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Introduction

Breast cancer (BC) is one of the most frequently occurring 
cancers in females and represents a significant public health 
concern. The American Cancer Society estimates that one in 
eight females will develop BC at some point in their lives, 
with the incidence increasing with age.1 Significant geo-
graphic and ethnic-specific differences in both incidence and 
mortality rates are reported. This is in part attributed to soci-
odemographic factors which influence adherence to recom-
mendations for early screening for BC, as well as the likelihood 
of seeking appropriate medical advice upon detection of a 
breast mass.2,3 The aetiology behind BC is equally complex 
and involves interactions between environmental, lifestyle 
and genetic factors that collectively determine cancer risk.

BC typically arises when cells lose the ability to halt the 
process of proliferation, coupled to resistance or reduction in 
the process of cell death by apoptosis. BC cells express high 
levels of phosphatidylinositol-3-kinase (PI3K)/Akt and 
mammalian target of rapamycin (mTOR) signalling mole-
cules, which impairs their ability to undergo apoptosis.4 
Pathologically, BC is classified either as invasive or non-
invasive type. The non-invasive subtypes include ductal and 
lobular carcinoma in situ, whereas, ductal and lobular carci-
nomas are considered as invasive subtypes. On average, 

ductal carcinoma accounts for 80% of reported cases in 
females, whereas lobular carcinoma accounts for only 5%–
10% of the cases.5 Currently, BCs are treated either surgi-
cally or via chemoradiotherapy, in addition to the use of 
Trastuzumab (Herceptin®) for HER2+ tumours.6

Some cases of BC do not respond well to traditional treat-
ment, particularly in diabetics. Recent studies have shown 
that metformin, a primary anti-diabetic agent, confers anti-
tumorigenic effects on cancer cells and can be considered as 
a potential adjuvant in the management of BC.7 A number of 
population-based observational studies had initially sug-
gested that metformin reduces cancer incidence and/or mor-
tality among type 2 diabetic patients, however, no causal 
relationship can be established from epidemiologic data 
alone.8 Preclinical research using both BC cell lines and 
mouse models subsequently showed that metformin represses 
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cancer cell and xenograft growth.9–11 These effects are 
achieved through various mechanisms, including cell cycle 
arrest, apoptosis, AMP-activated protein kinase (AMPK) 
activation and mTOR inhibition. In addition, metformin 
exerts in vitro chemo preventive effects through modulation 
of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon recep-
tor (AhR) pathways.12 The anti-tumour effects of oral anti-
diabetic therapy are not restricted to metformin, as 
thiazolidinediones (synthetic ligands of peroxisome prolifer-
ator-activated receptors γ – PPARγ) possess similar proper-
ties. Animal studies have shown that pioglitazone inhibits 
chemical carcinogenesis in rats.13 Human studies demon-
strate that rosiglitazone reduces BC risk in females with type 
2 diabetes, and that this effect is enhanced by metformin.14 
The pleiotropic oncostatic effects of oral anti-diabetic drugs 
is reinforced by meta-analysis showing that thiazolidinedi-
ones are associated with a lower incidence of cancer, particu-
larly colorectal and breast tumours.15

Furthermore, metformin also decreases the development 
of resistance in BC cells, thereby allowing current chemo-
therapy agents to work synergistically with metformin.16 It 
also blocks the two cellular pathways for nicotinamide ade-
nine dinucleotide (NAD+) regeneration, which then results in 
a complete loss of cells’ NAD+ recycling capacity. The 
resulting depletion of NAD+, in turn, leads to cell death.17 
This article aims to provide an overview of the pathomolecu-
lar mechanisms in which metformin may elicit its anti-can-
cerous effects and discuss its potential role as an adjuvant in 
the management of BC.

Pathophysiology of BC

Inflammation and neoplastic transformation in BC

The importance of the immune response in BC development 
and progression has been well documented. DeNardo and 
Coussens18 highlight a possible immunological connection 
between BC and Th2 inflammatory cells that results in the 
promotion of tumour development and disease progression, 
whereas acute anti-tumour responses involving cytolytic T 
lymphocytes appear to protect against tumour development. 
Physiologically, injured tissues or cells exposed to chemical 
irritants are eliminated by apoptosis. This is followed by 
enhanced cell proliferation to facilitate tissue regeneration 
and re-establish tissue function. Moreover, proliferation and 
inflammation may persist until the insulting agent is 
removed, allowing the tissue to heal completely. If the 
inflammation persists, cells may undergo dysplastic changes, 
which then increases the risk of neoplasia.19

The role of leukocytes, especially the cytotoxic T lym-
phocytes in tumorigenesis, has been explored extensively. 
These cells are believed to assist in the eradication process of 
neoplastic cells with the help of natural killer (NK) cells.20 
Nevertheless, T-cell infiltration in invasive BC has been 
reported, especially the activated CD4+ Th1 polarised cells 

that secrete several inflammatory cytokines – including 
IFNγ, transforming growth factor beta (TGF-β), tumour 
necrosis factor alpha (TNFα) and interleukin-2 (IL-2). These 
cytokines then interact with other cytotoxic T-cells and 
upregulate the MHC class I and II molecules, as well as other 
antigen display co-factors in neoplastic cells.18,20 This pro-
cess is an essential part of immune-mediated anti-tumori-
genic effects. Conversely, activation of Th2-polarised CD4+ 
T-helper cells results in expression of inflammatory cytokines 
(IL-4, IL-5, IL-6, IL-10, and IL-13), which then enhances 
humoral immunity and downregulates cell-mediated anti-
tumour immunity; thereby, promoting the pro-tumour 
humoral response.18,21–24

Neoplastic transformation is a complex 
multistage event

BC originates in the undifferentiated lobules type 1, which 
are composed of three cell types: the highly proliferating 
cells (ER−), non-proliferating cells (ER+) and very few ER+ 
cells that proliferate. Endogenous 17 beta-oestradiol (E2), 
when metabolised by cytochrome P450 enzymes may also 
act as a carcinogen which ultimately leads to genomic 
changes and transformation phenotypes observed in sponta-
neously developing primary BCs. Endogenous E2 is metabo-
lised by P450 cytochromes that also activate benzo[a]pyrene 
B[a] a carcinogen present in cigarette smoke.25 The genomic 
alterations induced by E2 and B[a]P in vitro are also observed 
in ductal hyperplasia DCIS and invasive ductal carcinoma.

Transcriptional repressors, such as Polycomb Group 
Protein (EZH2), which traditionally controls the cellular 
memory have been linked to cancer cell invasion and BC 
progression. Kleer et al.26 demonstrated that EZH2 protein 
levels were strongly associated with BC aggressiveness. 
Moreover, EZH2 overexpression promoted anchorage-inde-
pendent growth and cell invasion through the SET domain 
and histone deacetylase activity. Dysregulated cellular mem-
ory, transcriptional repression and neoplastic transformation 
are interlinked, and EZH2 may be a marker for aggressive 
BC and neoplastic transformation. The actual neoplastic 
transformation process involved in BC is more complex than 
previously thought and warrants more long-term molecular 
studies to better understand the actual transformation pro-
cess and ways to halt such process.

Type 2 diabetes mellitus and cancer

Type 2 diabetes mellitus (T2DM) is a metabolic disorder 
which is associated with several cancers. It is characterised 
by hyperglycaemia, insulin resistance and hyperinsuline-
mia. These factors interact to promote cell proliferation 
through the mitogenic effect of the insulin receptor and 
insulin-like growth factors (IGFs), while hyperglycaemia 
provides the metabolic substrate for cell proliferation.27 
Overexpression of the insulin growth factor receptor-1R 
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(IGF-1R) or insulin receptors leads to mitogenic signalling, 
which increases activation of phosphoinositide 3-kinase 
(PI3)-Akt-mTOR signalling pathways. Excess adiposity 
increases local production of oestrogen via the enhanced 
activity of aromatase, which augments oestrogen receptor 
alpha signalling (ER-α) in tumour cells. The inflammatory 
effect of hyperinsulinemia, in addition to increasing produc-
tion of local cytokines, may lead to an increased susceptibil-
ity to cancer development in diabetes.28

A number of large-scale epidemiological studies and meta-
analyses have reported an increase in the incidence of several 
cancers in T2DM.29,30 A population-based cohort study by 
Ballotari et al.31 showed a higher cancer incidence in subjects 
with diabetes. This relationship was only observed in those 
with T2DM, but not in Type 1 diabetes mellitus (T1DM) and 
was attributed to obesity. Notably, the risk was higher among 
insulin users. An increased risk of cancer at several tissues, 
including liver, pancreas, endometrium, colorectum, breast 
and bladder has been described in multiple similar studies. 
Notably, these observations could be either causal – driven by 
the metabolic disturbances in diabetes or else due to the con-
founding effects of the underlying excess adiposity in diabe-
tes. Tsilidis et al.29 show that individual studies are, however, 
characterised by substantial heterogeneity, small study effects 
and excess significance, with 28% (135/474) of studies 
adjusting risk estimates either for age or gender. Despite the 
evidence from epidemiological studies linking diabetes to 
cancer incidence, the specific mechanisms driving this asso-
ciation are not fully understood.

T2DM and BC

Mechanisms behind T2DM and BC

Studies have shown that BC in women with diabetes is often 
diagnosed at an advanced stage compared with women with-
out diabetes.32,33 Furthermore, the overall mortality follow-
ing BC diagnosis is 30%–60% higher in women with diabetes 
compared with women without diabetes after adjusting for 
tumour stage.34,35 A cross-sectional study by Bronsveld 
et al.34 also showed no relation between diabetic status and 
tumour morphology and grade. However, premenopausal 
diabetic women tended to develop breast tumours that do not 
express progesterone receptor and HER2, which are typi-
cally associated with poor prognosis. No association between 
insulin therapy and clinicopathological subtypes was noted, 
even though insulin use in T2DM may induce oestrogen 
(ER) and progesterone receptors expression.36 Conversely, a 
systematic review of in vitro, animal and human studies 
found no evidence of increased BC risk with commercially 
available insulin analogues and human insulin.37 Conflicting 
findings were reported by other investigators. Tseng,38 
showed that prolonged use of insulin carries a significantly 
higher BC risk. A recent study by Overbeek et al.39 showed 
that females with T2DM were at an increased risk of being 

diagnosed with a more aggressive type of BC than non-
T2DM females. Interestingly, exogenous insulin administra-
tion was not associated with the development of more 
advanced BC tumours in this study. These findings suggest 
that insulin may not be involved directly in the development 
of BC. Instead, it may promote BC progression by upregulat-
ing mitogenic signalling pathways.37

The precise mechanisms linking T2DM to BC progres-
sion remains uncertain, but is believed to involve insulin-
like growth factor-1 (IGF-1). IGF-1 pathways are activated 
by a high concentration of insulin, which then goes on to 
promote cancer development via the insulin/IGF-1 hybrid 
receptors. These have a higher affinity for IGF-1 than for 
insulin and are overexpressed in BC tissues of T2DM 
patients.40–42 Nevertheless, due to insufficient evidence on 
the specific oncogenic pathways connecting hyperinsuline-
mia to BC, it is difficult to ascertain the role of insulin in the 
development of BC in premenopausal and postmenopausal 
diabetic females.

Oestrogen, diabetes and BC

Epidemiological and clinical studies have shown that T2DM 
is a risk factor for BC and is consequently associated with 
poor prognosis.43 Wairagu et al.44 investigated the effects of 
oestradiol on MCF-7 BC cells primed with and without insu-
lin chronically. The study found that insulin priming was a 
prerequisite for oestradiol-induced growth in BC cells. The 
authors demonstrate that oestradiol exposure increases 
expression of cyclins A and B, which are both involved in 
cell cycle progression and leads to the activation of genes in 
the pentose phosphate and serine biosynthesis pathways. 
Oestradiol also increased anti-apoptotic Bcl-xL expression 
in the insulin-primed cells. In addition, metformin sup-
presses oestradiol-induced growth in the insulin-primed 
cells. Critically, this study showed that insulin priming dra-
matically sensitises BC growth to 100 pmol of oestradiol.

Conversely, other studies have shown that at least 10–
100 nM of oestradiol concentration is required before maxi-
mum cell growth is attainable in BC cells.45,46 These findings 
suggest that insulin priming happens readily in diabetics as a 
result of the chronic hyperinsulinemic state even at physiolog-
ical levels of oestradiol, thus exposing diabetics to an elevated 
risk of developing BC. Oestradiol modulates cell cycle and 
apoptotic processes in insulin-primed cells, which then further 
promotes cancer cell growth. Wairagu et al.44 also showed that 
both insulin-primed and unprimed MCF-7 cells exposed to 
dihydrotestosterone (DHT) exhibit no growth response, which 
further indicates that there is crosstalk between insulin prim-
ing and ER-induced BC cell growth.

In the insulin resistant state, suppression of sex hormone 
binding globulin (SHBG) increases the bioavailability of free 
oestrogen, leading to elevated levels of serum oestrogen.47 
Moreover, IGF-1 is known to increase the production of 
androgens, which may then subsequently displace oestrogen 
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binding from SHBG.48,49 Furthermore, IGF-1 can interact with 
17-beta-oestradiol leading to increased proliferation of BC 
cells.50 Therefore, altered levels of endogenous oestrogen may 
contribute to the proliferation of ER-positive BC in T2DM.42 
Since the prevalence of obesity is high in T2DM, elevated lev-
els of oestradiol and oestrone can result from increased adi-
pose tissues aromatase activity.51 Also, hyperinsulinemia in 
T2DM may induce the expression and binding capacity of ER, 
which can subsequently enhance insulin mitogenic properties 
by promoting IRS-1 function, and through activation of PI3K 
and Ras/MAPK signalling.52 The production of inflammatory 
mediators in T2DM, mainly TNF-α and interleukin-6 (IL-6), 
which are both associated with insulin resistance in diabetics, 
secondarily enhances the oestrogen synthesis in normal and 
BC cells. This further potentiates BC development.53,54

Oxidative stress, diabetes mellitus and BC

Hyperglycaemia induces oxidative stress through direct or 
indirect pathways in BC cells by increasing levels of insulin/
IGF-1 and inflammatory cytokines, particularly IL-6 and 
TNF-α.55 Together, they activate nuclear factor kappa 
(NFκB), signal transducer activator of transcription 3 
(STAT3) and the hypoxia-inducible factor 1-alpha (HIF1α).56 
These factors result in increased free radical production, 
leading to damage to DNA, lipids and further amplification 
of the inflammatory processes [27]. The reactive oxidative 
species derived may then initiate carcinogenesis by modify-
ing the apoptotic responses, as well as disrupting cell anchor-
ing sites and increasing angiogenesis.57,58 In addition, studies 
have shown that hyperglycaemia also indirectly activates 
endothelial growth factor receptor (EGFR) via the Rho fam-
ily GTPase Rac1 and cell division control protein 42 homolog 
(Cdc42), which then stimulates the cell proliferation, thus 
providing another mechanistic link between hyperglycaemia 
and tumorigenesis.59

Hyperglycaemia leads to the modulation of various path-
ways that control cell proliferation, migration and invasion.60 
Cancer cells demonstrate enhanced glucose uptake and 
metabolism, a process referred to as the ‘Warburg effect’. 
Hyperglycaemia thus provides the necessary fuel which the 
cancer cells require, and this then allows cancer cells to pro-
liferate rapidly.61 Hyperglycaemia also stimulates upregula-
tion of protein kinase C (PKC), PPARs and proliferation in 
MCF-7 BC cell lines.62

Hyperglycaemia also promotes BC cell migration via zinc 
and its transporters (ZRT/IRT-like protein 6, ZRT/IRT-like 
protein 10). High serum glucose leads to increased expres-
sion of zinc transporters (ZIP6 and ZIP10), which are essen-
tial for promoting cell migration and motility in BC cells.63,64 
These findings emphasise the importance of stringent con-
trol of glucose levels in both T2DM and BC in order to 
reduce cancer cell proliferation.

The pharmacologic management of hyperglycaemia 
hinges on the use of sulphonylureas, metformin and insulin. 

Therapy that leads to hyperinsulinemia, such as sulphonylu-
reas and exogenous insulin, are thought to increase the risk 
of cancer, while treatment that reduces insulin resistance, 
such as metformin, are thought to reduce the risk of cancer 
development. A meta-analysis investigating cancer risk asso-
ciated with metformin and sulphonylureas in T2DM showed 
that use of metformin was associated with significantly 
decreased risk of all cancers. However, no evidence that use 
of metformin is associated with the risk of BC was derived.65 
This meta-analysis was characterised by extensive between-
study heterogeneity and evidence of publication bias with 
regard to metformin. Hence long-term randomised double-
blinded clinical trials are required to substantiate the benefit 
and efficacy of using anti-diabetic agents in BC treatment.

Metformin and BC

Mechanisms of metformin action in normal cells

Metformin (1,1-dimethyl biguanide) is a biguanide which acts 
by reducing hepatic glucose output and increasing insulin sen-
sitivity. This results in a reduction in serum glucose levels 
without the risks of either hypoglycaemia or weight gain. 
Metformin also modulates multiple components of incretin 
pathways. It increases the plasma levels of glucagon-like pep-
tide 1 (GLP-1) and induces islet incretin receptor gene expres-
sion via PPAR-α.66 Metformin is taken up by hepatocytes via 
the organic cation transporter 1 (OCT1) and inhibits hepatic 
gluconeogenesis by modulating enzymes and substrate which 
are involved in the gluconeogenic pathways.67–70 The decrease 
in hepatic glucose production results in the activation of 
AMPK, which is a cellular metabolic sensor responsible for 
protecting cellular functions under low energy conditions.71,72 
AMPK is normally activated by an increase in the intracellular 
AMP: ratio, which results from an imbalance between the ATP 
production and consumption.71

Upon activation, phosphorylation of AMPK by tumour 
suppressor serine/threonine kinase 11 (STK11/LKB1) and 
calcium/calmodulin-dependent protein kinase kinase-2 
(caMKK-2) causes AMPK to switch cells from an anabolic 
to the catabolic state. In doing so, it shuts down the ATP-
consuming pathways by inhibiting glucose, lipid, protein 
synthesis and cellular growth, whereas fatty acid oxidation, 
as well as glucose uptake, is stimulated to restore the 
AMP:ATP ratio.71 Metformin primarily acts on the mito-
chondria by inducing mild and specific inhibition of mito-
chondrial respiratory-chain complex 1 (MRCC1), which is 
present in hepatocytes, skeletal muscles, endothelial cells, 
pancreatic beta-cells and neurons.73–79 In addition, met-
formin also reduces mitochondrial reactive oxygen species 
(ROS) production by selectively inhibiting reverse electron 
flow through MRCC1.80,81

ROS are important mediators of cell and genomic damage 
and play essential roles in the pathophysiology of both T2DM 
and BC. Inhibition of ROS generation through metformin may 
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thus have benefits that extend beyond its traditional use as an 
oral hypoglycaemic agent. In this context, several studies have 
shown that metformin exhibits anti-cancer effects in BC 
patients with diabetes. Conversely, the efficacy of metformin 
and its use in non-diabetic BC patients is not widely studied, 
with conflicting effects being reported. A summary of the 
findings from studies involving metformin therapy in BC 
patients without DM is provided in Table 1.

Mechanism of metformin action in BC

Insight into the anti-tumour role of metformin in BC has been 
provided by Dowling et al.93 in a clinical trial (NCT00897884). 
Non-diabetic females with untreated BC were trialled on neo-
adjuvant metformin from biopsy till surgery for BC. 
Immunohistochemical analysis of tumour specimens showed 
a significant reduction in expression of insulin receptors, 
phosphorylation of protein kinase B (PKB)/Akt, AMPK, 
extracellular signal-regulated kinase1/2 and acetyl coenzyme 
A carboxylase. These insulin-dependent effects are consistent 
with the beneficial anti-cancer effects of metformin.

Metformin indirectly activates AMPK, leading to the 
inhibition of protein synthesis and gluconeogenesis. Thus, it 
may act to limit the availability of nutritional substrates that 
are mandatory for cancer cell proliferation.95 An overview of 
these effects is provided in Figure 1. Furthermore, AMPK 
also inhibits mTOR, which is a downstream activator of 
growth factors in malignant cells and is associated with 
resistance to anti-cancer drugs.95 The role of metformin is 
not limited to AMPK pathways. It induces cell cycle arrest, 
thereby inducing sub-G1 populations and activating apop-
totic pathways through downregulation of p53 and differen-
tiated embryo chondrocyte 1 (DEC1) proteins.96 Metformin 
administration also leads to an increase in intracellular ROS 
by disrupting the mitochondrial electron transport chain and 
collapsing the mitochondrial membrane potential. Queiroz 
et al.97 showed that metformin has time- and concentration-
dependent anti-proliferative properties on MCF-7 cells. 
Metformin exhibits pro-apoptotic effects and promotes cell 
cycle arrest via increased oxidative stress, as well as AMPK 
and FOXO3a activation.

The proliferation and migration of BC cells is suppressed 
by metformin via the dysregulation of the matrix metallopro-
teinases MMP-2 and MMP-9, in addition to downregulation 
of oncogenic microRNAs miR-21 and miR-155.98 Giles 
et al.99 demonstrated that metformin can decrease the size of 
mammary tumours and inhibit tumour formation in ovariecto-
mised rats with 1-methyl-1-nitrosourea (MNU)-induced 
mammary tumours. Furthermore, metformin promotes a 
decrease in the number of aromatase-positive, CD68-positive 
macrophages within the tumour microenvironment, as well as 
decreased lipid accumulation in the livers of treated rats. This 
study showed that metformin targets both whole-body metab-
olism and the tumour microenvironment and that the perimen-
opausal period may represent a window of opportunity where 

metformin may be highly effective in women at risk for or 
with established BC. Other investigators have produced simi-
lar findings, demonstrating decreased tumour volumes and 
reduced proliferation in in vivo animal models of BC.100,101 
Recently, Bojkova et al. showed that administration of met-
formin in a rat model with MNU-induced mammary tumours 
resulted in an increased proportion of low-grade tumours.102 A 
significant positive correlation between histological grade and 
Ki67 expression was noted. However, no differences in 
tumour incidence and frequency were observed. The improved 
tumour histopathological profile was accompanied by a reduc-
tion in serum IGF-1 levels.

Metformin also exhibits cytostatic effects analogous to 
antifolate chemotherapeutic agents. In vitro metabolomic 
studies have shown that metformin has mitochondrial-inde-
pendent AMPK-activating effects that cause defects in de 
novo purine/pyrimidine biosynthesis and homocysteine 
accumulation.103

Metformin also exerts anti-inflammatory effects in cell 
models by inhibiting the NFκB pathways necessary for 
transformation and cancer stem cell formation. It inhibits 
nuclear translocation of NFκB and phosphorylation of 
STAT3 in cancer stem cells compared with non-stem cancer 
cells in the same population, thus suppressing the early 
stages of the inflammatory pathway that is associated with 
cancer.104–106

In light of these findings from cell and animal models, it 
is natural to question whether metformin is a suitable adju-
vant and if it should be implemented in current clinical prac-
tice guidelines for the treatment of BC. Clinical data extracted 
from drug trials have shown that metformin does show syn-
ergistic apoptotic effects when used with chemotherapeutic 
agents in BC.50,107 Furthermore, when metformin is used as a 
single-agent, it may trigger cell cycle arrest in both oestrogen 
receptor positive (ER+) and ER-negative (ER–) BCs 
cells.108,109 Metformin also elicits toxic effects on cancer 
stem cells, but not on normal stem cells. This property of 
metformin is valuable since cancer stem cells play a critical 
role in cancer recurrence.104,110 A number of systematic 
reviews and meta-analyses highlighting metformin’s role in 
BC and their limitations are summarised in Table 2.

Triple-negative BC (TNBC) carries the poorest prognosis 
of all BC subtypes. In vitro studies have shown that met-
formin administration enhances the sensitivity of TNBC cell 
lines to TRAIL receptor agonists.121 TRAIL agonists (TNF-
related apoptosis-inducing ligand (TRAIL) are tumour-spe-
cific inducers of apoptosis that have strong anti-tumour 
effects in preclinical models.122 Metformin reduces the lev-
els of XIAP, a negative regulator of TRAIL-induced apopto-
sis, and provides evidence supporting the combined 
administration of these drugs. Other in vitro studies have 
demonstrated that metformin reduces the percentage of 
TNBC stem cells through mechanisms that downregulate 
Krüppel-like factor 5 (KLF5) and target its degradation.123 
The downregulation of KLF5 is mediated by glycogen 
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synthase kinase-3β (GSK3β) and inhibition of protein kinase 
A activity in TNBC cells. KLF5 is a crucial stem cell tran-
scription factor in basal-type TNBC cells, and it promotes 
TNBC cell proliferation, survival, migration, invasiveness 
and stemness.124–126 The reduced TNBC stem cell viability 
observed in vitro has significant consequences which need to 
be evaluated further in in vivo animal models. Metformin 
also has been shown to downregulate fatty acid synthase 
(FASN) levels via miR-193b in TNBC cells. FASN is an 
essential component of de novo fatty acid synthesis and is 
thus necessary for the survival of TNBC cells.127

Despite the beneficial anti-tumour potential of metformin 
in TNBC, other studies have suggested that this effect is 
reduced by higher glucose concentrations.128–130 Recently, 
Varghese et al. show that TNBC cell lines exposed to glucose 
levels in the diabetic range significantly abolished the effect 
of metformin on cell proliferation, cell death and cell cycle 
arrest. This study also showed that metformin was most effec-
tive and inhibited the mTOR pathway under glucose starva-
tion conditions; suggesting that it should be combined with 
inhibitors of the glycolytic pathway for more beneficial treat-
ment of TNBC in diabetic patients.129 In view of the mecha-
nistic evidence linking the anti-proliferative effect of 
metformin to glucose concentration in TNBC, it is natural to 
advocate stringent glucose level monitoring in BC patients 
with diabetes, particularly as the hyperglycaemic state may 
further fuel malignant cell proliferation. The anti-cancer 
effects of metformin are not limited to triple-negative and 
ER+ BC subtypes. Metformin is also effective against HER2+ 
BC since it confers anti-proliferative effects in females with 

HER2+ BC co-expressed with ER+ with ductal carcinoma in 
situ (DCIS).131 Nonetheless, the molecular mechanisms 
behind these findings are inadequately explained.

Clearly, the use of metformin in the management of BC 
requires further evaluation. Preliminary population-based 
studies have shown that metformin does not affect BC stag-
ing in older women with long-standing diabetes.132 These 
findings contrast with both the short-term window of oppor-
tunity studies and with functional research highlighted ear-
lier that show an effect of metformin on tumour growth 
characteristics.

Non-specific effects and limitations of metformin 
in BC

Like many other chemotherapy agents currently in use, the 
development of multidrug resistance by cancer cells proves to 
be a considerable challenge for clinicians. Interestingly, some 
studies have suggested that metformin may prevent multiple 
drug resistance (MDR) and may even re-sensitise cancer cells 
to standard chemotherapy agents to which they were once sen-
sitive. In vitro and in vivo animal studies show that metformin 
reduces the expression of several proteins that cause MDR.133 
Metformin also has MDR reversing properties in BC cell lines 
and re-sensitises cells to 5-fluorouracil (5-FU), adriamycin 
and paclitaxel through the activation of AMPL and mTOR 
pathways.134,135 In addition, it has been shown to modulate the 
metabolic and miRNA profile of chemoresistant cells, render-
ing them similar to chemosensitive BC cell populations.136 
Other investigators have demonstrated that co-treatment of 

Figure 1. Metformin inhibits the inflammatory pathways which are induced by hyperglycaemia and insulin resistance. This indirectly 
acts by deactivating AMPK pathways, thereby allowing the anti-cancer effects of metformin to be exhibited. Metformin also works 
synergistically with chemotherapy agents and reduces the development of resistance of BC to these agents, thereby maximising their 
effects on BC cells.
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BC cells with metformin and flavone inhibits cell viability and 
increases apoptosis of cancer cells more effectively compared 
with metformin or flavone alone.137 This potentiation of apop-
tosis is achieved by the modulation of MDMX/p53 proteins 
through PI3K/AKT pathways.

Conversely, chronic exposure to metformin has been 
shown to lead to the development of resistance in BC cell 
lines. Acquired resistance to metformin is accompanied by 
transcriptomic changes that generate a metastatic stem-cell 
like phenotype.138 In addition, it has been shown that long-
term treatment with metformin can lead to the development 
of cross-resistance to both metformin and tamoxifen in 
MCF-7 cells.139 Scherbakov et al.117 show that the acquired 
resistance to both drugs is based on the constitutive activa-
tion of Akt/Snail1/E-cadherin signalling pathways.

Why metformin confers anti-tumour effects in some, but 
not all BC cases is not clear. The AMPK-activating ability of 
metformin is central to its metabolic function in cells. Buac 
et al.104 show that breast cancer-associated gene 2 (BCA2) is 
an endogenous inhibitor of AMPK activation in BC cells. 
BCA2 encodes a RING-finger-containing ubiquitin E3 
ligase that is expressed in about 50% of breast tumours. This 
gene has been associated with both in vitro BC cell prolifera-
tion and clinical outcome.140 Inhibition of BCA2 enhances 
the growth inhibitory effect of metformin in cell models, 
thus suggesting that metformin co-administration with a 
BCA2 inhibitor can be a more powerful strategy than met-
formin therapy in isolation.141

The dose of metformin required to achieve a therapeutic 
effect is similarly controversial. Several doses have been 
used in studies with varying clinical effects. In fact, 
Schexnayder et al.142 showed that metformin at pharmaco-
logically achievable concentrations does not significantly 
improve the viability of BC cells. Instead, it inhibits inflam-
matory signalling and metastatic progression of the disease 
through reduced ICAM1, COX2, PGE2 and ROS levels. 
Cell cycle arrest and decreased cell viability were only 
reported at higher concentrations of metformin.

The mechanistic findings from preclinical in vitro 
research are not directly translatable to clinical practice. A 
recent meta-analysis of observational studies on the effect of 
metformin on the incidence and all-cause mortality of BC in 
patients with type 2 diabetes failed to identify a significant 
association between metformin exposure and incidence of 
BC, while a 45% risk reduction for all-cause mortality was 
observed.112 The uncertainty regarding the optimal dosage, 
duration of therapy and whether additional drugs should be 
co-administered with metformin to achieve synergistic effect 
further limits its clinical use. An ongoing phase II ran-
domised clinical trial (NCT01589367) aims to investigate 
the effect of the aromatase inhibitor letrozole with metformin 
in postmenopausal patients with ER + BC.143 Further such 
studies are required in order to formulate guidelines to advise 
clinicians on the possible therapeutic implementation of 
metformin in BC.

This review on metformin therapy in BC has several limi-
tations. Primarily, it does not aim to provide a systematic 
review of all mechanistic and epidemiologic evidence on the 
subject. Several authors have compiled evidence from indi-
vidual studies in an attempt to resolve discrepancies and 
inconsistencies between different investigations, and selected 
key publications are summarised in Tables 1 and 2. The extent 
of heterogeneity and discordant findings among individual 
studies is significant and serves to highlight the complexity of 
the subject. Second, the link between metformin exposure 
and BC is unlikely to be a simple cause–effect relation. BC, 
glucose metabolism and the pharmacodynamics of metformin 
represent cellular events that are intrinsically heterogeneous 
and multidimensional and that are not fully elucidated. The 
interplay between each element of this complex interaction 
depends on various genetic, epigenetic and lifestyle factors 
that cannot be fully quantified and might not be faithfully 
reproduced in invitro preclinical studies. In the era of preci-
sion medicine and single-cell tumour biology, it is essential 
for researchers to acknowledge disease heterogeneity and 
functional diversity within solid tumours as this can signifi-
cantly impact on clinical outcomes.

Conclusion and future directions

BC is an etiologically complex devastating disease driven by 
a combination of genetic, reproductive, hormonal and envi-
ronmental factors. The epidemiologic link between BC and 
disordered glucose metabolism is mechanistically interest-
ing, given that glucose is an essential cellular metabolic sub-
strate and that insulin signalling has mitogenic effects. The 
common underlying mechanism uniting T2DM and BC 
involves hyperinsulinemia, which activates several molecu-
lar pathways driving cell proliferation.144 BC has been tradi-
tionally treated with a combination of chemotherapy, surgery 
and targeted hormonal therapy; however, growing interest 
lies in the use of metformin. Metformin activates AMP-
activated protein kinase and inhibits mTOR pathways, 
thereby decreasing insulin levels in the circulation. In addi-
tion, it also inhibits the proliferation and invasion of cancer 
cells, which could limit metastatic spread. Studies have also 
demonstrated that metformin may enable cancer cells to 
overcome the development of resistance to chemotherapy, 
hormone therapy and trastuzumab treatment.

The use of metformin in the management of both T2DM 
and BC may seem practical considering that metformin is one 
of the most commonly prescribed oral anti-diabetic agents. It 
accounts for 40% of all anti-diabetic drugs dispensed in 
England over the past few decades, but only 7% of the 
costs.145 The recent ALTTO trial on metformin use in HER2+ 
BC showed that metformin may improve the worse prognosis 
that is associated with diabetes and insulin treatment in 
patients with HER2+ and hormone receptor positive BC.146 
Furthermore, promising in vivo studies suggest that met-
formin can have beneficial synergistic effects with natural 
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anti-tumour compounds such as curcumin.147 Meta-analysis 
of large cohorts have demonstrated that metformin use is 
associated with improved survival and decreased all-cause 
mortality in diabetic patients with BC.148,149 Conversely, con-
flicting clinical findings with regard to the efficacy and anti-
tumour role of metformin have been reported in the literature, 
thus strengthening the need for further research.132,150

The potential for therapeutic benefits of metformin in dia-
betics with BC is rapidly becoming an area of interest in both 
clinical oncology and endocrinology. However, more long-
term double blinded-randomised trials are needed to explore 
the precise role which metformin may play and its possible 
use as an adjuvant in clinical practice. Most current studies 
that examine metformin’s use in BC have reported a mixed 
picture on its efficacy, which could be due to the different 
doses of metformin as well as varying periods of follow-up 
used in these studies. It is clear that metformin holds consid-
erable promise with regard to a potential anti-tumour role.
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