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Abstract

ABSTRACT

Roderick Gusman, B.Sc. (Hons.)
Department of Statistics & Operations Research
April 2005
University of Malta

The objective of this dissertation is to study and apply statistical methods to the
Traveller Survey involving Likert scales. A typical approach is through factor analysis
but an alternative method is by parceling. In this study, we are considering these two
data reduction approaches, together with two extraction methods to obtain a set of factor
scores. In conclusion, we finalise this study by considering a relationship of the factor

scores with the socio-demographic variables of the tourist.
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Chapter 1 Introduction

1 INTRODUCTION

Tourism is one of the world’s largest industries. Consequently, the practice of tourism is
becoming increasingly sophisticated. The development of this industry is related to the
wide range of services including transport, accommodation, attractions and
infrastructure. Nowadays tourism is becoming more competitive and hence this
influences the fact that tourism businesses must constantly evaluate the products and
services they offer to their customers. Consequently, these businesses must revisit their
commercial goals and objectives to be more up to standard with the modern community.
Therefore, it seems that tourism, when planned and managed appropriately can act as a

valuable agent in the economic development of the countries.

Hence, for the touﬁsm market to withstand these new challenges, various surveys were
planned and analysed with the purpose of understanding better what the tourist requests.
Such a survey is the “Traveller Survey’, in which tourists are asked a set of questions.
Very often the focus is on questions in which the tourist is asked to rate the above-
mentioned services. Then, analysts apply statistical methods to evaluate these ratings so
that they can understand better the tourists’ response and deduce collective tendencies in
attitudes and behaviours. The typical statistical approach is traditionally factor analysis
but recent advances in this study showed that statistical sophistications such as
bootstrapping, jacknifing, clustering and parceling have been introduced. All these
methods are based on the same idea, namely that of data reduction and discovering the
latent factors present in the model. Then, after reducing the data into smaller groups, a

linear relationship with other variables considered in the study is formulated.
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In this dissertation, we are analysing the ‘Traveller Survey’ published by the Malta
Tourism Authority. For this analysis, we are considering a question in which tourists
were asked to rate an amount of variables that describe the physical environment and
service provided by employees of the tourism industry. But, before we start our
statistical analysis, we reduce the data since we have a large amount of missing or non-
response results. Then, we apply two types of techniques of data reduction, factor
analysis and parceling. Within these two approaches, we apply two extraction methods,
maximum likelihood and principal axis factoring. The difference between these two
extractions is that the maximum likelihood considers normality distributions while
principal axis factoring does not obey the normality conditions. From these two
techniques, we obtain a set of factor scores. These factor scores are then transformed to
satisfy the normal distribution. This is required to obtain a relationship with the socio-
demographic variables, through the application of linear models which need to satisfy
the normality condition. The objective of all these steps is to discover the latent factors
present in the ratings of various variables and then obtain a relationship of these

variables with the background or profile of the respondents.

1.1 Structure of Dissertation

My dissertation consists of seven chapters. The first is an overview of subject and
objectives of my dissertation. This is followed by a literature review that gives an idea
of the historical development of factor analysis as well as the use of factor analysis for
analysing Likert scales and tourism data. The third chapter deals with the theoretical
aspects of factor analysis and factor scores. The fourth chapter consists of a detailed
description of the case study. The next two chapters are about the application of factor
analysis, factors scores and the relationship of the scores with the socio-demographic
variables present in the traveller survey conducted by the MTA. Finally, the conclusion
summarizes the main outcomes and also confirms the need of more in-depth study of

the subject.
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2 REVIEW OF THE LITERATURE

2.1 Historical Development of Factor Analysis and Scores

2.1.1 Factor Analysis

Galton (1888) first introduced the original concept of latent factors, but the actual
mathematical model originated from Spearman (1904). Spearman assumed that the
correlations among a set of intelligence test scores could be generated by a single
hidden factor of general intellective ability and a second set of factors reflecting the
unique qualities of the individual tests. Later scientists, especially Thurstone, improved
this model from two factors to include many common factors. In the new journal,

‘Psychometrika’ we find a number of published works that focus on this approach.

There are many writings regarding this topic. Two historical writings are the books ‘The
Factorial Analysis of Human Ability’ by Thomson (1939) and ‘Multiple Factor
Analysis’ by Thurstone (1947). Two recent books that provide a psychological
perspective are those by Mulaik (1972) and Harman (1976). The one written by Mulaik,
has a complete account of the theoretical aspect while that of Harman emphasizes more

on the statistical methods and the computational matters.

The major approach of factor analysis within the statistical society is due to Lawley and
Maxwell (1971) whose book is the basis as a source of results regarding the normal

theory factor model. Recent work, such as that of Bentler, Browne, Joreskog, McDonald



Chapter2 Review of the Literature

and others are considered as a generalization of the factor model. In fact, these
generalizations are grouped under the name of the analysis of covariance structures.
These generalizations are based on the linear structural equation models, which include

not only the basic factor model but also the linear relationships among the factors.

2.1.2 Factor Scores

Henry Thomas Herbert Piaggio (1935) originally considered factor score estimation as a
solution to an indeterminancy problem. In fact, if factor scores can be computed, we
would have no need of factor score estimation. Yet, during the early 1970’s many factor
analysis texts did not discuss the basis of the indeterminacy problem and its relation to

factor score estimation.

Schonemann and Wang saw the factor score indeterminacy and non-uniqueness as
major problems for factor analysis. They pointed out that if these problems are not
obscured by misleading terminology, they could lead to an alternative approach of data

reduction such as component analysis.

McDonald (1974) did not agree with the conclusions reached by these two scientists and
he based his point of view on two major arguments. First, he pointed out that common
factors are not subject to indeterminacy since the adopted measure of indeterminacy is
not correct. He said that the minimum correlation index promoted by Guttman as a
measure of indeterminacy was unreliable. In his second point, he considered the

assumption that one of the sets of factor scores fitting the observed data was the true set.

These points of view of McDonald are very similar to those of Spearman (1933) since
both of them saw that the measure of indeterminacy is misleading our view and argued

against the pessimistic approach.

Mulaik (1976) de-emphasized the importance of this difference by stating that it is of
little importance whether we apply one of these correlations, p® or 2p* -1, if we

consider that these two indices measure different aspects of the same situation. He

proved that when different solutions for a factor have equal probability of being

considered, then the squared multiple correlation p* for predicting the factor from the
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observed variables is the average correlation p,, between independently selected

alternative solutions A and B.

Green (1976) gave a definition to what he termed as factor score controversy. He started
by pointing out the connection between the equations of multiple regression and those
of factor analysis. His argument has many similarities with an earlier work of Spearman
(1933) and Thomson (1934). He rejected McDonald’s second point and instead he
pointed out that the use of regression estimates is better since they estimated all of the
available sets of factor scores equally well. He also noted that the factor scores are all

equally correct since they are all properly estimated by the factor score estimates.

2.2  Influence of Factor Analysis

2.2.1 Likert Scale

It is important to bring to our attention that Likert was not the first to obtain subjective
ratings and that the early scale developers used far more sensitive scales than we
currently employ. Freyd (1923) discussed the various scale forms available at that time
and noted that they tended to be based on 10-point or 100-point formats. This
numbering system was definitely the most intuitive and easy to visualize since the
traditional counting involved the fingers or toes. It also had the advantage of having a
perception of equal psychometric distance between the scale points. This was an
essential supposition when such scale was used in combinations with parametric

statistics.

Freyd then introduced his ‘Graphic rating method” which had the following form:

Does he appear neat or slovenly in his dress?

Extremely neat | Appropriately . Somewhat
and clean. and neatly Incgnsp 1CUOUS | areless in his Very slovenly
in dress and unkempt
Almost a dude. dressed. ) dress. pt-

The above scale was intended to be used in conjunction with job interviews. He

considered a line present on these scales so that the respondents can tick anywhere
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they wished. Then, he recommended scoring the responses by dividing the line into

10 or 20 equal intervals.

A few years later, Watson (1930) published a similar scale to measure an aspect of

subjective quality of life (SQOL) as follows:

Happier, on the
Most ?Egﬁt thz;; The average | whole, than three-
mi osbl g ulaiign are | PETSOR of your fourths of the Happiest
15?231 © hg p ‘or than vou | OV 2ge and population of of all
PP y sex similar age and
are sex
Then, the scale was scored from 0 to 100.
In 1932, Likert produced his scale which had the following form:
Strongly . . Strongly
Approve Approve Undecided Disapprove Disapprove

This format is clearly derivative from the previous ones. This scale reduces significantly
the number of effective choice-points in two ways. Firstly, the scoring system is no
longer continuous and therefore, respondents were now required to tick were necessary.
This new format reduces the scoring system to a 1-5 scale. Secondly, he has introduced

the bi-dimensional scale with a neutral mid-point.

More than six decades have passed since Likert’s formulation was published and until
now, it has remained the most popular. The reasons of this popularity include the type
of psychometric investigation to which it has been subjected, the difficulty of generating
substantially larger numbers of labelled choice points, and the complex nature of

alternative scales.

A popular method of obtaining information on human knowledge, attitudes, and
behavioural preferences and so on is by applying these types of scales in survey
questionnaires. The traditional statistical methods to analyse survey response are
frequency analysis, t-test and the measures of central tendency. However, there is a flaw
since these methods do not describe the correlation occurring at or between scale level

responses, which are the most important features to evaluate unobservable patterns.

6
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From these correlations, we are able to explain the behavioural patterns that are shared

within or uniquely associated with some groups of respondents.

Kim and Mueller (1978) argued that factor analysis is an approach in which we can gain
insight to survey responses. Factor analysis is a statistical procedure, which extracts a

small number of latent variables from a large set of observable variables.

With the advancement of computer knowledge, the issue of tackling Likert scale data is
becoming more manageable since modern statistical packages, such as Spss, SAS etc

are rendering this analysis easier and reliable.

2.2.2 Tourism Data Analysis

Tourism is one of the largest industries in the world (World Tourism Organization
[WTO], 1998) and it continues to grow. Tourism is a multifaceted field and tourism
research focuses on a variety of areas. Smith (1989) classifies tourism research into the
following categories: (1) tourism as a human experience, (2) tourism as a social
behaviour, (3) tourism as a geographic phenomenon, (4) tourism as an economic

resource, (5) tourism as an industry, and (6) tourism as a business.

Reading various papers; (1)Sevil Sonmez and Ercan Sirakaya “A Distorted Destination
Image? The Case of Turkey”, (2) Nick Johns and Szilvia Gyimothy “Market
Segmentation and the Prediction of Tourist Behaviour: The Case of Bornholm,
Denmark”, (3) Metin Kozak and Mike Rimmington “Tourist Satisfaction with Mallorca,
Spain, as an Off-Season Holiday Destination” and others, we note that factor analysis is
the most appropriate statistical approach. There are various areas in which factor
analysis is used, such as in image analysis, where the gathered data is analyzed to
understand the tourists’ perspectives of that country. The focus of these types of
questionnaires is that of supporting promotional exercises. Another issue is the
marketing aspect, in which the factors obtained from the different data sets show a
behavioural differentiation between specific activities. Marketing strategy consists of
the following interrelated tasks: (1) setting marketing goals, (2) segmenting the market
and selecting one or more target markets, (3) positioning the product/service, and (4)
developing the appropriate marketing mix (Harrell & Frazier, 1999, Perreault &
McCarthy, 1999:53). Prior to addressing these tasks, a SWOT (Strengths, Weaknesses,

7
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Opportunities, and Threats) analysis should be completed. A typical example is the

traveller survey.

Most recent traveller surveys are now more elaborate since in addition to the traditional
socio — demographic questions, attitudinal questions are added. Although attitudinal
surveys are not generally classified as qualitative methods, they provide a means for
measuring qualitative factors important in travel behaviour. Most traveller surveys
follow the same pattern where a series of attitudinal questions in the form of statements
are asked. The respondents are asked whether they agree or disagree on a 5-point or 7-
point scale, known as Likert scale. Factor analysis is usually used so that it reduces the
questions into a smaller set of factors that are then included as exploratory variables in
the travel behavioural models. Analyses of these surveys constantly show that at least

some attitudinal factors are significant predictors of travel behaviour.
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3 STATISTICAL METHODOLOGY

In this chapter, we have integrated the main theoretical results that are at the centre of
the statistical techniques considered in this study. We have two sections in which we

focus on the factor analysis and scores estimation respectively.

3.1 Factor Analysis

3.1.1 Introduction

Factor analysis is a mathematical model that attempts to explain the correlation between
a large set of variables in terms of a small number of underlying factors. These
underlying factors are most of the times unobservable and these are present in subjects
such as psychology. In fact, psychologists originated the concept of factor analysis since
in psychology it is not possible to measure exactly certain abstract quantities one is

studying.
3.1.2 The Normal Factor Model

3.1.2.1 Definition and Properties

Let x be a (p x1) random vector with mean p and covariance matrix X . Then x fits the

k-factor model if it is represented in the form

x=Af+u+p



Chapter 3 Statistical Methodology

where A isa (p X k) matrix of constants
fisa (kx1) random vectors, and

uisa (px1) random vectors.

The elements of f are known as common factors while those of u are called specific

factors. Both f and w are assumed to be jointly normally distributed.
Ay o 7“11(

A=|-- - .| is the matrix of factor loadings since, ; is a parameter reflecting

A

pk

the importance or in other words the loading of the jth factor with the ith response.

Typical applications of the k-factor model are for instance in psychology, where x may

represent p results of tests measuring intelligence scores. One common latent factor

explaining x € R” could be the overall level of intelligence. In marketing studies, x may
consist of p answers to a survey on the levels of satisfaction of the customers. These p
measures could be explained by common latent factors like the attraction level of the

product or the image of the brand, and so on.

Now, we assume that

E(f)=0and V(f)=E(ff')=1I,
E(u)=0, cov(uiuj) =0,i#]j

and that f and u are independent so,

cov(f,u) =E{[u-E(u)][1-E(f)]} =E(ut') =0.

Y, et 0
Let us define that V(u)= E(uut ) =¥=| ! "
0 ves pr
These assumptions, together with the factor model compose the orthogonal factor

model.

10
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Hence, for the orthogonal factor model we can evaluate the expectation and the

covariance matrix of x as follows
E(x)=E(Af+u+p)=AB(f)+E(u)+p=p since E(f)=0 and E(u)=0
and

= cov(xx‘): var(x) = var (Af +u+p)=Avar(f)A' +var(u) = AA" + .

Another representation of the factor model is
k
X, = Z?uijfj +u, +p,i=1,...,p
j=1
implying that the variance matrix of x is

k
_ 2
Gy = 2 :)\‘ij Ty
i=1

Therefore, the variance of x is split into two parts. The first part, known as the

communality is

b= 32,
=

The communalities represent the part of the variance of x; that is shared with the other
variables through the common factors. The second part v, , known as the specific

variance, defines the variability of x; not shared with the other variables.

To clarify the concepts above we perform a few numerical calculations by considering a

one-factor model.

Example: Suppose population X is

0.65642 -0.084483 0.088283
cov(x) =| -0.084483 0.2633 -0.0225 |=X.
0.088283 -0.0225 0.10997

7"12 Mh, A, v, O 0
But T=AA+¥ =LA A MA [+ 0 y, O
MA A, k§ 0 0wy,

11
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My, My, A 0.65642 -0.084483  0.088283
Therefore, | A\,  A2+y, A\, |=|-0.084483  0.2633 -0.0225
MA A, AZ+wy, ) (0.088283 -0.0225 0.10997
0.65642 =\ +y,, -0.084483=\,),

This implies that 0.2633 =1 +v,, and 0.088283=)\,}, .
0.10997 =22 +v,,  -0.0225=),),

-0.084483 =, and 0.088283 A,

1 1

Hence,

> 0.0225=0,1, = ( -0.084483J[ 0.088283] _ —0.007458

A A A
=\ =0.33147
=), =0.57573

0.65642 =12+, = 0.3315+y,,
=y, =0.324953 '

Similarly for the other A ‘s and v ‘s. Therefore, we get

A, =—0.146741
A, =0.153341

vy, =0.241767
v, =0.086457

M) ( 057573 w, 0 0) (0324953 0 0
SA =[0, |=) 0146741 |and W, =| 0y, O |=| 0 0241767 0
A ) | 0.153341 0 0 wy, 0 0 0086457

Therefore, we can say that for the covariance matrix given we have the factor analytic

representation given above.

12
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3.1.2.2 Scale Invariance

It is important to note that factor analysis is unaffected by a re-scaling of the variables.

Let y = Cx where C =diag(c,). So for the k-factor model, let A=A _and ¥ =Y¥_.

Therefore, we obtain
y=Cx=CA f+Cu+Cp
and

var(y) =CZC=CAA'C+C¥ C=A Al +¥,.

Hence, the k-factor model holds for y with factor loading matrix A, = CA, and specific

variance ¥, = C¥,C =diag(c]v;) .

Example: Let us take the previous example and let’s consider C to be

2 0 0
C=|0 5 0 |. Therefore
0 0 3
2 0 0)(0.65642 -0.084483 0.088283)(2 0 0
CIC=|0 5 0| -0.084483 0.2633 -0.0225 || 0 5
0 0 3 /10.088283 -0.0225 0.10997 )\ 0 0 3

2.62568 -0.84483 0.529698
=-0.84483 6.5825 -0.3375
0.529698 -0.3375 0.98973

But this is equal to CA A C+C¥ C, where

0.57573 0.324953 0 0
A, =|-0.146741 |and ¥, = 0 0.241767 0
0.153341 0 0 0.086457

2 0 0)( 0.57573 1.15146
Therefore, CA, =| 0 5 0| —0.146741 |=| —0.733705
0 0 3 )1 0.153341 0.460023

13
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1.15146
= CA, A C=| -0.733705 (1.15146 -0.733705 0.460023)
0.460023

1.325860 —0.844832 0.529698
=|—-0.844832 0.538323 -0.337521
0.529698 -0.337521 0.211621

and
2 0 0)(0.324953 0 0 2 0 0
CY C=|0 5 0 0 0.241767 0 0 5 0
0 0 3 0 0 0.086457 )| 0 0 3
1.299812 0 0
= 0 6.044175 0
0 0 0.778113

2.625672 —0.844832 0.529698
~CA AN C+CP, C=|-0.844832 6.582498 -0.337521 |=C=C.
0.529698 —0.337521 0.989734

3.1.2.3 Non-Uniqueness of Factor Loadings

Now, given that the k-factor model for x holds, then it also holds if the factors are

rotated. Therefore introducing an orthogonal (k x k) matrix G, X is written as
x=(AG)(G'f)+u+p.

Given the presence of the new factors G'f and new factor loadings AG , the k-factor
model is still valid since the assumptions of the random vector f are applicable. This

implies that the covariance matrix T of x is transformed to

Z=(AG)(G'A')+¥.

14
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If ¥ is fixed, this rotation hinders the decomposition of £ in terms of A and ¥ . This

is solved by rotating the factor loadings to satisfy the following constraint
A"W'Ais diagonal .

An interesting observation can be made by comparing the number of parameters of T
when it is unconstrained with the number of free parameters in the factor model and
letting s signify this difference.

.5 = number of parameters of Z - free parameters
1 1
== ~2—p(p+l)—{pk+p-§k(k—l)}

== 3(p-k) -5 (p ).

If 20, A, ¥ are known and the rotated factor model holds, then ¥ is written in

terms of A and ¥ subject to the constraint A"P'A is diagonal on A .

In the case of our example, we have that p is equal to 3 while k is equal to 1. Therefore,

s =%(3-1)2 -%(3+1) :%(4)-%(4): 0>0.

3.1.2.4 Use of the Covariance Matrix S

An estimation strategy can be devised by replacing £ by S in the previous equation.
Therefore, we have to estimate A and W from S, that is evaluating A and ¥ such that

they satisfy the constraint A"¥~'A is diagonal for the equation

S=AA .

Another representation of the diagonal of S is

Mw

\]Iu, = ,...,p

1

=¥ =5, -Z i i=L.p.

15
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Let us take into consideration those estimates that satisfy the equation of {, and that

k A
¥, =0. Then, setting =AA'+¥ implies that &, = DA
=

R
Vi

k k
o $2 2
=0, = E Ay sy — E A, 1=1,...,p

5 TW; and substituting for

Depending on the difference value of s, there are three possibilities that can occur in S.

1. If s <0, S has more parameters then equations. This implies that there exists an

infinity of exact solutions of A and ¥. As a result the factor model is not well

defined.

2. If s=0, S can be solved for exact solutions of A and ¥. Thus, this model has

the same number of parameters as X.

3. If s > 0, there are more equations than parameters. Hence, to solve S we use

approximate solutions.

3.1.2.5 Use of the Correlation Matrix R

Note that the factor model is scale invariant, so we shall take into consideration

estimates A=A and W =¥, which are scale invariant.

Let Y =HXD]"” where D, = diag(s,,.....s,, ), denote the standardized variables so that

Zn:y,j=0and

r=]

1S, .
»~Zy;j =1,j=1,...,p.
nl;l

Then the estimated factor loading matrix of Y is A =D;?A_ and the estimated

. . S -1 . . .
specific variances are WV, =D;¥,. Consequently, the correlation matrix of x is

RéAyA;+‘i’y.

16
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The correlation matrix R has the value of 1 in its diagonal so

implying that '¥'; is no longer a parameter of the model but a function of A .

Observe that R is made up from p fewer free parameters than S. s, the difference
between the number of equations and the number of free parameters present in R, is still

calculated by

3= (-1 -2 (p+K)

where the p equations for the estimates of the scaling parameters are given by
6, =s;, 1=1,...,p.
Example: Using the data of this thesis, we consider a one-factor model and apply the

following (4x4) sample correlation matrix R from x, till x,.

TR A W A, A, 1 026027 021564 0.2454

MA M, A, R, | 026027 1 0.10072 0.14221
A A, 2+, A, 021564 0.10072 1 0.3529

A RA, RA A2ey, ) 02454 014221 03529 1

With the given values of R, we obtain the following answers

Ak, =0.26027, 4,4, = 0.21564 and & &, = 0.2454
=%, =4,0.82852and &, =1.138%,

Also, &k, =0.10072

= %20.82852=0.10072
=142 =0.12157
=%, =0.34866

17
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Therefore ,0.34866 = 0.10072

=}, =0.28888
=, =0.32875
=}, =0.74646

Now, \Tfn —':1‘7\'12:\?’22 =l-7»§, Vs :1'7"§ and\T’M =1-7»i

= {,, =0.442797
¥, = 0.878436
{1, = 0.916548
¥, =0.891923

Since {1, =1-h? =1-42, the model explains a higher proportion of the variance of x,

than of x,, x, and Xx,.

Now, we shall consider two methods of estimating the parameters of the factor model
when s > 0. The first method is the principal factor analysis and the second one is the
maximum likelihood factor analysis. The latter is applied when we assume the data to

be normally distributed.

3.1.2.6 Methods of Estimation

(i): Principal Factor Method

This method is constructed so as to estimate the k-factor model parameters A and ‘.

Let the data yield the correlation matrix R.

First, obtain estimates ﬁf of the communalities hiz, i=1,...,p. There are various ways
to estimate the communalities such as when considering the largest correlation

coefficient between the ith variable and one of the other variables, that 1S, max

J=i

rijl'
The most frequent method of estimation is by considering the square of the multiple

correlation of the ith variable with all the other variables.

18
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Then, consider the matrix R-¥ , wWhich is called the reduced correlation matrix since
the 1s on the diagonal are replaced by the estimated communalities h’ =1-V,.

Applying the spectral decomposition theorem (view Appendix A), it is evaluated by

14
W=D av T
i=1

where a, >...>a  are eigenvalues while Vayoe sV (p) A€ the orthonormal eigenvectors.

Now, consider the supposition that the first k eigenvalues of the reduced correlation

matrix are positive. Then, the ith column of A is estimated by

i(i) =a}/2y(i),i =1,....k.

In other words, it means that f\.(i) is proportional to the ith eigenvector of the reduced
correlation matrix. In matrix form, it is presented as

A=T,A"
where T, = (y(l),..., y(k))and A, =diag(a,,...a, ). Since the eigenvectors are orthogonal,

then, A'A is diagonal which satisfies the constraint A"P™'A is diagonal. Then, the

modified estimates of the specific variances are given by
¥, =1-Y 42, i=1,...,p which is in terms of A .

Note that, in this method we are performing data reduction and hence considering the
estimated value of R—W . If the data reduction was to perform well, we will obtain
some eigenvalues which are positive and others which are 0 or close to 0. In that case,
the principal factor solution would be suitable if all the ;s are non-negative.
However, due to our estimation process, our data reduction may provide us with a
mixed set of eigenvalues, made up of positive, negative and zero eigenvalues.
Consequently, our principal factor solution would be suitable depending on the nature
of the eigenvalues. In fact, it may be the case that the principal factor solution is

suitable if for example all Vs, ’s are all positive or if all \;; ’s are non-negative or also if

all the j; ’s are negative.
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(ii): Maximum Likelihood Factor Method

In maximum likelihood estimation, under normality, the data considers both f and u to
be jointly normally distributed, where f ~ N, (0,I) and u~ N, (0,%¥). Then x, which is
a linear function with respect to f and w, is also normally distributed where

X~N_ (p,Z). Therefore, the joint distribution of the X’s is

L(x;p,Z) =272

-n/2 1 -
e {33 (w2 ).
i=l
The log-likelihood function of L is

I(x;p,Z)= —%log 273 —%trZ"’S —%(i— p) = (X-n)

where S = lzn:(xi ~X)(x; —X)' is the sample covariance matrix.

i=1

Replacing p by its maximum likelihood estimator X=Ji, then the log likelihood

function becomes

I =—log|2n%|-24z7'S .
2 2

Taking into account that Z=AA'+%¥ is a function of A and W, then / can be

maximized with respect to these parameters.

Consider the function
F(A¥)=F(A,¥;8) =TS ~log|[z™s|-p

where X =AA'+ .

F is a linear function of the log-likelihood / and a maximum in [ is equivalent to a
minimum in F. The minimization of F is split into two stages. The first stage is to

minimize over W and the second stage is to minimize over A .
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Let us begin by differentiating with respect to the specific variances. Theh, we have that
F(A.¥)=F(A,¥;8)=tr="'S ~log|[Z™'S|-p.

Note that, ¥ =X —-AA' is a diagonal matrix and we would like to estimate the

coefficients with respect to X . Hence, we can consider

Now

5(~log[>"8]) 5(log|%|-log]s])

o% oz
=% since Olog|X| =X
oX
a1 [2":
08 Xinu]
Where |X| = zp: x,;X;; » which implies that Olog !X! - = _ ﬁ
il ox; 0x;; IXI
- dlog|X| _x
oX
o(trZ™'S 4
Now diag ((—62—)] is a diagonal matrix with entries ?(t_;zﬂ )
O

a(t='s) o(tX'S) po,
= * where o, are the elements on the diagonal of X
06 . oo, 0Jo

il ii i

Now, we have that

_ - I
Qg—l = —Z“lJHZ'l and M =S
96, oz
o (z7's)
== _E_ISﬁJnZ_I
do;,
-1
n(zs)
oz

where J; denotes a matrix with 1 in the (i, i)th place and zeros elsewhere.
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Gathering all these derivatives, we obtain

%: diag (2™ - £7'S™) = diag (2 (2-8) =),

Our derivative is not equal to zero, but we set the derivation equal to zero to solve the

likelihood equations. Therefore
diag(f:-‘ (i—s)ﬁ:—l)=0

= diag (i‘l) = diag(‘zel‘ISi’1 )

Now, let us obtain the other set of equations by differentiating F' with respect to the

loading parameters. Therefore, we have that

e
OA \O0Z J\OA

We already have Z_]; derived from the above procedure. Therefore,
95:2—‘(2—3)2"‘.
o0z
O(AAN' +VW t
Now,a—z= ( )=6AA 6le~A.

=
OA oA ON OA

Grouping these two derivatives together, we obtain

(L)) -9z

Since our derivative is equal to zero, we can simplify the equation to end up with

SEA =A.

Considering this equation diag(i"l) = diag(f)"ISfJ“l ) , pre and post multiply both sides

by ¥ =%—AA'. Then we have
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diag [(ﬁ:-—[\fv )(&)(2-AA )] — diag [(i—f\fv )(£s5)(£-AA" )} .

diag [z —2AA" + M‘i“[\fx‘] = diag [s ~SSTAA' —AA'ETIS + M‘z”:—lsi‘lfu"\‘].
Now, using the second derived equation, SS'A = A, we can simplify

diag[£-2AA* + AR'S AR | = diag[S - 2AA" + AA'SAAY]

= diag(f)) = diag(S)

or that the estimate of the variance is equal to the sample variance.

However, there is a problem, since we need to invert a (pxp) matrix. Therefore,

SE'A = A is written in an alternative way

A solution of the maximum likelihood equations is by representing the above equation

as

n ~

(S—‘i’)‘i"lA - A(f\“i’"f\).

Pre-multiplying both sides by ¥™/? we obtain
2 (5B iA = $R (A1)

[‘i—“” 2 (S - ‘i’)‘i’"“ > J P2 = P2AT where J = APA s required to be diagonal.

The successive diagonal elements of J are the first m characteristic roots of

P2 (S—‘i’)‘i’"”z and the ith column of W™?A is the characteristic vector of

g2 (S—‘i’)‘i"” * corresponding to the ith largest characteristic root. However, the

solution for the roots and vectors must be made iteratively, for the elements of
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diag(fl —S) = diag(f\f\t +‘i’~S) =0
-¥= diag(S—f\f&‘)
are unknown. Hence, we begin with an initial approximation of ¥ and extract the

characteristic roots and vectors of ¥~/2 (S —‘i’)‘i"” > to obtain the first approximation

to A . Then, we compute a second approximation of ¥ by diag(S—M‘) and then

estimate the characteristic roots. Then, we calculate a second approximation of A . This

iterative process is continued until the elements of ¥ and A matrices have converged

to a satisfactory degree.

3.1.2.7 Goodness of Fit Test

For the maximum likelihood method, it is possible to check the adequacy of the k-factor

model for generating the observed covariances or correlations. In this case,

Z=AA"'+¥ and testing the adequacy of the k-factor model is equivalent to testing the
null hypothesis

H,:Z=¥+AA"

versus the alternative hypothesis (H, ), which states that ¥ is any other positive definite

matrix.

Now, to test the null hypothesis H, against the alternative hypothesis H,, we use the

likelihood ratio statistic, which states that asymptotically, as n — oo

0| max L .
max L,

1 2 1 .
where s = E(p -k) -E(p+k) degrees of freedom and L, is the largest value which the

likelihood function can take; 1=0,1.
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Now, we have that In(max L,) =~ % log|2n%|— % trz"'S and

In(max L,) = —-%k)g |2nS| - % p . Therefore,

-21n(nn’$i‘:)=~2[h1(maxLo)—1n(maXLn)]

e B n
=2 [—%log |2n3)| —%trz 'S+ ~2—log|2nS' +5p}
= [:n log |2n| +nlog IEI +ntrZ'S—nlog l27t| -nlog IS] - np]
=n [trE"S —log [2“ l —log|S|- p]

= n[trZ"S —log IZ_lsl - p]

However, we know that F (A, '¥)=tZ™'S~log '2”'8\ —p, therefore

—21n(maXL°]=nF(A,‘{f)
max ,

which is asymptotically chi-squared distributed with s degrees of freedom since it is

equal to our statistic.

max L,

Bartlett, showed that the chi-squared approximation of —2111( } improves if n is

max L,

replaced by

1 2
'=n-1-—(2p+5)-2k.
n'=n 6( p ) 3

3.1.3 Fitting Without Normality Assumptions

Until now, we have considered that our model obeys the normality conditions.
Nevertheless, data rarely satisfy these assumptions. In fact, it is more probable to have
non-normal distributed data. In particular, our data under test does not satisfy the
normality assumptions. Hence, now, we will consider the theoretical approach when we

fit without normality assumptions.
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Let us consider the case when nothing is assumed about the distributions of f and u. We

can still consider the covariance matrix of the k-factor model to be equated by

T=AA'+Y¥.

Hence, we will estimate the values of A and ¥ by the sample covariance matrix S. For
this to be possible, we need to obtain a scale measure of distance between £ and S,
which is minimized with respect to the parameters. The idea of a distance is that it
separates as much as possible the entities, which are not similar so that they give us

clarity. Let / be maximized so that we obtain a distance function

A(2,8)=-tr="'S +log|[Z™'§).

We note that there are other possible methods to measure this distance. For example, a

simple least squares criterion is

A, =tr(S-2).

Another method is that of using the matrix S =¥ 2S¥™"? as used in maximum

likelihood estimator
8, =tuf(s -2 Y} = fw 52y ¥ (s -z) v

These two equations are special cases of the general class of measures and the general

formula is

A=tr{(S-Z)V}).

An important aspect of A, and A, is that the optimization requires only a solution of a
simple eigenvalues problem. For the case of A, the function that requires to be
minimized is

A, =tr(S-Z)’, where £=AA'+W¥

= A, =tr(S-AA —F).
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Differentiating with respect to A

%i—‘z—«Z(S—AA‘ ~¥)A :{A(A‘A)-—(S—‘P)A} =0

=(S-¥)A=A(A'A).

Now, differentiating with respect to ¥

%=~2(S—AA‘—‘P)=O
v

= diag%% =—diagS + ¥ +diagAA' =0

=W =diag(S-AA').

Assume that ¥ is known, then (S - ‘P)A = A(A‘A) is satisfied if:

a) the columns of A consist of any ¢ eigenvalues of S —¥

b) the diagonal matrix AA' has elements equal to eigenvalues of S—¥

corresponding with the vectorsin A .

Therefore, if we have a starting value of ¥ in (S—-¥)A=A (A‘A) , we will generate a

first approximation of A which will then be inserted into ‘¥ = diag (S—AA‘) to

produce a second estimate of W. This process continues until convergence to a

satisfactory degree is obtained.

Example: To clarify the process above, let us consider a one-factor model, where the
covariance matrix C is a representation of S. From C we obtain the column vector D,
representing A and let us consider an initial value for B, which is equivalent to ¥ .

Therefore, we have

2.5833  -0.16667 -1.635 0.5 0 0
C=S=|-0.16667 0.72333 -0.457 |and B=¥=|0 035 0
-1.635  -0.457 1.4788 0 0 041
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2.0833 -0.16667 -1.635 d,
Let F=(C-B)= (S —‘P) =|-0.16667 0.37333 -0.457 | andtake D=A=|d, |.
-1.635  -0.457 1.0688 d,

Therefore, we have that F =DD" from (S—¥)A = A(A‘A) , which implies that

2.0833  -0.16667 -1.635 d; dd, dd,
-0.16667 037333 -0.457 |=|d,d, 4 d,d,
-1.635  -0.457 1.0688) (dd, d,d, d?

= d? =2.0833 d, =1.4437
d2 =0.37333 and then we get d, = 0.611
d? =1.0688 d, =1.0338

Now, using iteration ¥ = diag (S - AA‘) , we obtain a new value for B.

0.4991
~.B =diag(C-DD")=| 0.3500
0.4101

So we can say that for the given sample covariance matrix S and initial value of ¥ we
can generate a value of A . Then, we can continue until we reach the required

convergence.

Now, to find the eigenvectors of S—'¥ that form part of A, we use the following

equation

A =tr(S-Z) =tr(S—¥-AA')
=tr(S—¥)’ —2tr(S—¥) AA +tr(AA')
but (S—¥)A=A(A'A)
= A, =tr(S—¥)’ —2trA (A'A) A" +1r(AAY)
= r(S—¥)’ —2tr(AA'Y +tr(AA')

= A, =tr(S-%) ~tr(AA'.
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Now AA' has (p-q) zero eigenvalues since it is of rank g. The other eigenvalues still
form part of S—%¥, so S—%¥ is of rank p. Assume that the eigenvalues common
between the two matrices are 0,,...,6, and the remaining eigenvalues are 0.;,...,0,.

Therefore A, is expressed as

A=30-0=3 6.
i=1 i=1

i=q+l
For this expression to be a minimum 6,,,,...,0, must be the smallest eigenvalues. This
implies that A is composed of eigenvectors corresponding to the g largest eigenvalues.

This particular procedure is known as the principal factor (or axis) method because it is

quite similar to the principal components analysis where ¥ =0 .

Now, we consider the estimation process of A, by differentiating with respect to A .

aaiz - [\P—I/ZST~1/2 _ ‘I"”zAAt‘I’_m _I]T-l/zA — {A* (A* )t A* —(S* —~I)A*} -0

since A" =¥ 12\ and S =¥V Sy?

= (8 -1)A"=A" (A7) A).

Let us consider differentiating A, with respect to ¥ . We note that this process is very

complicated. In fact, the above-mentioned methods are a lot easier if we know ¥. A
method of how to avoid this problem is by eliminating ¥ since it only forms part of the
diagonal elements of Z. This approach is known as the minres method. In this case, If

we consider the case for A,, we would then minimize

Al =tr(S—AAY).

3.1.3.1 Estimability

A necessary condition for the parameters to be estimated is that we need to have at least

as many sample statistics as there are parameters. In the k-factor model, there are
(pk+p) parameters but to have a unique solution, we need é—k(k-l) constraints.

Therefore the number of free parameters is
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pk+p—%k(k—1).

S has lp(p + 1) distinct elements, so for a consistent estimation, we need
2

2o(p+1)-pk-p 2 k(k-1) =2 (p-k) ~(p+) | 20.

3.1.3.2 Goodness of Fit and Choice of q

Amemiya and Anderson (1985) showed that if the elements of f are independent and

max H,

that both f and u have finite second moments, then, if ~21n( )z nF (A, W) is

max H,

evaluated by the maximum likelihood estimators, it has the same distribution as in the

normal case. This result also holds for another goodness of fit statistic

There are also two other methods which do not depend on distributional assumptions.
They are based on the role of the eigenvalues of the sample correlation matrix within

the principal component analysis.

The first method is the Kaiser — Guttman criterion that chooses q equal to the number of
eigenvalues greater than one. The underlying principle is that the average contribution
of the evident variable to the total variation is one. Also, the principal component which
did not contribute at least as much variation as a single variable represents no

advantage.

The second method, presented by Cattell, is known as the ‘scree test’. The concept is
that the eigenvalues are plotted on a decreasing curve against their rank order. Then, we
search for a prod in the curve that will indicate the point from which further addition of

factors shows diminishing yield in terms of variation explained.
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3.2 Factor Scores

3.2.1 Introduction

So far, we have concentrated on the point of how the observed variables are functions of
the unknown factors. Now, let us consider the other side of the coin, where we want to
know how the factors depend upon the observed variables. This second approach is the

concept of factor scores.
3.2.2 Estimation Method

The most commonly used methods of estimation are the Bartlett’s also known as least
squares method and Thomson’s known as the regression estimate. Now, we will focus

on the theoretical approach of these two methods.
3.2.2.1 Bartlett’s Method

Let x be a multinormal random vector of the model x=Af +u+p and assume that
A, Pandp =0 are known. Let f be a (kXI) vector formed from the common factor

scores and let x havea N, (Af,'¥) distribution, i.e.

f(x) =2n)™" | W[ exp [-%(x -AD) W (x- Af)} :

Therefore the log likelihood of x is:

1 § 1
I(x,f) = ——2—(x—Af)t ¥ l(x—Af)—Elog|2n‘I’|.

Taking the derivative of / with respect to f and setting equal to 0 gives:
ol

e AP (x-Af)= AP 'x-APTAF =0

=AY 'x=A"PTAL

—f= (A“P“A)_l APy
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Bartlett’s procedure is intended to keep the non-common factors fixed so that they are
used only to explain the discrepancies between the observed scores and those
reproduced from the common factors. From this, one can estimate the specific factor

scores through the equation:

G=x-Af.
Let us cvaluate the expected value and the predicted error. Therefore,

Bartlett’s expectation is:
B(flf)= E((A“P"A)_l A‘T“‘x)
=B(f|f)=(A¥7A)" AP E(x)

(A"P'A)" APAS since E(x) = Af

= B(f}f)

= B(f[f)=1.

and Bartlett’s predicted error is:

AE((f‘—f)(f—f)t)A‘

E(A(f‘—f)(f'—f)t A‘)

=E((x—x+u)(x—x+u)t)

=E(uut)

but E(uu‘) =¥,

So AE((f—f)(f‘—f)t)A‘ —y

E((f ~1)(i-1) ) =(AeA)”
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3.2.2.2 Thomson’s Method

For the alternative estimate, let f be a random vector with a N, (0,1) distribution. First,

we consider the Bayesian approach for the common factor f:
P(f|x)cc exp(—%(x ~Af) P (x —-Af)j xexp(—%f‘f)

= f ocexp [—%(x—-Af)t P! (x—Af) —%ftf} :

Taking logs and then differentiating with respect to f, implies:
/=Inf = —%(X—Af)t g (x—Af)—%ftf

= % = AP (x— Af)—f = AP AWAT - £ =0

S AP x= APIAF+£
= AP 'x= (1 + A“I’"’A)f

=1 =(I+ A 7A) AP x.

If we evaluate the expected value, we obtain the following

*

E(f

f)=E ((1 FAEAY A“I’“x)

= E(f'[f)=(I+ A"P"'A)” APE(x)

= E(f'[f) = (I+A"P7A)" A"P'AS since E(x)=Af.

Similarly, we evaluate the predicted error to obtain

F((f -f)(f* -—f)t) = E(f*f*t)-ﬁ(f*f‘)-E(ff**)+E(ff‘)

Now E(ff')=1.
a d a ad ae af
Let f =| b |andf =| e |, therefore £'f' =| b (d e f)=[bd be bf

f c cd ce cf
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d da ea fa
Also, ff" =| e |(a b c)=|db eb fb|=(FF").

f dc ec fc

Hence E(ff*t) = {E (f*ft )}t .

Now, we require to show that E (f £ ) =E (f ! ) . Note that

1-—}—~—L:>(1+x)(1-Lj=x.
I+x 1+x 1+x

Let x=A"?P'A.

(1 + A“I"IA)[I - (1 + A“P“A)—l} = A"PA

So [I - (I +A‘1P—‘A)“] = (1 + A“P-‘A)"1 APA.

Now, E(f'f')=E [(1 FAPA)" A“I‘“xft} = (1+A"A)" AP (x1)

but Cov(xf') =E(xf')-E(x)E(f') = Asince E(f') =0 so E(xf')=A.
SE(FF)=(I+AWTA) ANA

Now we consider E (f f *‘)
-E [(1 +APIA) A"P”x((l +A"PA)” A“P'lx”

-E [(1 +AFIA) AP xx A (T+ A“P“A)_l}

1

I+A" 'A) A" 'E(xx‘ )P ‘A(1+A*\P‘A)“1

l

I+AWA “‘Z‘P“IA(I +A“I’“A)

Il

AN (F+ AN )PA(T+ANPA)

)
y A
.
)

I+ AP A (A‘ +APTAA ) PA(T+APA)

=
(
(T+APA
(
{

I+A ‘I’"IA (1 + A“P‘IA)'1 A“I’"‘AA‘}(‘P“‘A (1 + A‘\P-IA)~1 )
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But (T+A"F7A)" AW A =I-(I+ AP A)".
So B(f'f")= {(1 FAPIAY A (1 —(1+AA) )A‘} (T“A(I + A‘T-‘A)")
1 -1

=(T+APPTA) APTA(T+APTA) + APA(T +A"PA)

-1

~(T+ATA) T ANPA(T+APA)
-1

= (1+A7A) " AA ((I FAPIA) +I-(1+AWA) )

- (I +Ath—1A)“‘ AWIA

-1

But (I+A"F7A)” AW 7A =1~ (I+APA)

E((f -f)(° —f)‘)= E(f'f")-E(f'f)-B(f" )+ E(ff")
= [I (1 +Ath-’A)”‘]—[I ~(1 +A“P”1A)—l]~[l (1 +A“P“‘A)—1}+I
= T+(I+AP7A) " 41

=(T+A"PA)

Hence, E ((f ~1)(f' -f) ) =(T+A"PA)

Now, if we compare the expected value of these two methods:
Bartlett’s: E (f‘ ]f ) =f
Thomson’s:  B(f'[f)=(1+ A" 'A)" A'Y 'At

we see that the Bartlett’s score is an unbiased estimate of f while the Thompson’s score

is biased.
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In addition, for the predicted errors we have the following formulae:

Batte’s:  B{(f-1)(i-1) ) - (A'a)’

Thomson’s: E((f ~f)(f* -f)‘) = (1 + A*W"A)‘1

Having computed and thus comparing the predicted errors for both Bartlett’s and
Thomson’s scores, it is clear that the predicted error is smaller in value for Thomson’s

score. Therefore, we can conclude that Thomson’s score is more accurate.

Now, if the columns of A satisfy the condition that A"P'A is diagonal, then the

components of both factor scores are uncorrelated with one another. In addition, if the

eigenvalues of A"P~'A are large, then the predicted errors are small implying that the

two factor scores are alike.

36



Chapter 4 Tourism Case Study

4 TOURISM CASE STUDY

4.1 Purpose and Aim of Survey

The traveller survey is a questionnaire in which the Malta Tourism Authority (MTA)
gathers information about the tourist’s visit to the Maltese Islands. Its main aim is to
obtain a wide knowledge of the tourist profile and expenditure information by place of
residence. In addition, it is an important source for market research, because it gives
essential information for the MTA to plan its strategy and take action to improve the

physical environment and the service provided in the Maltese Islands.

The traveller survey was first launched in the early 90’s and the information gathered
was social demographic. Its focus was on marketing reasons. The new version of the
British traveller survey was launched in the beginning of 2003 and was implemented
during the summer season of that year. The initiation of the other markets
questionnaires took place in the beginning of 2004. This new edition amplified the
marketing, promotional and human resources sections. Furthermore, more questions
were added to the surveys to obtain a wider knowledge of the tourist perspective. The
main aim was to group ideas to reduce the cost of research whilst at the same time
amplifying the data obtained. The survey is distributed randomly - every fifth tourist
checking in is given a questionnaire in the security area B of the arrivals at the Malta
International Airport. In the case when there are few arrivals, a questionnaire is
distributed to each tourist. This random distribution of sampling is known as systematic
sampling where units are selected from the population at a regular interval. For the

British market, around ten to fifteen questionnaires are distributed to each flight. The
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Malta Tourism Authority distributes around twenty thousand surveys in a year that is
around five thousand per quarter. From these five thousand they receive five hundred.
Hence, the response rate is of 12%, which is quite good when compared to the response

rate of 10% of the general mail questionnaires.

4.2 Details about the Questionnaire

In this dissertation, I based my study on the British market only, which till now is the
highest tourism market for the Maltese islands. I gathered the data of four different
seasons. Since this new survey format was launched in Summer of 2003, data for the
whole of 2003 was obviously not available. Therefore, so as to cover a one-year span, I

considered data ranging from Summer 2003 till Spring 2004.

Various difficulties were encountered during this process. The main problem was that
each season had its own codebook. Therefore, for the sake of continuity, I had to build
up a new codebook and recode a lot of the information into a new format. In addition,
there were some variations in the inputting procedures used for the different seasons and
this had to be taken into consideration too. All this was rather time consuming though
certainly necessary as this was the first time that an analysis of traveller survey data was
to be carried out on annual data. Usually reports about this questionnaire are published

by the MTA each quarter.

From the twenty-four questions, I focused my research on question number twelve and
on the first two questions. In question twelve, tourists are asked to rate various aspects
of their trip in Malta in terms of physical environment and about the service provided by
employees. This type of question is known as Likert scale. There are twenty-five
aspects or variables grouped under physical environment and seventeen variables under
service provided. The main focus of this question is to point out the strong and weak

points of the Maltese tourism industry.

The physical environment aspects are divided into three sections. The first section
covers a general area of the environment because tourists are asked to rate the Malta
International Airport, restaurants, taxi service, beaches etc. In other words, this first

section contains a group of different variables that are only related in the sense that they
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all serve the tourism industry. The second part focuses on attractions of Malta, such as
guided tours, museums and historical sites. The third and last part concentrates on the

infrastructure such as roads, road signs, level of cleanliness and air quality.

The question on service provided covers the same variables as outlined for the physical
environment question. Obviously, for the infrastructure, no employees are involved.

Therefore, the service provided by employees is clustered into two sections.

A Likert scale, as the name implies, requires some sort of scale and in our case, this is
provided in the form of six columns — the first five columns are numbered from one to

five and the last one is labelled as N/A. The following table defines what the scale

represents
1 2 3 4 5 N/A
Not So Not
Very Good Good Good Poor Very Poor Applicable

Table 1: The Likert Scale.

This scale is applicable to both the variables of the physical environment and of the

service provided.

The first two questions of the questionnaire ask for personal information. In fact, the
tourist is asked where he lives and other personal information such as gender and
marital status. These two questions helped me to bring out a general outline of the
tourist. This outline is called the profile of the tourist. View Appendix B for these

questions.

4.3 Profile of Respondents

The socio and demographic aspects compose the profile of the tourist. The majority of
the respondents (28%) visited the Maltese Islands during the autumn season and the
least amount of respondents amounting to 479 (19%) visited during the winter season.

Most of the tourists (85%) resided in England, followed by 8% from Scotland.
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Summer 2003

Spring 2004
699 /27%

670 /26%

Winter 2004
Autumn 2003
479 /1 19%
701/28%

Figure 1: Pie chart showing seasons

Northern Ireland

17/1%

Ireland
62 /3%

Wales Scotland

78 /4% 176/ 8%

England
1841/85%

Figure 2: Pie chart showing countries of origin

The highest frequency of respondents (7%) that lived in England came from the north /
west or south Yorkshire followed by a 5% form the Lancashire and Kent regions. From

the Scottish areas, the highest frequency was of 2% and originated from the Tayside and
Strathclyde regions.
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Figure 3: Bar chart of frequency against region

Male respondents amounted to 51 % while female respondents accounted for 49%. As
to marital status, the preponderance of respondents were married or cohabiting (80%).
Single respondents amounted to 10%, 5% were divorced/separated, and 5% were

widowed.

female male
1189/49% 1217/51%

Figure 4: Pie chart showing gender
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widowed

116 /5%

divorced/separated single

123 /5% 249 /10%

married/living toget
1975/ 80%

Figure 5: Pie chart showing marital status

The majority of the respondents (34%) belong to the age bracket 56 - 65 years. 23%
and 19% in the age brackets 46 - 55 and 66+ respectively followed this main group.

The remaining age groups amounted up to 24%.

16 - 25
42 /2%

26-35
66+

122/ 7%

341/19%

36-45
269/ 15%

606 /34% 408 /23%

Figure 6: Pie chart showing age ranges
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Retired respondents, who had a frequency of 781 (34.7%), formed the largest group
while 22.5% had a professional position as their full-time occupation. The third largest
segment (10.1%) was made up of respondents in managerial positions. Office/retail

workers amounted to 8.2% and skilled workers/tradesmen to 4.6%.
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Figure 7: Bar chart of frequency against full time job

Of the total 2549 respondents, 436 said that they did part-time work. The majority of
these (34.9%) worked as professionals. Another 22.7% did office or retail work whilst

7.8% were self-employed.

200

100 +

Frequency

Parttime job

Figure 8: Bar chart of frequency against part time job
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66.3% of respondents earned between £0 and £1000 per month whilst another 21.4%
had an income within the range of £1001 and £2000. Respondents earning more than

£2000 totalled 12.3%. Overall, respondents’ mean income per month stood at £895.72.

2000

1000 «
>
Q
=
(0]
=
o3
()
£ o)

0- 1000 2001 - 3000 4001 - 5000
1001 - 2000 3001 - 4000 5001+
Net income

Figure 9: Bar chart of frequency against net income

Now, we compare where possible these profile variables with the United Kingdom
demographics. The UK data was obtained from the website of the official UK statistics

and is based on the 2001 census.

Here, we can observe variables that feature both in the traveller survey as well as in the
UK official statistics. The variables are gender, age and marital status. For the other
variables, either the data was not available or it was structured differently from ours.

The following are the tables and graphs of these three variables.
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Age Range Total Males Females
0-24 18314618 9323786 8990832
25-34 8360547 4095236 4265311
35-44 8777390 4334223 4443167
45 - 54 7776562 3854549 3922013
55 -64 6219078 3061080 3157998
65+ 9340999 3910995 5430004
Total 58789194 28579869 30209325
Table 2: Gender total grouped according to age range.
49% O Males
51% E Females
Figure 10: Pie chart showing gender.
20000000
15000000 B0 -24
m25-34
10000000 035-44
045 -54
5000000 =i
65+

Age range

Figure 11: Bar chart of frequency against age range.
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Single people (never married) 14186988
Married or re-married people 23853128
Separated or divorced 4942512
Widowed 3947709

Table 3: Marital status.

30000000
25000000 Single people
(never married)
20000000 @ Married or re-
15000000 married people
O Separated or
10000000 - divorced
OWidowed
5000000 -
0 -
Marital Status

Figure 12: Bar chart showing frequency against marital status.

Comparing these plots, we can conclude that where gender and age are concerned, our
survey does not really describe the population of United Kingdom. On the other hand,

the pattern of our respondents’ marital status is parallel to that of the UK population.

Focussing our attention to the traveller survey once again, the following tables show the
variables of the two aspects, physical environment and service provided by employees,
on which we are performing our analysis. Together with these variables, we are going to
display the percentages of each of the points present in the Likert scale, where 0

signifies no answer.
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Physical Environment Percentages obtained. |
Variable 0 1 2 3 4 5 6
MIA 0.1 309 | 534 | 11.7 | 1.1 0.4 24
Gozo heliport 49.9 1.6 24 1 07 | 04 | 0.1 44.9
Gozo ferry points 32.4 109 | 214 | 102 | 2.5 0.9 21.7
Accommodation 4.1 359 | 381|141 | 38 | 2.9 1.1
Restaurants 13.9 | 223 | 428 | 12 1.8 0.5 6.6
Entertainment 30.7 5.5 18 | 149 | 53 2.9 22.8
Car hire 38.4 6.9 104 | 5.8 2.3 1.6 34.6
Taxi 37.5 8.3 12 5.3 1.3 1.5 34.3
Public transport 132 | 248 | 314 | 11.8 | 49 | 2.7 11.1
Retail outlets 20.2 87 1393 | 206 | 4.6 1.5 5.3
Sports facilities 44.8 2 6 4 1.5 | 0.6 41.1
Beaches 23.5 8.1 20 | 179 | 69 | 4.2 19.5
Guided tours 28 16.2 | 21.7 | 5.8 1.6 | 0.8 25.9
Historical sites 184 | 256 | 364 | 9.1 2.2 0.5 7.8
Museums 248 | 196 | 281 | 7.6 1.4 0.4 18.2
Cathedrals / Churches 153 | 40.2 | 30.1 | 4.8 04 | 04 8.9
Theatre / Performing arts 47.6 2.6 3.3 1.1 0.3 0.2 44.9
Road 6.4 0.9 7.3 24 | 27.5 | 30.7 3.2
Road signs 12.5 39 1209|239 | 165 | 4.2 8
Traffic 12.1 1.7 | 13.6 | 31.7 | 194 | 17.1 4.4
Parking 23.9 2.2 9.7 | 151 | 11.3 | 124 | 254
Public conveniences 9.7 6.5 | 255|229 ] 15.6 | 12.1 7.7
Level of cleanliness 6.1 79 1279 | 266 | 16.6 | 13.3 1.6
Air quality 7.5 212 1423 | 183 | 62 | 34 1.2
Sea quality 123 | 263 | 339 | 112 | 2.8 1.1 12.4
Table 4: Percentages of the physical environment variables.
Service Provided Percentages obtained.
Variable 0 1 2 3 4 5 6
MIA 106 | 264 | 447 | 129 | 2.7 1.3 1.3
Gozo heliport 52.5 1.2 2.2 0.9 0.4 0.1 52.7
Gozo ferry points 38.1 99 | 205 | 7.8 2 0.7 | 21.1
Accommodation 129 | 38.6 | 31.5 | 9.7 3.3 2 2
Restaurants 222 | 25.2 | 34.1 9.8 1.5 0.7 6.5
Entertainment 388 | 5.3 159 | 106 | 3.3 23 | 23.8
Car hire 42.3 8 9.4 4.7 1.3 1.2 33
Taxi 413 9 10.5 | 44 0.8 | 26.1 | 326
Public transport 219 | 225 ] 299 | 95 3.3 1.9 | 11.2
Retail outlets 28.1 12 353 | 15.5 2.6 0.9 5.6
Sports facilities 48.1 | 2.2 4.9 3.2 0.8 0.5 | 403
Beaches 36.5 | 6.2 14 11.7 | 3.9 24 | 253
Guided tours 36 16.7 | 16.8 | 4.6 1.6 0.9 | 235
Historical sites 30 192 1 279 | 102 | 22 1.1 9.5
Museums 346 | 158 | 219 | 7.8 1.4 0.6 17.9
Cathedrals / Churches 283 | 25.2 | 247 | 84 1 06 | 119
Theatre / Performing arts 513 | 2.3 2.7 0.9 0.1 0.2 | 42.6

Table 5: Percentages of the service provided by employees variables.
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4.4 General Outline of the Procedure

Considering the above-mentioned variables, we perform two methods of data reduction:
factor analysis and parceling. Also, within these two methods, we have applied two
extraction methods. The reason of applying two methods is to compare the traditional
system of tourism analysis and the statistical improvement through parceling. But
before we perform these analyses, we had to reduce our data due to the presence of a
large amount of missing data. These missing figures were composed of the values 0 and
6. After this reduction, we performed the analysis of the variables with both methods

and extractions to end up with sets of values known as factor scores.

These factor scores, which are values that signify the influence of that particular
variable over the set of all variables, were transformed so that they do not depart from
the normal behaviour. Then these normal distributed scores were linearly related with
our socio-demographic variables, which form our tourist profile. The necessity of
normality is required so that we can apply linear models. The scope is to observe

whether there were profile variables that were related to our extracted scores.
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5 FACTOR ANALYSIS APPLICATION

5.1 Introduction

The aim of this section is to apply techniques discussed earlier to the data collected by
the Strategic Planning and Research Division within the Malta Tourism Authority. In
this chapter, we will focus on the first part of the applicative method since here we will
discuss the steps required to end up with a set of factor scores. These steps form the
basis of exploratory factor analysis and will lead us to the result where we have a set of
significant variables on which we base our study. This forms confirmatory factor
analysis after which we continue to extract the factor scores. Hence, our exploratory
factor analysis steps begins by first tackling the problem of which variables we will
consider for the analysis due to the fact of a large amount of missing data. Then, we will
apply our two data reduction techniques in which we are applying two extraction
methods. From these we end up with a set of significant variables. Here we finish
exploratory and merge into confirmatory factor analysis. Then we extract the factor

scores which will be discussed in the next chapter.
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5.2 Exploratory Factor Analysis

5.2.1 Introduction

The primary objectives of exploratory factor analysis are to determine the number of
common factors influencing a set of measures and to determine the strength of the

relationship between each factor and each observed measure.

Exploratory factor analysis is applied in various applications, for example, when we
want to determine which features are most important when classifying a group of items.
In addition, it is useful when we want to determine which set of items can be clustered
together in a questionnaire or to demonstrate the dimensionality of a measurement scale.
Another application is when we want to generate factor scores that represent the values

of the underlying constructs for use in other analyses.

5.2.2 Reduction of Variables and Respondents

First, we had to reduce the number of variables because as we can notice from the table
below there are eleven variables highlighted in bold for which the number of valid cases
(N) is very near to the number of missing values. In fact, we only considered those
variables that have a percentage of valid cases higher than 73%. In addition, to this
variable reduction, we also viewed the amount of missing values that each respondent
had and removed those respondents that have more then four missing values. These
missing values are the numbers 0 and 6 which they respectively represent no answer
and not applicable. For the case of the physical environment, we have reduced the data
from 2549 to 2191 valid cases while for the service provided; we reduced the data to
2240 from 2549 valid cases. For both aspects of the question, physical environment and
service provided by employees, the removed variables were the same except for the
parking variable, since the variables falling under the infrastructure section are not

present in the service provided by employees’ aspect.
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Cases
Valid Missing

N Percent N Percent

MIA 2488 97.6% 61 2.4%
Gozo heliport 132 5.2% 2417 94.8%
Gozo ferry points 1170 45.9% 1379 54.1%

Accommodation 2416 94.8% 133 5.2%
Restaurants 2027 79.5% 522 20.5%
Entertainment 1187 46.6% 1362 53.4%
Car hire 688 27.0% 1861 73.0%
Taxi service 720 28.2% 1829 71.8%
Public transport 1929 75.7% 620 24.3%
Retail outlets 1900 74.5% 649 25.5%
Sports facilities 360 14.1% 2189 85.9%
Beaches 1453 57.0% 1096 43.0%
Guided tours 1177 46.2% 1372 53.8%
Historical Sites 1881 73.8% 668 26.2%
Museums 1455 57.1% 1094 42.9%
Cathedrals / Churches 1933 75.8% 616 24.2%
Theatre / Performing arts 190 7.5% 2359 92.5%

Road 2306 90.5% 243 9.5%
Road signs 2026 79.5% 523 20.5%
Traffic 2129 83.5% 420 16.5%
Parking 1292 50.7% 1257 49.3%
Public conveniences 2105 82.6% 444 17.4%

Level of cleanliness 2352 92.3% 197 7.7%

Air quality 2328 91.3% 221 8.7%
Sea quality 1920 75.3% 629 24.7%

Table 6: The value (N) and percentage of valid and missing cases of the variables.

5.2.3 Data Reduction Techniques

5.2.3.1 Introduction

In this section, we are going to discuss the two techniques that we have applied. The
first method is the factor analysis and the second method is parceling. Factor analysis is
the traditional approach of these surveys while parceling is a statistical improvement of
factor analysis. Both methods deal with the process of reducing the data from a large
group to sets of smaller groups and in the process unmasking the latent factors. Within
these two techniques, we applied two extraction methods, maximum likelihood and
principal axis factoring. We have chosen these two methods so that we have two

different approaches where maximum likelihood assumes the data to be normally
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distributed while principal axis factoring does not require the data to satisfy this

distribution.

Each of these extractions was applied to both the physical environment and to the
service provided by employees’ variables. Note also that in this process, we have
applied a varimax rotation so that it would be more possible to give an interpretation of

the factor matrix.

Now we will start each technique with both extraction methods for both aspects. Hence,

our first method is factor analysis on the physical environment variables.

5.2.3.2 Method 1: Factor Analysis

(i): Physical Environment

The step involved here is applying factor analysis with a maximum likelihood and
principal axis factoring extraction to the physical environment variables. In the analysis,
each missing value is replaced with the variable mean. For both extraction methods, we

obtained the same following descriptive statistics.

Mean Std. Deviation | Analysis N Missing N
MIA 1.85 710 2191 18
Accommodation 1.96 .966 2191 57
Restaurants 1.94 .703 2191 351
Public transport 2.08 917 2191 449
Retail outlets 2.35 750 2191 395
Historical Sites 1.87 723 2191 412
Cathedrals / Churches 1.57 622 2191 397
Road 3.89 .985 2191 67
Road signs 3.21 1.078 2191 272
Traffic 3.43 1.008 2191 179
Public conveniences 3.02 1.117 2191 229
Level of cleanliness 3.00 1.169 2191 52
Air quality 2.22 985 2191 59
Sea quality 1.92 792 2191 404

Table 7: The descriptive statistics of the physical environment variables.

Observing the mean, we can notice that Road and Cathedrals / Churches, written in

italics, are the most influential variables rated by the tourists. Since Road has the
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highest mean of 3.89 it implies that the tourists rate the roads very badly. On the other
hand, Cathedrals / Churches have the lowest mean value of 1.57, which signifies that

the tourists are very interested in the architectural richness of our temples.

Now, let us consider the results obtained for both extraction methods. From the
descriptive statistics table, we focus our attention on the total variance explained table.
For both extraction methods, we have obtained an extraction of four factors, which
describe around 56% of the data. From the table we take note of those factors that have
an eigenvalue higher than one while the rest are irrelevant since their eigenvalue does
not satisfy our criterion. The ones marked in red are the significant factors since they

have an eigenvalue greater than one.

Initial Eigenvalues
Factor Total % of Variance Cumulative %
1 4.106 29327 29327
2 1.457 10.409 39.736
3 1.180 8.429 48.165
4 1.031 7.367 53.532
5 .859 6.134 61.666
6 852 6.084 67.750
7 433 5.381 73.131
8 738 5.272 78.404
9 .603 4.309 82.712
10 548 3.912 86.625
Ll 522 3.731 90.355
12 494 3.532 93.887
I 467 3.334 97.221
14 389 2.779 100.000

Table 8: The total variance explained of the factors using maximum likelihood.
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Initial Eigenvalues
Factor Total % of Variance Cumulative %
1 4.106 29327 29.327
2 1.457 10.409 39.736
3 1.180 8.429 48.165
4 1.031 7.367 55.532
3 .859 6.134 61.666
6 .852 6.084 67.750
7 753 5.381 73.131
8 738 5.272 78.404
9 .603 4.309 82.712
10 .548 3.912 86.625
11 S22 3.731 90.355
12 494 3.532 93.887
13 467 3.334 97.221
14 389 2.779 100.000

Table 9: Total variance explained of the factors using principal axis factoring.

Now, we have the scree plot, which is a graph of the eigenvalues against all the factors.
This helps us to determine the number of factors to retain. Our point of interest is where
the curve starts to flatten. This occurs between two factors where the smallest one is
considered significant while the other is not. For our case, this occurs between the
fourth and fifth factor. This indicates that we can retain four significant factors, which
confirms the same decision made earlier. For both extraction methods the scree plot is

similar.

Eigenvalue

Factor Number

Figure 13: The scree plot of the eigenvalue against the factor number.
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Next, we focus on the following table, which is the rotated factor matrix and the concept
behind this matrix is to reduce the number of factors on which the variables under
investigation have high loadings. In other words, it helps us obtain a better

interpretation of the analysis.

Factor
1 2 3 4
MIA 413 .148 .105
Accommodation 355 .166
Restaurants 440 115 153
Public transport .347 214
Retail outlets 478 J79 W v
Historical Sites .614 128
Cathedrals / Churches 588 131
Road .168 705 132
Road signs 97 628 103
Traffic 120 .599 .190 204
Public conveniences A5 .190 114 672
Level of cleanliness 225 245 249 .665
Air quality .198 198 .859 184
Sea quality 315 466 .186

Table 10: The rotated factor matrix obtained by maximum likelihood extraction..

Factor
1 2 3 4
MIA 428 145 A17
Accommodation .394 221
Restaurants 495 219
Public transport .342 214 123
Retail outlets 501 176 141
Historical Sites 557 154 .199
Cathedrals / Churches 522 .258
Road 167 .702 129
Road signs .188 .624 .103 103
Traffic 107 .604 213 .186
Public conveniences 146 214 .588 .155
Level of cleanliness .198 254 .658 279
Air quality .188 .206 .255 641
Sea quality 254 170 .602

Table 11: The rotated factor matrix obtained by principal axis factoring extraction..

From the above tables, we note that the variables are colour-coded. This helps us to
relate the different variables to each factor or component. For the maximum likelihood
extraction, the first factor represents the highest number of variables. These are
described under the general and the attractions section of the analysed question. The

second, third and fourth factors describe the infrastructure section. The second refers to
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the road infrastructure, the third to the environment quality and the last to public

conveniences and cleanliness.

Now, if we compare the rotated factor table of the principal axis factoring with the
maximum likelihood extraction table, we have that the factors represent the same
variables except the last two since the third factor describes public conveniences and

level of cleanliness while the fourth describes the air and sea quality.

During this whole procedure, we have obtained our factor scores and here we end this
process. Hence, from the above tables we have obtained two sets formed by four factor

scores. Our extracted factor scores represent or describe the loadings of these variables.

(ii): Service provided by employees

Considering the other aspect - service provided - we applied the same procedure with
the only difference being that we now have a lesser amount of variables. In fact, as we
can notice the infrastructure section is not present in this table since no employees are

involved in this section.

Mean Std. Deviation | Analysis N Missing N
MIA 1.95 825 2240 83
Accommodation 1.81 923 2240 120
Restaurants 1.85 715 2240 445
Public transport 1.99 .837 2240 550
Retail outlets 2.17 706 2240 557
Historical sites 1.98 736 2240 702
Cathedrals / churches 1.78 673 2240 722

Table 12: The descriptive statistics of the service provided by employees variables.
Retail outlets having the highest mean of 2.17 signify that the services are not

appreciated much by the tourists while Churches / Cathedrals have a mean of 1.78

signifying that the relevant employees run our places of worship efficiently.
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Initial Eigenvalues
Factor Total % of Variance Cumulative %
1 2.582 36.885 36.885
2 1.049 14.981 51.866
3 .854 12.207 64.073
4 784 11.198 75.270
5 .679 9.701 84.971
6 610 8.711 93.682
7 442 6.318 100.000

Table 13: The total variance explained by the factors using maximum likelihood.

Initial Eigenvalues
Factor Total % of Variance Cumulative %
1 2.582 36.885 36.885
2 1.049 14.981 51.866
3 854 12.207 64.073
4 784 11.198 75.270
5 .679 9.701 84.971
6 .610 8.711 93.682
7 442 6.318 100.000

Table 14: The total variance explained by the factors using principal axis factoring.

Observing the above tables, we note that only two significant factors are extracted,

describing 52% of the data. In addition, from the scree plot, we notice that between the

second and third factor the curve starts to flatten. This means that the factors after the

second one are not significant.
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Figure 14: Scree plot.
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The rotated matrix helps us to understand better the loadings of these factors. Here we
see that for both extractions, we have that factor one is loaded with the general section
(highlighted in blue) of the variables while the other factor clusters the attraction
variables (highlighted in green).

Factor
1 2

MIA .363 233
Accommodation .546

Restaurants 570 .167

Public transport 389 .186

Retail outlets 488 .266

Historical sites 219 137

Cathedrals / churches 213 .689

Table 15: The rotated matrix of the factors extracted by maximum likelihood.

Factor
1 2

MIA 365 230
Accommodation 541

Restaurants 564 .164

Public transport 393 .191

Retail outlets 496 .266

Historical sites 224 119

Cathedrals / churches 208 .702

Table 16: The rotated matrix of the factors extracted by principal axis factoring.

Here we finish our process of this technique. We ended up with two sets each composed
of two factor scores.

5.2.3.3 Method 2: Parceling

(i): Idea

A dictionary’s definition of the word ‘parcel’ is ‘to divide into portions’ and this is
precisely the idea behind the parceling method. Reading various papers, such as “7o
Parcel or Not to Parcel: Exploring the Question, Weighing the Merits.” by Little Todd

D., William A. Cunningham, Golan Shahar and Keith F. Widaman., helped us identify

the main points of the parceling method.
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First, we gather all the available variables and then apply factor analysis. From the
output, we focus on the rotated factor matrix so that we can group the variables
according to the components. Now, the mixed variables are grouped into a number of
components, so they are identified into different groups. Let’s say that after the first
process we ended up with a five-component matrix. Then, we repeat the factor analysis
process but this time only with those variables present in the first component. Hence, a
new rotated factor matrix is obtained. An important point is that each time we repeat the
process we suppress the value for the coefficient to be displayed. We repeat this
procedure until we finish with the most significant variables of the first component.
When we view the rotated matrix, the coefficients displayed show us whether it is
possible to suppress any further. If we reach the limit where the next suppression leads
to no values in the matrix, then we stop and consider those results as our main variables.
After we obtain the variables, we start again with the next component and so on until
the fifth component. At the final step, the most significant variables of each component
are gathered together and factor analysis is performed. This time the factor scores are

evaluated because they are then linearly related with the respondents’ profile.
(ii): Physical Environment
The first step is to gather all the variables and apply factor analysis whilst setting the

condition that those values that are less than 0.2 will not be available in the factor and

rotated factor matrix. The following table is obtained from both extraction methods.

Mean Std. Deviation | Analysis N Missing N
MIA 1.85 710 2191 18
Accommodation 1.96 966 2191 57
Restaurants 1.94 .703 2191 351
Public transport 2.08 917 2191 449
Retail outlets 2.35 750 2191 395
Historical Sites 1.87 723 2191 412
Cathedrals / Churches 1.57 622 2191 397
Road 3.89 985 2191 67
Road signs 3.21 1.078 2191 272
Traffic 3.43 1.008 2191 179
Public conveniences 3.02 1.117 2191 229
Level of cleanliness 3.00 1.169 2191 52
Air quality 2.22 .985 2191 59
Sea quality 1.92 792 2191 404

Table 17: The descriptive statistics of the physical environment variables.
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As before, we obtain the total variance table. This gives us how many components the
variables are grouped into. In, fact those factors whose eigenvalues are less than one are
discarded. Hence, we note that in all there are four factors since from the fifth factor
onwards have an eigenvalue less than one. These four factors are highlighted in red and

they describe around 56% of the data. Both extraction methods lead to the following

table.
Initial Eigenvalues
Factor Total % of Variance Cumulative %
1 4.106 29.327 29.327
2 1.457 10.409 39.736
3 1.180 8.429 48.165
4 1.031 7.367 55.532
5 .859 6.134 61.666
6 .852 6.084 67.750
7 753 5.381 73.131
8 738 5.272 78.404
9 .603 4.309 82.712
10 .548 3.912 86.625
11 522 3.731 90.355
12 494 3.532 93.887
13 467 3.334 97.221
14 .389 2779 100.000

Table 18: The total variance explained.

Hence, the same graphical output is obtained. Here, we note that four factors are
extracted. In fact, between the fourth and fifth factor it is evident that the curve is

flattening, which signifies that we retain the four factors as concluded from the table.

5

o
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Factor Number
Figure 15: The scree plot.
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Now, we have the rotated factor matrix in which we note that the empty cells imply that
the coefficient value is less than 0.2. In this case, we obtain two different results for the

two extraction methods.

The following is the maximum likelihood table.

Factor
1 2 3 4
MIA 413
Accommodation 355
Restaurants 440
Public transport 347 214
Retail outlets 478
Historical Sites 614
Cathedrals / Churches 588
Road .705
Road signs .628
Traffic .599 204
Public conveniences 672
Level of cleanliness 225 245 .249 .665
Air quality .859
Sea quality 315 466

Table 19: The rotated factor matrix obtained from maximum likelihood method.

Now, we observe the principal axis factoring table.

Factor
1 2 3 4
MIA 428
Accommodation .394 221
Restaurants 495 219
Public transport 342 214
Retail outlets .501
Historical Sites 557
Cathedrals / Churches 522 258
Road 702
Road signs .624
Traffic .604 213
Public conveniences 214 588
Level of cleanliness 254 658 279
Air quality 206 255 .641
Sea quality 254 .602

Table 20: The rotated factor matrix obtained from principal axis factoring method.
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Each value represents the partial correlation between the variable and the rotated factor.
These correlations can help us formulate an interpretation of the factors or components.
From this output, we will notice the relations of the factors with the variables. Note that

every variable is interpreted by a factor.

Now, we group the variables present in the first factor and apply factor analysis with the
same extraction method and rotation. The only difference is that this time we consider

only those that have a coefficient value greater than 0.5.

Observing the above tables, we note that the variables of the first factor are similar
except for an extra variable present in the maximum likelihood extraction. This variable

is Level of cleanliness.

Mean Std. Deviation | Analysis N Missing N
MIA 1.85 710 2191 18
Accommodation 1.96 966 2191 57
Restaurants 1.94 .703 2191 351
Public transport 2.08 917 2191 449
Retail outlets 2.35 750 2191 395
Historical Sites 1.87 723 2191 412
Cathedrals / Churches 1.57 .622 2191 397
Level of cleanliness 3.00 1.169 2191 52
Sea quality 1.92 792 2191 404

Table 21: Descriptive statistics of the variables present in the first factor extracted by

the maximum likelihood.

Mean Std. Deviation | Analysis N Missing N
MIA 1.85 710 2191 18
Accommodation 1.96 .966 2191 57
Restaurants 1.94 703 2191 - 351
Public transport 2.08 917 2191 449
Retail outlets 2.35 750 2191 395
Historical Sites 1.87 723 2191 412
Cathedrals / Churches 1.57 .622 2191 397
Sea quality 1.92 792 2191 404

Table 22: Descriptive statistics of the variables present in the first factor extracted by

the principal axis factoring.

When considering the maximum likelihood method we have obtained the following

output. Observing the following table we note that we have obtained two significant
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factors since their eigenvalue is greater than one. Here the significant factors describe

around 44% of the data.

Initial Eigenvalues
Factor Total % of Variancc Cumulative %
1 2.923 32.477 32.477
2 1.020 11.329 43.807
3 .924 10.266 54.072
4 .881 9.792 63.864
5 758 8.424 72.288
6 734 8.158 80.446
7 .656 7.294 87.740
8 592 6.576 94.316
9 S12 5.684 100.000
Table 23: Total variance explained by the nine variables when applying maximum

likelihood.

Applying the other extraction method, we obtained a two-component factor since only
two factors have their eigenvalue greater than 1. For this method, the factors explain

around 46% of the data.

Initial Eigenvalues
Factor Total % of Variance Cumulative %
1 2.701 33.763 33.763
2 1.012 12.644 46.407
3 .881 11.017 57.424
4 818 10.223 67.647
5 752 9.401 77.048
6 726 9.078 86.126
7 .598 7.474 93.600
8 512 6.400 100.000

Table 24: Total variance explained by the eight variables when applying principal axis

factoring.

A varimax rotation was applied and when the factor coefficient is suppressed under the
value of 0.5, we obtained only these three variables. Hence, these variables are our most

significant variables for this particular component as obtained for the two extraction

methods.
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Factor

MIA

Accommodation

Restaurants

.561

Public transport

Retail outlets

Historical Sites

684

Cathedrals / Churches

.620

Level of cleanliness

Sea quality

Table 25: The rotated factor matrix of the first factor variables extracted by maximum

likelihood.

Factor

MIA

Accommodation

Restaurants

.602

Public transport

Retail outlets

Historical Sites

.662

Cathedrals / Churches

.640

Sea quality

Table 26: The rotated factor matrix of the first factor variables extracted by principal

axis factoring.

This process is repeated for the other components until finally we finish with the most

significant variables. For the two methods, we end with the same variables. These are

gathered in the following table.

Mean Std. Deviation| Analysis N Missing N
Accommodation 1.96 .966 2191 57
Restaurants 1.94 703 2191 351
Historical Sites 1.87 723 2191 412
Cathedrals / Churches 1.57 622 2191 397
Road 3.89 985 2191 67
Road signs 3.21 1.078 2191 272
Traffic 3.43 1.008 2191 179
Public conveniences 3.02 1.117 2191 229
Level of cleanliness 3.00 1.169 2191 52
Air quality 2.22 985 2191 59
Sea quality 1.92 792 2191 404

Table 27: Descriptive statistics of the most significant variables.
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We repeat factor analysis on these variables but apply a maximum likelihood extraction.
We ended up with three significant eigenvectors having their eigenvalue greater than

one.

Initial Eigenvalues
Factor Total % of Variance Cumulative %
1 3.396 33.965 33.965
2 1.348 13.481 47.446
3 1.126 11.263 58.709
4 .868 8.678 67.387
5 813 8.126 75.513
6 558 5.584 81.097
7 529 5.285 86.383
8 501 5.007 91.389
9 470 4.701 96.091
10 391 3.909 100.000

Table 28: The total variance explained using maximum likelihood.

We repeated the same procedure as above but applied a principal axis factoring

extraction and ended with four factors having eigenvalues greater than 1.

Initial Eigenvalues
Factor Total % of Variance Cumulative %

1 3.532 32.110 32.110
2 1.392 12.657 44.768
3 1.127 10.243 55.011
4 1.008 9.167 64.178
5 .850 7.723 71.901
6 .644 5.858 77.759
7 557 5.062 82.821
8 528 4.804 87.626
9 500 4.548 92.174
10 470 4.273 96.446
11 391 3.554 100.000

Table 29: The total variance explained using principal axis factoring.

For a maximum likelihood extraction method, we suppressed values less than 0.5 and
we obtained the following table. Our ten major factors are grouped into these three
factors. Our first factor component describes the infrastructure regarding the
environment cleanliness and public conveniences state and the second component

represents Malta’s road infrastructure. The third component focuses on the attraction

sites.
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Factor
1 2 3
Restaurants
Historical Sites .629
Cathedrals / Churches .685
Road 704
Road signs .645
Traffic .591
Public conveniences .623
Level of cleanliness .744
Air quality
Sea quality

Table 30: Rotated factor matrix extracted by maximum likelihood.

For Restaurants, Air quality and Sea quality we do not have a value, which implies that
these variables have a factor loading less than 0.5. From the graphical output below, we
observe that the variable Restaurants is grouped with the third factor while the other

two variables are grouped with the first variable.
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Figure 16: Factor plot of factors 1, 2, 3.

In this process, we suppressed values less than 0.5 and we obtained the following table.
Our eleven major factors are grouped into these four factors. Hence, our first factor
component represents Malta’s road infrastructure and the second component focuses on

the attraction sites. The third component describes the infrastructure regarding the
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environment cleanliness and public conveniences state. While the last component

represents the infrastructure but regarding our environment quality.

Factor

Accommodation
Restaurants

Historical Sites .644

Cathedrals / Churches .638

Road .702

Road signs .641

Traffic .604

Public conveniences .628

Level of cleanliness .703

Air quality 748

Sea quality 544

Table 31: Rotated factor matrix extracted by principal axis factoring.

For Accommodation and Restaurants, we do not have a value that signifies that these
variables have a factor loading less than 0.5. Since we have a four-factor matrix, it is not

possible to obtain a better graphical interpretation.

When we obtain these significant variables and performed factor analysis on these
variables, we evaluate the factor scores. Here, the process of parceling finishes since we

have gathered the most significant variables and analyzed them.

(iii): Service provided by employees

In the following table, we have those variables within this aspect that were analysed.
Here we note that, Refail Qutlets having the highest mean of 2.17 signifying that the
services are not appreciated much by the tourists while Churches / Cathedrals have a
mean of 178 signifying that the relevant employees run our places of worship

efficiently.
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Mean Std. Deviation | Analysis N Missing N
MIA 1.95 .825 2240 83

Accommodation 1.81 923 2240 120
Restaurants 1.85 715 2240 445
Public transport 1.99 .837 2240 550
Retail outlets 2.17 .706 2240 557
Historical sites 1.98 736 2240 702
Cathedrals / churches 1.78 .673 2240 722

Table 32: The descriptive statistics of the service provided by employees variables.

Applying the same procedure with both extraction methods, we end up with the same

number of factors representing approximately 52% of the data. This result is viewed in

the following two outputs; the total variance explained table and the scree plot. These

outputs are identical for both extraction methods.

Initial Eigenvalues
Factor Total % of Variance Cumulative %
1 2,582 36.885 36.885
) 1.049 14.981 51.866
3 854 12.207 64.073
4 784 11.198 75.270
5 679 9.701 84.971
6 .610 8.711 93.682
7 442 6.318 100.000
Table 33: Total variance explained.
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Figure 17: Scree plot of the eigenvalues against the factors.

68




Chapter 5 Factor Analysis Application

Then we viewed the rotated factor matrix. For both methods, the variables of each factor
component are the same and the only difference is the loading value. In fact, these two
tables are the rotated factor matrix of both methods and note the value difference of
each variable within each component. The empty values present in these tables

represent those values that value their factor loading less than 0.2.

Factor
1 2

MIA 363 253
Accommodation 546
Restaurants 570
Public transport .389

Retail outlets 488 266

Historical sites 219 737

Cathedrals / churches 213 .689

Table 34: Rotated factor matrix obtained by a maximum likelihood extraction.

Factor
1 2

MIA 365 256
Accommodation 541
Restaurants .564
Public transport .393

Retail outlets 496 266

Historical sites 224 719

Cathedrals / churches 208 702

Table 35: Rotated factor matrix obtained by a principal axis factoring extraction.

Now, the same procedure as in the other aspect was applied until we finished with the
most significant variables. In the following table, we have these variables and for both

methods, they are the same.

- Mean Std. Deviation | Analysis N Missing N
Historical sites 1.98 736 2240 702
Cathedrals / churches 1.78 .673 2240 722
Accommodation 1.81 923 2240 120
Restaurants 1.85 715 2240 445

Table 36: Descriptive statistics of the final significant variables.

Applying factor analysis using both extractions, we ended up with a two-factor model
describing 73% of the data.
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Initial Eigenvalues
Factor Total % of Variance Cumulative %
1 1.893 47.326 47.326
2 1.031 25.768 73.094
3 .632 15.792 88.886
4 445 11.114 100.000

Table 37: Total variance explained.

Utilizing a varimax rotation and suppressing values under 0.5, we obtain the following
two components in which the attractions variables are grouped in the first component

while the other two variables are gathered in the other component.

Factor
1 2
Historical sites 726
Cathedrals / churches 721
Accommodation 576
Restaurants 592

Table 38: Rotated factor matrix.

Here, the process of parceling for the service provided by employees finishes. We ended

with two sets, one for each method, each containing two factor scores.

Now, after all this process, we take a note of those variables that at the end are
considered significant for our analysis and from which we draw our factor scores. This

leads to confirmatory factor analysis.

5.3 Confirmatory Factor Analysis

The primary objective of confirmatory factor analysis is to determine the ability of a

predefined factor model to fit an observed set of data.

Some common uses of confirmatory factor analysis are to establish the validity of a
single factor model and to compare the ability of two different models to account for the
same set of data. Other uses are to test the significance of a specific factor loading or to
test the relationship between two or more factor loadings. These are only few ways in
which confirmatory factor analysis is applicable, in fact there are more other procedures
where this method is applicable.
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Exploratory factor analysis is applied in various applications, for example, when we
want to determine which features are most important when classifying a group of items.
In addition, it is useful when we want to determine which set of items can be clustered
together in a questionnaire or to demonstrate the dimensionality of a measurement scale.
Another application is when we want to generate factor scores that represent the values

of the underlying constructs for use in other analyses.

Now, we will discuss the significant variables of each process. For the first technique,
that is factor analysis, the final sets of variables considered are all those valid variables
that we have considered for the analysis. For both extraction methods, the variables are
the same. For the physical environment, we have fourteen variables while for the

service provided by employees we have seven variables.

For the second technique, we have started with these fourteen and seven variables but
were reduced to a lesser amount. For the case of the physical environment applying the
maximum likelihood extraction, we ended up with ten significant variables while doing
the same procedure but applying the principal axis factoring extraction, we had eleven
significant variables. For the case of service provided by employees, for both extraction

methods, we have obtained four significant variables.

Now, after all these processes, we consider each technique, method and aspect and
evaluate the factor scores. These factor scores are important because these scores are
then related with the tourists’ profile. Hence, we are trying to find any relationship
between the variables forming the tourists’ profile and these factor scores derived from

these different methods. This application will be discussed in the next chapter.
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6 FACTOR SCORES AND LINEAR MODELS

As discussed in the previous chapter we have ended up with different sets of factor
scores for each method applied within each technique. The purpose of extracting these
factor scores is that we can obtain a linear relationship of these scores with the tourists’
profile variables. Before we discuss this relationship, the factor scores were analysed to
check whether they satisfy the normality condition. This is required because to obtain

linear models, the normality assumption must be satisfied.

6.1 Factor Scores

As we said in the previous paragraph, these scores are analysed to check for normality.
In fact, the Kolmogorov-Smirnov test is applied to each factor score and from the p-

value (Asymp. Sig) we observe whether they satisfy the normal distribution.

The criterion to accept whether a variable is normally distributed or not, is based on the
fact that if the p-value is greater than 0.05, then the variable does not depart
significantly from normal behaviour and conversely if the p-value is less than 0.05.
When the case that the variable, in our case the factor score, is not normally distributed,
we need to apply a transformation to render it adequate to observe the normal

behaviour.

For example, consider the following factor score extracted by the maximum likelihood
method when applied on the physical environment variables. This is already normally

distributed since the p-value is greater than 0.05.
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Chapter 6
Factor score 2
N 2191
Normal Parameters Mean .0000000
Std. Deviation .81979066
Most Extreme Differences Absolute .026
Positive .026
Negative -.026
Kolmogorov-Smirnov Z 1.196
J15

Asymp. Sig. (2-tailed)

Table 39: The One-Sample Kolmogorav Smirnov Test of the second factor score.

In fact, observing the following histogram, we notice that the normal curve fits very

smoothly over the bars except for the tail ends. With the help of a Q-Q plot, we can

confirm this statement since the majority of the points are on the line except the ends.

A Q-Q plot is a graph where the quantiles of a variable's distribution are plotted against

the quantiles of any of a number of test distributions. Probability plots are generally

used to determine whether the distribution of a variable matches a given distribution. If

the selected variable matches the test distribution, the points cluster around a straight

line
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Figure 18: Histogram with normal curve of factor score 2.
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Figure 19: Q-Q plot of the second factor score.
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Generally, the distribution of the obtained factor scores departs significantly from the

normal behaviour. Hence, in such cases, we applied a transformation to satisfy as much

as possible our request for normal behaviour. The following shows is an example of a

factor score with a p value of 0.001, which is less than 0.05, hence implying that this

score is not normal. The scores of this example are obtained from the physical

environment when extracted by the principal axis factoring method.

Factor score 1
N 2191
Normal Parameters Mean .0000000
Std. Deviation 79851264
Most Extreme Differences Absolute .041
Positive .041
Negative -.016
Kolmogorov-Smirnov Z 1.903
Asymp. Sig. (2-tailed) .001

Table 40: One-Sample Kolmogorov-Smirnov Test

Graphically this is noticed with the help of the Q-Q plot since the data points do not fit

the green line. The green line present in these plots represents the distribution we wish

to fit and in our case, it represents a normal distribution.

74



Chapter 6 Factor Scores and Linear Models

o

Expected Normal

o
w
Fy
wn

3 2 1 0 1
Observed Value

Figure 20: Q-Q plot of factor score 1

Now, examining this example and other similar ones, we require applying a method that
renders our data, factor scores, significantly normally distributed. The technique used is
the Box-Cox Transformation. In the Box-Cox, we are transforming a response feature

either to correct for non-normality or a heteroscedastic variance structure. A useful class

y -

' " . 1 .
of transformations for this purpose is the power transform , where 4is a

parameter to be determined.

For this transformation, we have used a software package called GLIM in which we
have inputted our data and called the Box-Cox directive. First, we have to recode the
data because for the use of the Box-Cox there must be no zeros or negative values
present in the data. Therefore, for each score the minimal value is found and then is
added to each value so that the data becomes positive. Then we insert the data in this
package and run the directive. When the directive responds we have to determine a
range for lambda and the increment. After repeating the process for a number of times,
we end up with a significant value lambda. Then, this lambda is power by which the

data is transformed. For each factor score we have a different value for lambda.

Considering the same factor score as above and applying the Box-Cox transformation,

we obtain our lambda value equal to 0.6685.
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Now, using the other statistical package Spss, we transform our data by multiplying to
the power of 0.6685. From the Kolmogorov-Smirnov test, we verify whether our

transformed score does not significantly depart from normal behaviour.

varl = (newfacl) ** 0.6685

N 2191

Normal Parameters Mean 1.5597

Std. Deviation 42999
Most Extreme Differences Absolute .024
Positive .022

Negative -.024

Kolmogorov-Smirnov Z 1.136
Asymp. Sig. (2-tailed) 151

Table 41: The Kolmogorov-Smirnov Test of varl.

From the above table, we note that the p-value is 0.151, which is greater than 0.05 and
hence implies that this transformed score satisfies the normality behaviour. Observing
this result from a graphical point of view, we note that the histogram fits the normal
distribution curve smoothly, except at the edges. This is further verified form the Q-Q
plot where the data points fit the green line perfectly except for a few points present at

the ends.
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Figure 21: Histogram of varl.
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Figure 22: The Q-Q plot of varl.

As we said before, each factor score has its own lambda for the transformation. This
table shows the lambda values required for each individual score to be best fitted into a

normal distribution.

Technique Extraction Aspect Score Lambda
Factor Analysis ~ Maximum Likelihood Physical 1 0.7
2 1
3 0.486
4 0.6345
Service 1 0.393
2 0.3885
Principal Axis Factoring Physical 1 0.6685
2 1
3 0.6725
4 0.2545
Service 1 0.42
2 0.381
Parceling Maximum Likelihood Physical 1 0.6515
2 1
3 0.2985
Service 1 0.3935
2 0.2045
Principal Axis Factoring Physical 1 1
2 0.3295
3 0.627
4 0.42015
Service 1 0.363
2 0.477

Table 42: The lambda required for each factor score to be transformed.
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Although we have performed this Box-Cox transformation, some factor scores still

depart significantly from the normal behaviour. A typical example is the following
factor score composed of the service provided variables and extracted from a maximum
likelihood method. In the following table, we have the factor score before the
transformation and the factor score after the transformation. From the p-value, we note
that the p-value of this factor score is 0 before and after transformation. Hence, it still

departs significantly from the normal behaviour.

var2 = (newfac2)
Factor score 2 % () 3885

N 2240 2240

Normal Parameters Mean .0000000 1.2832

Std. Deviation 81614727 20696
Most Extreme Differences Absolute 176 .143
Positive 176 135
Negative -.094 -.143

Kolmogorov-Smirnov Z 8.347 6.762
Asymp. Sig. (2-tailed) .000 .000

Table 43: The Kolmogorov-Smirnov test.

Graphically, we note the presence of multi-peaks, which reflect that there are several
different processes with different centres. In this case, we have five peaks so we need
five processes so that we can obtain a clearer view of what is really happening in either
individual process. To do this process we need to separate each peak to obtain separate
distributions and then analyse each distribution to see whether each distribution does or
does not depart significantly from normal behaviour. Due to lack of time, these factor

scores are not tackled in this dissertation.
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Figure 23: Histogram of the factor score.

Now, considering the histogram of the above-mentioned variable, it should be noted
that the normal distribution curve seems to fit the distribution of the ‘transformed’
scores well. However, since the resulting p-value is less than 0.05 the underlying

distribution of the data is not the normal distribution.
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Figure 24: Histogram of the newly categorised data.

Until now, we have analysed these factor scores extracted from the different methods

and we have encountered three types of possible outcomes. The first is when the factor
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score obtain is normally distributed. Secondly is when we apply a transformation and
obtain a factor score that does not significantly depart from normal distribution. Finally
is when we end up with factor scores that even though they are transformed, they still
do not satisfy the normal behaviour. Now, for the first two types we will continue our
analysis since to obtain linear models we need to satisfy the normal distribution. For the
third type, we need further investigation to identify the different processes hidden in

each factor score.

Our next step is to consider those normally distributed factor scores and obtain a
relation ship of these scores with the socio-demographic variables of the tourists’. This

leads us to the next section, where we are going to discuss these results.

6.2 Linear Models

To obtain these linear relationships, we utilized the statistical package Spss and applied
the general Univariate linear model function. In this section, we will discuss the outputs
that we acquired from this analysis. Here we have considered the best relationship
results obtained by each technique and each extraction method. First, we will go

through a quick look at the variables forming the tourists’ profile.

6.2.1 Tourists’ Profile

The tourist profile is composed of eight variables, which are season, regions grouped
into country, gender, marital status, full time and part time job, net income and age-
groups. Each variable has a number of parameters. In the following table, we have

grouped the variables and their categories.
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Season | Country | Gender l\g?;tlltlzl Fu}lott:me Pm;)gme Income | Age
0- 16
Summer | Scotland | Male Single Director Director —
1000 25
Married / 1001 — 26
Autumn | England | Female | Living Manager Manager 2000 -
together 35
Divorced Office / Office/ 2001 — 36
Winter | Wales / Retail Retail 3000 -
Separated worker worker 45
. . | 3001 | *©
Spring | Ireland Widowed | Professional | Professional 4000 -
55
Northern Skilled Skilled 4001 - 56
Treland worker / worker / 5000 -
tradesman tradesman 65
Manual Manual 5001+ | 66+
worker worker
Self- Self-
employed employed
Student Student
Housewife | Housewife
Unemployed | Unemployed
Retired Retired

Table 44: Profile variables and their respective categories.

6.2.2 Factor Analysis Technique

When applying the factor analysis technique with a maximum likelihood extraction

method, we obtained a factor score which, when analyzed with the profile variables,

gave the following results. The profile variables considered for the analysis are

highlighted in red.
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Type III | Degrees
Source Sum of of SMean F Sig.
Squares | freefom quare
Corrected Model 22.132 37 .598 945 568
Intercept 5.232E-02 1 5.232E-02| .083 775
Season 1.201 3 400 .632 599
Grouped region into country 2.013 4 .503 .795 536
Gender .626 1 .626 .989 327
Marital Status 1.226 3 409 .645 591
Fulltime job 5.746 8 718 1.134 365
Part time job 3.205 10 320 506 874
Net new income 2.481 3 827 1.306 287
Age group 2.138 4 535 .844 .506
Error 22.791 36 .633
Total 47.096 74
Corrected Total 44924 73

Table 45: Test of between-subjects effects of the dependent variable factor score 2.

This is the first output, where we considered all the variables without interactions. The
purpose of not considering the interaction terms is because we have a high number of
levels present in some of the variables such as full time job and part time job. In fact,
these two variables contain eleven different jobs. From this model, we obtained an R
Squared value of 0.493. This signifies that this model represents 49.3% of the
variability of the data.

Now, observing the table, we take note of the significant values (Sig). From these
values, we choose the one with the highest significance and discard it. In this particular
case, we have part time job with the highest p-value equal to 0.874. Then we repeat the
process until we end up with a number of variables that have a p-value less than 0.05.
Hence, the values that have a p-value less than 0.05 are significant ones for this factor

score.
For this regression factor score, we ended up with five significant variables (highlighted

in red) with a p-value (Sig) less than 0.05. From the R Squared value, we conclude that
this linear model is explaining 4.5% of the variability of the data.
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Type I Degrees off Mean .
Source Sum of P F Sig.
reedom | Square
Squares
Corrected Model 36.149 16 2.259 3.618 .000
Intercept 1.145 1 1.145 1.833 176
Scason 6.176 3 2.059 3.297 .020
Grouped region into country | 6.112 4 1.528 2.447 .045
Gender 5.289 1 5.289 8.471 .004
Marital status 7.063 3 2.354 3.771 010
Age group 8.401 5 1.680 2.691 020
Error 758.637 1215 .624
Total 794.879 1232
Corrected Total 794.786 1231

Table 46: Tests of Between-Subjects Effects of the second factor score extracted by

maximum likelihood method.

In addition to these results, we also obtained the parameter estimates in the column
labelled B. Observing the parameter estimates table, we note that the last level or
parameter of each variable is zero, which signifies that this parameter is redundant. This
is so since the Spss is programmed to alias the last level of each variable, hence the p—

value of these levels is zero.
From the t statistics (t), we can determine the relative importance of each variable in the

relationship. The t statistic is B divided by the standard error (Std. Error). As a guide

regarding useful predictors, we look for t values well below -2 or above +2.
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B Std. Error t Sig. 95%IConfidence
nterval
Lower Upper
Parameter Bound Btl))lll)nd
Intercept -.549 292 -1.880 .060 -1.121 |2.376E-02
[SEASON=1] |1.541E-02 .071 216 .829 -.125 .156
[SEASON=2] 162 .059 2.764 .006 4.705E-02 o6
[SEASON=3] 133 .065 2.037 .042 4.883E-03 .260
[SEASON=4] 0 . ’ ; 5 .
[REGGROUP=1]| -.199 278 =715 475 -.744 347
[REGGROUP=2] -.117 269 -.434 .664 -.645 411
[REGGROUP=3] .112 294 381 .703 -.465 .689
[REGGROUP=4] -.409 295 -1.387 .166 -.988 .170
[REGGROUP=5] 0 . . g g .
[GENDER=1] 138 .047 2.910 .004 4 488E-02 231
[GENDER=2] 0 N . : " .
[MARTST=1] 358 W) 2.609 .009 8.874E-02 .626
[MARTST=2] 379 113 3.341 .001 156 .601
[MARTST=3] 318 155 2.049 .041 1.349E-02 .622
[MARTST=4] 0 . ’ . . .
[AGEGROUP=1] 3.938E-02 .166 238 812 -285 364
[AGEGROUP=2] .309 107 2.892 .004 9.951E-02 519
[AGEGROUP=3] .171 .083 2.059 .040 8.055E-03 334
[AGEGROUP=4] .226 .075 3.027 .003 7.941E-02 372
[AGEGROUP=5] .186 .070 2.672 .008 4 935E-02 322
[AGEGROUP=6] 0

Table 47: Parameter Estimates of the dependent variable factor score 2 extracted by

maximum likelihood method.

In this table we have ten useful predictors since their value is higher than 2. These
predictors are the ones highlighted in blue where each parameter signifies a label. For
each variable, we have an amount of levels. By levels, we understand the different
values inputted for each variable. For the season variable, we have four levels that
indicate the four seasons. From the above table, we have that season has two important
values that are most influential in this relationship. Hence, season = 2 signifies autumn
while season = 3 represents winter. Gender has two levels and gender = 1 represents
male population. For the marital status, we have three levels 1, 2 and 3 which
respectively mean single, married / living together and divorced / separated. Regarding
the last variable, age group we have six levels but only four are the most useful. These
are from the second to the fifth level. Each level represents an age bracket. Hence, our

most significant age brackets are 26 — 35, 36 — 45, 46 — 55 and 56 — 65.
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Now using the same data reduction technique, we analyzed another factor score
extracted from the other method, principal axis factoring. Here we have the result of the
most significant variables for this factor score. The same process was performed, where
we started with all the variables and each time reduced the variable with the highest p-

value until we finished with those having a p-value less than 0.05.

Type III | Degrees Mean .
Source Sum of of a— F Sig.
Squares | freedom
Corrected Model 30.368 13 2.336 3.687 .000
Intercept 9.1 1 811 1.281 258
Regrouped region into country 6.083 4 1,521 2.400 .048
Gender 5.749 1 5.749 9.075 .003
Marital Status 6.452 3 2,151 3.395 .017
Age grouped 8.153 ) 1.631 2.574 .025
Error 771.646 | 1218 .634
Total 802.164 | 1232
Corrected Total 802.013 | 1231

Table 48: The test between subjects effect of the second factor score.

From these variables, we obtained the parameter estimates table, where we will observe

the t value. From this t value, we identify the most important variables for this

relationship.
B [Std.Error| t G, | -o%eConfidenge
Interval
Lower Upper
Parameter Bound B(I))lfnd
Intercept -417 .286 -1.458 145 -.978 .144
[REGGROUP=1] -.201 278 -.724 469 =747 344
[REGGROUP=2] -.144 268 -.538 .590 -.669 381
[REGGROUP=3]|9.483E-02 294 322 747 -.483 .672
[REGGROUP=4] -436 295 -1.476 .140 -1.016 .143
[REGGROUP=5] 0 . : " . >
[GENDER=1] 143 .048 3.012 .003 5.004E-02 237
[GENDER=2] 0 . : A . .
[MARTST=1] 352 138 2.550 011 8.114E-02 .623
[MARTST=2] 364 114 3.186 .001 .140 .588
[MARTST=3] 325 .156 2.082 .038 1.873E-02 .630
[MARTST=4] 0 . : i " .
[AGEGROUP=1]-1.778E-02| .165 -.108 914 -.341 .306
[AGEGROUP=2] .272 .106 2.569 .010 6.434E-02 480
[AGEGROUP=3] .147 .082 1.785 .074  |-1.455E-02| .308
[AGEGROUP=4] .216 .074 2.906 .004 7.021E-02 362
[AGEGROUP=5] .190 .070 2.708 .007 5.222E-02 327
[AGEGROUP=6] 0 .

Table 49: Parameter estimates of the dependent factor score.
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These useful predictors are highlighted in blue and are very similar to the previous table

except that in this relationship, the season variable is not significant.

6.2.3 Parceling Technique

Applying the other technique of data reduction, parceling, we have the following well-
defined relationships. Let us start with the first extraction method, maximum likelihood,
when applied on the physical environment variables. Here we have the following

significant variables of the socio-demographic variables for this factor score.

Note that these variables are significant since their significance value is less than 0.03.
From the following table we have five variables, which are identical to those obtained in

the previous technique when applying the same extraction method.

Degrees
source [ TpetSom| U Mean |y g
q freedom | 1
Corrected Model 36.852 16 2.303 3.696 .000
Intercept 1.100 1 1.100 1.765 .184
Season 6.268 3 2.089 3.353 018
Regrouped region into country 6.404 4 1.601 2.569 37
Gender 5.358 1 5.358 8.598 .003
Marital Status 6.938 3 2.313 3.712 011
Age grouped 8.862 5 1.772 2.844 015
Error 757.062 1215 .623
Total 794.013 1232
Corrected Total 793.914 1231

Table 50: The test between subjects effect of the second factor score.
From the parameter estimates table we note the following results. These parameters

contribute to the relationship of the above variables with this factor score. The ones

highlighted in blue signify the ones that are of a greater influence in this relationship.
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B Std. Error t Sig. 95%IC0nfidence
nterval
Lower Upper
LEmEmELEr Bound B(E’lll)nd
Intercept -.560 291 -1.921 .055 -1.132 | 1.180E-02
[SEASON=1] |4.666E-03 071 .065 948 -.135 145
[SEASON=2] .159 .059 2.706 .007 4 .358E-02 274
[SEASON=3] 133 .065 2.048 .041 5.616E-03 261
[SEASON=4] 0 . . g " .
[REGGROUP=1]| -.186 278 -.669 504 -.730 359
[REGGROUP=2]| -.109 .269 -407 .684 -.637 418
[REGGROUP=3]| .125 294 424 671 -.451 701
[REGGROUP=4] -415 295 -1.407 .160 -.993 .164
[REGGROUP=5] 0 ; ; " . .
[GENDER=1] 139 .047 2.932 .003 4.586E-02 231
[GENDER=2] 0 . : g . .
[MARTST=1] 347 d37 2.537 011 7.870E-02 .616
[MARTST=2] 375 113 3.314 .001 153 .598
[MARTST=3] a17 155 2.050 .041 1.358E-02 .621
[MARTST=4] 0 . . . . .
[AGEGROUP=1] 8.149E-02 165 493 622 -.243 406
[AGEGROUP=2] .320 107 2.994 .003 110 .530
[AGEGROUP=3] .182 .083 2.197 .028 1.950E-02 345
[AGEGROUP=4] .237 074 3.179 .002 9.067E-02 383
[AGEGROUP=5] .198 .069 2.843 .005 6.121E-02 334
[AGEGROUP=6] 0 .

Table 51: Parameter estimates of th

e significant variables of this relationship.

Applying the same process but considering a principal axis factoring extraction, we

obtain the following five significant variables.

Degrees
Source Tyt[.)g TIL 5o of SMean F Sig.
of Squares | qom|Sauare
Corrected Model 37.155 16 2.322 | 3.695 | .000
Intercept 1.184 1 1.184 | 1.884 | .170
Season 6.707 3 2.236 | 3.557 | .014
Regrouped region into country 6.368 d 1.592 | 2,533 | 039
Gender 5.320 1 5.320 | 8.465 | .004
Marital Status 6.852 3 2.284 | 3.634 | .013
Age grouped 8.797 o 1.759 | 2.800 | .016
Error 763.595 1215 .628
Total 800.875 1232
Corrected Total 800.750 1231

Table 52: The test between subjects effect of the first factor score.

From these five variables, we obtain the following parameter estimates.
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. 95% Confidence
B Std. Error t Sig. Tritexsal
Lower Upper
Pavameter Bound Bound
Intercept -.562 293 -1.921 .055 -1.137 |1.186E-02

[SEASON=1] |-9.265E-04] .072 -.013 .990 -.142 .140

[SEASON=2] 162 .059 2.747 .006 4.620E-02 277

[SEASON=3] 136 .065 2.092 .037 8.460E-03 265

[SEASON=4] 0 5 . . . A
[REGGROUP=1]] -.174 279 -.624 533 =721 373
[REGGROUP=2] -.102 270 -377 .706 -.632 428
[REGGROUP=3] .132 295 448 .654 -446 111
[REGGROUP=4]| -.409 .296 -1.381 .168 -.990 172
[REGGROUP=5] 0 " . : . .
[Q2GENDER=1]| .138 .047 2.909 .004 4.497E-02 231
[Q2GENDER=2] 0 : g ’ X "
[Q2MARTST=1]| .346 Wk 2.519 .012 7.665E-02 .616
[Q2MARTST=2]| .373 114 3.278 .001 .150 .596
[Q2MARTST=3]| .313 155 2.011 .045 7.566E-03 .618
[Q2MARTST=4] 0 . . . . .
[AGEGROUP=1] 5.962E-02 .166 359 .720 -.266 385
[AGEGROUP=2] .312 107 2.910 .004 .102 523
[AGEGROUP=3] .178 .083 2.141 032 1.491E-02 341
[AGEGROUP=4] .236 075 3153 .002 8.914E-02 .383
[AGEGROUP=5] .195 .070 2.802 .005 5.858E-02 332
[AGEGROUP=6] 0 .

Table 53: Parameter estimates of the significant variables.

In this section, we focused on the most prominent relationships. In fact, we had other
relationships but were not as prominent as these were. There were also situations where
we ended with no relation. These cases could have occurred due to the fact that we only
considered these eight variables grouped into two questions of the questionnaire. There
can be other variables which could result in a relationship with the factor scores.
Unfortunately, due to lack of time and due to the complexity of the data it was not
possible to consider all the variables for our relationship. From various papers, we note

that these socio-demographic variables are the most utilised variables for rclationship

analysis.

As a concluding note, we realize that from these two techniques, we ended with the
same results. In fact, only one factor score was different. The difference was in the

amount of variables but not the presence of an other variable which is substituting one

of the others.

88



Chapter 7 Conclusions and Recommendations

7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this dissertation, we have put into use statistical methods to solve problems arising in
tourism data. In particular, it tackles problems of analysing Likert scale questions. The
application concerns real tourism data collected by the Malta Tourism Authority
(MTA). The objective was to apply data reduction techniques to evaluate these types of
ratings, thus rendering it valid for future studies. Also, a relationship of the factor scores

with the respondents’ profile was studied.

Now we will outline the problems encountered during the whole process and discuss the

reasons why and how they were tackled if possible.

Starting with the theoretical aspect, one of the main problems was that most theoretical
results assume normality conditions. However, in practice it is more likely to deal with
non-normal populations. Hence, the concept of non-normal factor analysis had to be

introduced since our scale was not normally distributed.

On the practical side, I decided to use yearly data composed of four seasons but
collected over a span of two years since this survey was launched in Summer 2003. The
question considered for this analysis was the one in which the tourist was asked to rate a
number of physical aspects and services provided by the tourism industry. One of the
problems encountered in the use of these variables was the fact that the MTA analyse

this survey on quarterly basis. Therefore, the idea of analysing yearly data required a lot
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of recoding since for each quarter a different person used to input the data. This fact
resulted in the problem that for each quarter there was a different codebook. Hence,
considerable work had to be taken to ensure that the data of these four quarters was
appropriately linked. This difficulty was particularly present in the recoding of the
socio-demographic variables that were later used to obtain our relationship with the

factor scores.

Another difficulty was the decision of which variables and respondents to consider for
the analysis. This was so since in our data we had an amount of variables that had a
large amount of missing values. By missing values, we understand that either the tourist
did not respond or they did not use or have any opinion regarding that variable. After
deciding on which variables to consider for our analysis, we considered each
respondents response and decided that those respondents that had more than four

missing values were removed.

The final stage of factor analysis and parceling was factor scores. Here we met with
three possibilities. We had factor scores that when extracted were normally distributed.
We also had factor scores that when transformed with some sort of transformation
satisfied the normality conditions and lastly we had those factor scores that remained
non-normal throughout. For the first two types, we continued our process but for the

third type, further study was required.

The last part of the application focused on the use of general univariate linear models to
obtain a relationship of these factor scores with the profile, namely the socio-
demographic variables. We concluded that some factor scores were in fact linearly
related to these variables. However, other factor scores lacked this linear relationship
since there may have been other variables that could have been considered for our

relationship.

7.2 Recommendations

From this study, I have acquired knowledge of the procedures involved when applying
statistical theory to real life. In fact, the combination of theory and practice applied

together is now more appreciated and absorbed for future reference. Without doubt, my
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work needs improvements and further readings would convince me to consider the

following points

the application of other estimation techniques;
the possibilities of other linear relation methods;

the study of further analysis of non-normal scores;

b

the use of more variables to obtain a more knowledgeable model of the linear

relationship.

My dissertation is based on four quarters collected over two years and it would be a
motivating idea if future studies of this data were also considered on a yearly span
rather than quarterly. In addition, it can be proposed as a new approach for the Malta

Tourism Authority to analyse this data.
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APPENDIX A

Theorem: Spectral Decomposition Theorem.

Any symmetric matrix A(pxp) can be written as
- t t
A=TAT Z%%mo

where A is a diagonal matrix of eigenvalues of A, and I is an orthogonal matrix

whose columns are standardized eigenvectors.

Proof:

Let us assume that we can obtain the orthonormal vectors Yayo > Y (o) such that
Ay, = kiy(i) for some A.. Then

A, i=j
t P & — 12
VmAﬁn“Ymﬁn‘{Q i

or in matrix form
I'AT=AT' T =A

Now, pre- and post-multiplying by I' and I™* respectively gives

IT'AIT' = A =TAI"
Therefore, the elements of A are the same as the eigenvalues of A with the same

multiplicities.
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Hence, we need to find an orthonormal basis of eigenvectors. If A; #A; are distinct

eigenvalues with eigenvectors x+y , respectively, then

AX'y=x'Ay =y'Ax=Ly'x

=y'x=0

Therefore, for a symmetric matrix, eigenvectors corresponding to distinct eigenvalues

are orthogonal to one another.

Assume that there exist k distinct eigenvalues of A with H,....H, corresponding

k
eigenvectors of dimensions 1,,...,1, , hence, let r = er .
=1

Given that separate eigenspaces are orthogonal, there exists an orthonormal set of
vectors e,,...,e_ such that the vectors
j1

- i
ri-Fl,...,Z:ri
i=1 i=1

form a basis of H;. But r; is less than or equal to the multiplicity of the corresponding

eigenvalues. Thus, restructuring, if necessary, the eigenvalues A, we may assume that

Ae =)e,i=1,..,r and r<p.

1

Now, consider when r = p, then substitute Y by e, and the proof is obtained.

Consider the case when r <p.
In this case, we obtain a contradiction and so this cannot be possible. Assuming that all

the eigenvalues of A are strictly positive and setting

B= A——i}»ieief

i=1

:>trB=trA—Zr:Xi(e§ei)= i A, >0
i=1

i=r+1
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since r < p. Therefore B has at least one non-zero eigenvalue 0. Let x#0 be the

corresponding eigenvector, then for 1< j<r

fe;x =e¢,Bx = {MeE —iz;:ki (e;.ei )e{ }x =0
so that x is orthogonal to e; for j=1,...,r.
fx=Bx = (A—Zkieieit)x= Ax— A, (elfx)ei = Ax
implying that x is also an eigenvector of A. Consequently, 6 =X, for some i and x is a

linear combination of a number of the e,. This, contradicts the orthogonality between x

and e,.
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APPENDIX B

The following are the questions from MTA’s traveller survey that have been considered

in my thesis. The first two questions were used to obtain the tourist profile. The emphasis

of my thesis was on the last question (question 12) which is measured on a Likert scale.

1. Where do you live?

City / Town:

Region / Province / State:

Country:
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2. Where are you in each of the following groups?

Gender
Male

Female 0

Marital Status

Single O
Married / Living

together

Divorced / Separated 0
Widowed 0

Occupation Full time Part time

Director O
Manager

Office / Retail worker
Professional

Skilled

O O o

O

worker ! Tradesman
Manual Worker
Self-employed
Student

Housewife
Unemployed
Retired

o o o oo oo @

What is your net income per month?
Amount

Currency

O 0O O

3

0O 0o 0o o o o
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12. How would you rate the following aspects of your trip in Malta in terms of

physical environment and service provided by employees?

1= Very Good

2= Good

3= Not So Good

4= Poor

5= Very Poor

N/A= Not Applicable

Physical Aspect Service Provided

Very good Very poor Very good Very poor

1 2 3 4 5 NA 1 2 3 4 5 NA
Malta International
Airport o 0o o o 4 0 g o O o o i
Gozo heliport 0 0o O O O 0O 0O 0O O 0O o O
Gozo ferry points O 0O O O 0O 0O O 0O 0O O O O
Accommodation O O O 0O 0O N O O O O O O
Restaurants O 0 0O 0O 0O 0O O 0O O 0 O O
Entertainment O 0O 0O O O O OO o o o o
Car hire 0O 0O 0O 0 O 0O OO 0o o o o
Taxi service oo o o g 0 o 0O o O O U
Public Transport O 0O 0O 0O O O 0O O ©C O O 0O
Retail outlets O 0O O 0O o 0 O O O o o 0o
Sports facilities O 0O o o 0o 0 O o o o o o
Beaches O 0O 0O 0o O O 0 O 0O O O O
Attractions
Guided Tours
Historical Sites
Museums O 0o o o o o 0 O O 0O O
Cathedrals /
Churches g o o o g O g o o o o0 0
Theatre /

o o o o o 0 g o o o o O

Performing arts
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Infrastructure
Road

Road signs

Traffic

Parking

Public
Conveniences
Level of cleanliness
Air Quality

Sea Quality

o o o a

O O o .4

0O 0o o ad

O 0O O o

O - o O

0 O O

o o o o

a 0o o o0

O

[ R R O B |

O 0O g 04

O O o g

T R T Y
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