1) and 2,520 
grams (proband 2). G‐banded chromosome analyses carried 
out at birth had shown normal 46, XX female karyotypes.

1.3 | Genetic analysis
In view of the characteristic clinical features of ODDD, 
the probands were screened for GJA1 mutations by Sanger 
sequencing of PCR amplicons (Reference sequence 
NM_000165.5). GJA1 consists of two exons, the first of 
which is untranslated, separated by an 11kb intron. The cod-
ing exon (exon 2) of GJA1 was amplified in two overlapping 
fragments of 925 bp and 1,079 bp according to published pro-
tocol (Paznekas et al., 2003). The detected variants were ana-
lyzed for pathogenicity according to established guidelines 
from the American College of Medical Genetics/Association 
for Molecular Pathology (ACMG/AMP). A detailed descrip-
tion of the methodology is provided in the supplementary file 
Data S1.

2 |  RESULTS

Nonsense mutations, frameshift mutations, in‐frame indels 
and variants affecting splice sites were not detected in the 
two probands. Two different novel missense mutations, each 
in the heterozygous state were detected—NM_000165.5: 
c.287T>G p.Val96Gly mutation in proband 1 and 
NM_000165.5:c.77T>C p.Leu26Pro mutation in proband 2 
(Figure 2). In‐silico analysis of pathogenicity using various 
bioinformatics approaches is shown on Table 2 Evolutionary 
conservation analysis indicates that both the p.Val96Gly and 
p.Leu26Pro GJA1 mutations occur at highly conserved posi-
tions within the protein, and that these residues are conserved 
across multiple species. Additionally, multiple lines of com-
putational evidence provide support for deleterious effects of 
these missense mutations. Both mutations are absent from the 
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T A B L E  1  A comparison of the clinical phenotype of proband 1 and proband 2 at age 22 years and 8 years, respectively

  Proband 1 p.Val96Gly Proband 2 p.Leu26Pro

Craniofacial features    

General    

Microcephaly Present Present

Hair Thin, sparse, widow’s peak Thin, sparse, widow’s peak

Ocular Features    

Microphthalmos Present bilaterally Present bilaterally

Bilateral convergent strabismus Present Present

Nystagmus Absent Present

Epiblepharon Absent Present

Telecanthus Present Absent

Hypertrophic mucosal membrane under eyelids Present Absent

Short palpebral fissures Present bilaterally Present bilaterally

Epicanthic folds Present bilaterally Present bilaterally

Oro‐dental features    

Enamel hypoplasia, hypodontia, abnormal 1° and 2° dentitions Present Present

Auricular features    

Low set and prominent pinnae Present Present

Nasal features    

Nasal bridge Prominent Normal

Thin nose with hypoplastic alae nasi Present Present

Columella Prominent Prominent

Other    

Hypoplastic maxilla Present Absent

Micrognathia Present Present

Skeletal features    

Hands and fingers    

Camptodactyly of 5th finger Present bilaterally Present bilaterally

Skin syndactyly of 4th and 5th fingers Present bilaterally Absent

Single digital crease on 5th finger Present on left Present on right

Hypoplastic middle phalanx of 5th finger Present bilaterally Normal

Finger clubbing Present bilaterally Absent

Transverse palmar crease Absent Present on right

Palmar keratosis Absent Present bilaterally

Toes and feet    

Syndactyly of 4th and 5th toes Bilaterally present Absent

Overriding 5th toe Present on left Absent

Foot length Normal Long bilaterally

Plantar keratosis Absent Absent

General features    

Thin skin Present Present

Pallor Present Present

Build Slim Normal

Body hair Sparse axillary and pubic hair Not applicable

Neurological manifestations    

(Continues)
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gnomAD dataset and are not reported in ClinVar, Varsome 
and HGMD databases (Kopanos et al., 2019; Landrum et al., 
2018; Stenson et al., 2017). No GJA1 mutations were dis-
covered in the parents of probands 1 and 2, indicating that 
both cases of ODDD are a product of two de‐novo and novel 
mutations. Furthermore, the mutations described here also lie 
in a well‐established functional domain of the Cx43 protein 
that lacks benign variation. Based on the above findings, both 
mutations can be considered causal for ODDD.

3 |  DISCUSSION

The two novel pathogenic missense mutations described in 
this report result in transmembrane defects of connexin 43, 
with the p.Leu26Pro substitution altering the first transmem-
brane domain and p.Val96Gly the second transmembrane 
domain of Cx43. Both variants segregated with the disease 
phenotype and were not present in the unaffected parents. 
Furthermore, the presence of two different mutations in the 
unrelated cases suggests the absence of a founder effect at 
this locus in the Maltese population.

Mutations in each of the four transmembrane domains 
of Cx43 have been described. The missense variant at po-
sition 26 (p.Leu26Pro) has not been reported previously, 
although a serine to proline substitution at neighboring posi-
tion 27, p.Ser27Pro has been identified (Richardson, Donnai, 
Meire, & Dixon, 2004). Mutations that introduce proline 
into protein sequences are functionally unique, because the 
cyclical structure of its side chain confers conformational ri-
gidity. Consequently, non‐native proline residues can disrupt 

secondary structures of alpha helices and beta sheets, lead 
to “kinks” in the protein backbone and have a destabilizing 
effect due to steric clash with other residues (MacArthur & 
Thornton, 1991). Additionally, proline lacks the capacity to 
form hydrogen bonds, which can effect secondary structure 
formation and stability (Betts & Russell, 2003).

The p.Val96Gly missense mutation identified in proband 
1 has not been reported previously, although three other 
missense variants at this position have been described—p.
Val96Ala, p.Val96Glu and p.Val96Met (Paznekas et al., 
2009), (Wiest et al., 2006),(Kjaer et al., 2004). The introduc-
tion of glycine residues has functional consequences that con-
trast with those of proline, as its small side chain allows it to 
adopt a wide range of conformations compared to other res-
idues. Consequently, mutations introducing glycine can lead 
to loss of stability in the hydrophobic domains of a protein.

Both missense mutations lie in highly‐conserved trans-
membrane domains, and in silico analysis supports their 
pathogenicity. Analysis using MPEx predicts that both sub-
stitutions alter the hydrophobicity of the transmembrane 
domain relative to the wild‐type sequence, but do not shift 
the residues predicted to span the cell membrane (Snider, 
Jayasinghe, Hristova, & White, 2009).

The mechanisms linking GJA1 mutations to disease are 
complex and have been reviewed extensively (Laird, 2014). 
Functional studies have shown that mutations in GJA1 can 
attenuate or abolish channel function, disrupt protein traf-
ficking and modulate gap junction assembly. Critically, Cx43 
transmembrane domains establish the gap junction pore and 
are essential for connexin localization to the plasma mem-
brane. Furthermore, in addition to compromising channel 

  Proband 1 p.Val96Gly Proband 2 p.Leu26Pro

Spastic paraparesis and ataxia Present Absent

Psychomotor delay Mild Normal

T A B L E  1  (Continued)

F I G U R E  1  Clinical features in 
proband 1 with the GJA1 NM_000165.5: 
c.287T>G p.Val96Gly mutation. (a) 
shows sparse fine lusterless hair (b) front 
view of face showing distinctive nose and 
hypoplastic alae nasi. (c) Orthopantogram 
showing narrow maxilla, microdontia, 
hypodontia, and widely spaced teeth with 
irregular roots (d) both hands showing fifth 
digit camptodactyly and syndactyly of the 
fourth and fifth digits

(a) (b)

(c) (d)
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activity, Cx43 mutations exert dominant negative effects 
on co‐expressed wild‐type channels, leading to a signifi-
cant reduction of Cx43‐dependent gap junction intercellu-
lar transport (Roscoe et al., 2005). The diverse functional 
effects of GJA1 variants are thus consistent with the pleio-
tropic features of ODDD. The genetic heterogeneity of the 
disease is similarly extensive, and several novel mutations 
in different ethnic groups have been recently described 
(Choi et al., 2018; Jamsheer et al., 2014; Porntaveetus, 
Srichomthong, Ohazama, Suphapeetiporn, & Shotelersuk, 
2017; Tumminelli et al., 2016). Most causative mutations are 
missense, although nonsense and frameshift mutations have 
also been reported.

The phenotypic heterogeneity in ODDD is further high-
lighted by the varying hyperkeratotic symptoms reported 
here. Palmoplantar keratosis (PPK) is regarded as a minor 
symptom of ODDD that has been associated with C‐terminal 
frameshift and truncation mutations (Pfenniger, Wohlwend, 
& Kwak, 2011). However, PPK has also been reported in 
ODDD patients with GJA1 mutations outside of the C‐ter-
minal region (Kelly et al., 2006; Kogame et al., 2014). The 
presence of palmar keratosis in proband 2 harboring an N‐
terminus missense mutation is thus significant as it further 
expands on the genotype‐phenotype associations for ODDD. 
Furthermore, hyperkeratosis of the palms or soles might be 

easily overlooked, especially if the clinical presentation is 
subtle. Clinicians should, therefore, be vigilant for minor cu-
taneous changes that are an important part of the phenotypic 
spectrum in ODDD.

In conclusion, this report broadens our understanding of 
GJA1 variants associated with ODDD and provides the first 
description of this rare syndrome in individuals of Maltese 
ethnicity. Further in vitro studies should characterize the 
functional impact of these variants on connexon activity, 
which would lead to an improved understanding of the mech-
anisms leading to congenital anomalies in ODDD.
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F I G U R E  2  (a) Sequencing electropherograms of the GJA1 NM_000165.5:c.77T>C p.Leu26Pro and NM_000165.5:c.287T>G p.Val96Gly 
variants. The top panel shows the normal wild‐type sequence in a control individual, and the bottom panel shows the heterozygous base 
substitutions detected in the probands. (b) Multiple sequence alignment showing conserved amino acid residues in GJA1 flanking the substitutions 
detected in both probands (highlighted in red)
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