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Abstract 

The objective of this dissertation is to study and apply statistical methods to the 

Traveller Survey involving Likert scales. A typical approach is through factor analysis 

but an alternative method is by parceling. In this study, we are considering these two 

data reduction approaches, together with two extraction methods to obtain a set of factor 

scores. In conclusion, we finalise this study by considering a relationship of the factor 

scores with the socio-demographic variables of the tourist. 
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Chapter 1 Introduction 

1 INTRODUCTION 

Tourism is one of the world's largest industries. Consequently, the practice of tourism is 

becoming increasingly sophisticated. The development of this industry is related to the 

wide range of services including transport, accommodation, attractions and 

infrastructure. Nowadays tourism is becoming more competitive and hence this 

influences the fact that tourism businesses must constantly evaluate the products and 

services they offer to their customers. Consequently, these businesses must revisit their 

commercial goals and objectives to be more up to standard with the modem community. 

Therefore, it seems that tourism, when planned and managed appropriately can act as a 

valuable agent in the economic development of the countries. 

Hence, for the tourism market to withstand these new challenges, various surveys were 

planned and analysed with the purpose of understanding better what the tourist requests. 

Such a survey is the 'Traveller Survey', in which tourists are asked a set of questions. 

Very often the focus is on questions in which the tourist is asked to rate the above­

mentione<l services. Then, analysts apply statistical methods to evaluate these ratings so 

that they can understand better the tourists' response and deduce collective tendencies in 

attitudes and behaviours. The typical statistical approach is traditionally factor analysis 

but recent advances in this study showed that statistical sophistications such as 

bootstrapping, jacknifing, clustering and parceling have been introduced. All these 

methods are based on the same idea, namely that of data reduction and discovering the 

latent factors present in the model. Then, after reducing the data into smaller groups, a 

linear relationship with other variables considered in the study is formulated. 
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Chapter 1 Introduction 

In this dissertation, we are analysing the 'Traveller Survey' published by the Malta 

Tourism Authority. For this analysis, we are considering a question in which tourists 

were asked to rate an amount of variables that describe the physical environment and 

service provided by employees of the tourism industry. But, before we start our 

statistical analysis, we reduce the data since we have a large amount of missing or non­

response results. Then, we apply two types of techniques of data reduction, factor 

analysis and parceling. Within these two approaches, we apply two extraction methods, 

maximum likelihood and principal axis factoring. The difference between these two 

extractions is that the maximum likelihood considers normality distributions while 

principal axis factoring does not obey the normality conditions. From these two 

techniques, we obtain a set of factor scores. These factor scores are then transformed to 

satisfy the normal distribution. This is required to obtain a relationship with the socio­

demographic variables, through the application of linear models which need to satisfy 

the normality condition. The objective of all these steps is to discover the latent factors 

present in the ratings of various variables and then obtain a relationship of these 

variables with the background or profile of the respondents. 

1.1 Structure of Dissertation 

My dissertation consists of seven chapters. The first is an overview of subject and 

objectives of my dissertation. This is followed by a literature review that gives an idea 

of the historical development of factor analysis as well as the use of factor analysis for 

analysing Likert scales and tourism data. The third chapter deals with the theoretical 

aspects of factor analysis and factor scores. The fourth chapter consists of a detailed 

description of the case study. The next two chapters are about the application of factor 

analysis, factors scores and the relationship of the scores with the socio-demographic 

variables present in the traveller survey conducted by the MTA. Finally, the conclusion 

summarizes the main outcomes and also confirms the need of more in-depth study of 

the subject. 
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Chapter2 Review of the Literature 

2 REVIEW OF THE LITERATURE 

2.1 Historical Development of Factor Analysis and Scores 

2.1.1 Factor Analysis 

Galton (1888) first introduced the original concept of latent factors, but the actual 

mathematical model originated from Spearman (1904). Spearman assumed that the 

correlations among a set of intelligence test scores could be generated by a single 

hidden factor of general intellective ability and a second set of factors reflecting the 

unique qualities of the individual tests. Later scientists, especially Thurstone, improved 

this model from two factors to include many common factors. In the new journal, 

'Psychometrika' we find a number of published works that focus on this approach. 

There are many writings regarding this topic. Two historical writings are the books 'The 

Factorial Analysis of Human Ability' by Thomson (1939) and 'Multiple Factor 

Analysis' by Thurstone (1947). Two recent books that provide a psychologic::il 

perspective are those by Mulaik (1972) and Harman (1976). The one written by Mulaik, 

has a complete account of the theoretical aspect while that of Harman emphasizes more 

on the statistical methods and the computational matters. 

The major approach of factor analysis within the statistical society is due to Lawley and 

Maxwell (1971) whose book is the basis as a source of results regarding the normal 

theory factor model. Recent work, such as that of Bentler, Browne, Joreskog, McDonald 
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Chapter2 Review of the Literature 

and others are considered as a generalization of the factor model. In fact, these 

generalizations are grouped under the name of the analysis of covariance structures. 

These generalizations are based on the linear structural equation models, which include 

not only the basic factor model but also the linear relationships among the factors. 

2.1.2 Factor Scores 

Henry Thomas Herbert Piaggio (1935) originally considered factor score estimation as a 

solution to an indeterminancy problem. In fact, if factor scores can be computed, we 

would have no need of factor score estimation. Yet, during the early 1970's many factor 

analysis texts did not discuss the basis of the indeterminacy problem and its relation to 

factor score estimation. 

Schonemann and Wang saw the factor score indeterminacy and non-uniqueness as 

major problems for factor analysis. They pointed out that if these problems are not 

obscured by misleading terminology, they could lead to an alternative approach of data 

reduction such as component analysis. 

McDonald (1974) did not agree with the conclusions reached by these two scientists and 

he based his point of view on two major arguments. First, he pointed out that common 

factors are not subject to indeterminacy since the adopted measure of indeterminacy is 

not correct. He said that the minimum correlation index promoted by Guttman as a 

measure of indeterminacy was unreliable. In his second point, he considered the 

assumption that one of the sets of factor scores fitting the observed data was the true set. 

These points of view of McDonald are very similar to those of Spearman (193 3) since 

both of them saw that the measure of indeterminacy is misleading our view and argued 

against the pessimistic approach. 

Mulaik (1976) de-emphasized the importance of this difference by stating that it is of 

little importance whether we apply one of these correlations, p 2 or 2p2 -1, if we 

consider that these two indices measure different aspects of the same situation. He 

proved that when different solutions for a factor have equal probability of being 

considered, then the squared multiple correlation p 2 for predicting the factor from the 
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Chapter2 Review of the Literature 

observed variables is the average correlation PAs between independently selected 

alternative solutions A and B. 

Green (1976) gave a definition to what he termed as factor score controversy. He started 

by pointing out the connection between the equations of multiple regression and tho.se 

of factor analysis. His argument has many similarities with an earlier work of Spearman 

(1933) and Thomson (1934). He rejected McDonald's second point and instead he 

pointed out that the use of regression estimates is better since they estimated all of the 

available sets of factor scores equally well. He also noted that the factor scores are all 

equally correct since they are all properly estimated by the factor score estimates. 

2.2 Influence of Factor Analysis 

2.2.1 Likert Scale 

It is important to bring to our attention that Likert was not the first to obtain subjective 

ratings and that the early scale developers used far more sensitive scales than we 

currently employ. Freyd (1923) discussed the various scale forms available at that time 

and noted that they tended to be based on 10-point or 100-point formats. This 

numbering system was definitely the most intuitive and easy to visualize since the 

traditional counting involved the fingers or toes. It also had the advantage of having a 

perception of equal psychometric distance between the scale points. This was an 

essential supposition when such scale was used in combinations with parametric 

statistics. 

Freyd then introduced his 'Graphic rating method' which had the following form: 

Does he appear neat or slovenly in his dress? 

Extremely neat Appropriately 
Inconspicuous Somewhat 

Very slovenly and clean. and neatly careless in his 
Almost a dude. dressed. in dress. 

dress. and unkempt. 

The above scale was intended to be used in conjunction with job interviews. He 

considered a line present on these scales so that the respondents can tick anywhere 
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Chapter2 Review of the Literature 

they wished. Then, he recommended scoring the responses by dividing the line into 

10 or 20 equal intervals. 

A few years later, Watson (1930) published a similar scale to measure an aspect of 

subjective quality of life (SQOL) as follows: 

About three-
Happier, on the 

Most fourths of the 
The average whole, than three-

miserable population are 
person of your fourths of the 
own age and population of 

of all happier than you 
sex similar age and 

are 
sex 

Then, the scale was scored from 0 to 100. 

In 1932, Likert produced his scale which had the following form: 

Strongly 
Approve 

Approve Undecided Disapprove 

I 

Happiest 
of all 

Strongly 
Disapprove 

This format is clearly derivative from the previous ones. This scale reduces significantly 

the number of effective choice-points in two ways. Firstly, the scoring system is no 

longer continuous and therefore, respondents were now required to tick were necessary. 

This new format reduces the scoring system to a 1-5 scale. Secondly, he has introduced 

the bi-dimensional scale with a neutral mid-point. 

More than six decades have passed since Likert's formulation was published and until 

now, it has remained the most popular. The reasons of this popularity include the type 

of psychometric investigation to which it has been subjected, the difficulty of generating 

substantially larger numbers of labelled choice points, and the complex nature of 

alternative scales. 

A popular method of obtaining information on human knowledge, attitudes, and 

behavioural preferences and so on is by applying these types of scales in survey 

questionnaires. The traditional statistical methods to analyse survey response are 

frequency analysis, t-test and the measures of central tendency. However, there is a flaw 

since these methods do not describe the correlation occurring at or between scale level 

responses, which are the most important features to evaluate unobservable patterns. 
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Chapter2 Review of the Literature 

From these correlations, we are able to explain the behavioural patterns that are shared 

within or uniquely associated with some groups of respondents. 

Kim and Mueller (1978) argued that factor analysis is an approach in which we can gain 

insight to survey responses. Factor analysis is a statistical procedure, which extracts a 

small number of latent variables from a large set of observable variables. 

With the advancement of computer knowledge, the issue of tackling Likert scale data is 

becoming more manageable since modem statistical packages, such as Spss, SAS etc 

are rendering this analysis easier and reliable. 

2.2.2 Tourism Data Analysis 

Tourism is one of the largest industries in the world (World Tourism Organization 

[WTO], 1998) and it continues to grow. Tourism is a multifaceted field and tourism 

research focuses on a variety of areas. Smith (1989) classifies tourism research into the 

following categories: (1) tourism as a human experience, (2) tourism as a social 

behaviour, (3) tourism as a geographic phenomenon, (4) tourism as an economic 

resource, (5) tourism as an industry, and (6) tourism as a business. 

Reading various papers; (1 )Sevil Sonmez and Ercan Sirakaya "A Distorted Destination 

Image? The Case of Turkey", (2) Nick Johns and Szilvia Gyimothy "Market 

Segmentation and the Prediction of Tourist Behaviour: The Case of Bornholm, 

Denmark'', (3) Metin Kozak and Mike Rimmington "Tourist Satisfaction with Mallorca, 

Spain, as an Off-Season Holiday Destination" and others, we note that factor analysis is 

the most appropriate statistical approach. There are various areas in which factor 

analysis is used, such as in image analysis, where the gathered data is analyzed to 

understand the tourists' perspectives of that country. The focus of these types of 

questionnaires is that of supporting promotional exercises. Another issue is the 

marketing aspect, in which the factors obtained from the different data sets show a 

behavioural differentiation between specific activities. Marketing strategy consists of 

the following interrelated tasks: (1) setting marketing goals, (2) segmenting the market 

and selecting one or more target markets, (3) positioning the product/service, and ( 4) 

developing the appropriate marketing mix (Harrell & Frazier, 1999, Perreault & 

McCarthy, 1999:53). Prior to addressing these tasks, a SWOT (Strengths, Weaknesses, 
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Chapter2 Review of the Literature 

Opportunities, and Threats) analysis should be completed. A typical example is the 

traveller survey. 

Most recent traveller surveys are now more elaborate since in addition to the traditional 

socio - demographic questions, attitudinal questions are added. Although attitudinal 

surveys are not generally classified as qualitative methods, they provide a means for 

measuring qualitative factors important in travel behaviour. Most traveller surveys 

follow the same pattern where a series of attitudinal questions in the form of statements 

are asked. The respondents are asked whether they agree or disagree on a 5-point or 7-

point scale, known as Likert scale. Factor analysis is usually used so that it reduces the 

questions into a smaller set of factors that are then included as exploratory variables in 

the travel behavioural models. Analyses of these surveys constantly show that at least 

some attitudinal factors are significant predictors of travel behaviour. 

8 



Chapter 3 Statistical Methodology 

3 STATISTICAL METHODOLOGY 

In this chapter, we have integrated the main theoretical results that are at the centre of 

the statistical techniques considered in this study. We have two sections in which we 

focus on the factor analysis and scores estimation respectively. 

3.1 Factor Analysis 

3.1.1 Introduction 

Factor analysis is a mathematical model that attempts to explain the correlation between 

a large set of variables in terms of a small number of underlying factors. These 

underlying factors are most of the times unobservable and these are present in subjects 

such as psychology. In fact, psychologists originated the concept of factor analysis since 

in psychology it is not possible to measure exactly certain abstract quantities one is 

studying. 

3.1.2 The Normal Factor Model 

3.1.2.1 Definition and Properties 

Let x be a (p x I) random vector with mean µ and covariance matrix L. Then x fits the 

k-factor model if it is represented in the form 

x=Af +u+µ 

9 



Chapter 3 

where A is a (p x k) matrix of constants 

f is a ( k x 1) random vectors, and 

u is a (p x 1) random vectors. 

Statistical Methodology 

The elements of f are known as common factors while those of u are called specific 

factors. Both f and u are assumed to be jointly normally distributed. 

. . . A.lk l 
· · · · · · is the matrix of factor loadings since, A.ij is a parameter reflecting 

A.pk 

the importance or in other words the loading of the jth factor with the ith response. 

Typical applications of the k-factor model are for instance in psychology, where x may 

represent p results of tests measuring intelligence scores. One common latent factor 

explaining x E JRP could be the overall level of intelligence. In marketing studies, x may 

consist of p answers to a survey on the levels of satisfaction of the customers. These p 

measures could be explained by common latent factors like the attraction level of the 

product or the image of the brand, and so on. 

Now, we assume that 

E ( f) = 0 and V ( f) = E ( fft) = I , 

E(u) = O,cov( uiui) = 0, i * j 
and that f and u are independent so, 

cov ( f, u) = E { [ u -E ( u) J [ f - E ( f) J} = E ( uf t ) = O . 

[

'1'11 
Let us define that V(u) = E( uut) ='I'= ~ 

These assumptions, together with the factor model compose the orthogonal factor 

model. 

10 



Chapter 3 Statistical Methodology 

Hence, for the orthogonal factor model we can evaluate the expectation and the 

covariance matrix of x as follows 

E ( x) = E ( Af + u + µ) = AE ( f) + E ( u) + µ = µ since E ( f) = 0 and E ( u) = 0 

and 

L = cov ( xx1
) = var( x) = var ( Af + u + µ) = A var ( f) A 1 + var ( u) = AA 1 + 'P . 

Another representation of the factor model is 

k 

xi = ~)-/j + ui + µi' i = 1, ... ' p 
j=l 

implying that the variance matrix of x is 

k 

()ii = ~)\,~ + \jf ii . 

i=l 

Therefore, the vanance of x is split into two parts. The first part, known as the 

communality is 

k 

h2 - ""'\ 2 i - L.,i/\,ij. 
j=l 

The communalities represent the part of the variance of xi that is shared with the other 

variables through the common factors. The second part \jfii, known as the specific 

variance, defines the variability of xi not shared with the other variables. 

To clarify the concepts above we perform a few numerical calculations by considering a 

one-factor model. 

Example: Suppose population L is 

l
'0.65642 

cov(x) = -0.084483 

0.088283 

-0.084483 

0.2633 

-0.0225 

-0.0225 = L. 
0.088283] 

0.10997 

0 

\Jf 22 

0 

0 J 0 . 

\jf 33 
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Chapter 3 Statistical Methodology 

A1A2 
Therefore, A2A1 A;+ '1'2 A2A3 = -0.084483 

(A; +IJI, 

A3A1 A3A3 

A,A, J (0.65642 

1-,; +'1'3 0.088283 

0.65642 =A;+ '1'11 

This implies that 0.2633 =A~ + '1'22 and 0.088283=A1A3 . 

0.10997 =A; +'!'33 -0.0225=A)o3 

Hence, -0.084483 _A and 0.088283 _A 
A 2 A, 3 

1 1 

- ='\ '\ -(-0.084483)(0.088283)= -0.007458 => 0.0225 f'v7f'v3 - 7 
- A1 A

1 
Aj 

=>A; =0.33147 

=> A1 = 0.57573 

0.65642 =A;+ '1'11 = 0.3315 + '1'11 

=> '1'11 = 0.324953 

Similarly for the other A 'sand \jf 's. Therefore, we get 

A2 =-0.146741 

A3 =0.153341 

'1'22 = 0.241767 

'1'33 = 0.086457 

-0.084483 

0.2633 

-0.0225 

(
Ai J ( 0.57573 J (\jfll 

:.~ = A2 = --0.146741 and 'Px = 0 

~ 0.153341 0 

0 
0 J (0.324953 
0 = 0 

\j/33 0 

0 

0.241767 

0 

0.088283] 
-0.0225 . 

0.10997 

Therefore, we can say that for the covariance matrix given we have the factor analytic 

representation given above. 

D 
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3.1.2.2 Scale Invariance 

It is important to note that factor analysis is unaffected by a re-scaling of the variables. 

Let y = Cx where C = diag( cJ . So for the k-factor model, let A = Ax and '¥ = \f' x . 

Therefore, we obtain 

y =Cx=CAJ +Cu+Cµ 

and 

Hence, the k-factor model holds for y with factor loading matrix AY = CAx and specific 

variance \f' Y = C\f' x C = diag( C~\lf ii) . 

Example: Let us take the previous example and let's consider C to be 

c~~[~ 

0 

5 

0 

0 

5 

0 

[2.62568 
= -0.84483 

0.529698 

n Therefore 

Or65M2 -0.084483 

0 -0.084483 0.2633 

3 0.088283 -0.0225 

-0.84483 0.529698J 
6.5825 -0.3375 

-0.3375 0.98973 

But this is equal to CAxA~ C + C\f' x C , where 

l 0.YJYJ3 J [0.324953 0 
Ax= -0.146741 and 'Px = 0 0.241767 

0.153341 0 0 

0.088283r 
-0.0225 0 

0.10997 0 

OJ. 
0 . 

0.086457 

Therefore, CA, ~ [ ~ 
0 

5 

0 

OJ[ 0.57573 J l 1.15146 J 
0 -0.146741 = -0.733705 

3 0.153341 0.460023 

0 

~J 5 

0 

13 



Chapter 3 Statistical Methodology 

=> CAXA~C = -0.733705 (1.15146 
[ 

1.15146 J 
-0.733705 0.460023) 

0.460023 

[ 

1.325860 

= -0.844832 

0.529698 

-0.844832 0.529698 J 
0.538323 -0.337521 

-0.337521 0.211621 

~r32i953 0 

0.241767 

0 0.08~457 ][~ 
0 

6.044175 

0 

[ 

2.625672 

:. CAXA~C+C'PXC = -0.844832 

0.529698 

-0.844832 

6.582498 

-0.337521 

3.1.2.3 Non-Uniqueness of Factor Loadings 

0.529698 J 
-0.337521 = C:EC. 

0.989734 

0 

5 

0 

D 

Now, given that the k-factor model for x holds, then it also holds if the factors are 

rotated. Therefore introducing an orthogonal (k x k) matrix G, x is written as 

x =(AG)( G 1f )+u + µ. 

Given the presence of the new factors G 1f and new factor loadings AG, the k-factor 

model is still valid since the assumptions of the random vector f are applicable. This 

implies that the covariance matrix L of x is transformed to 

14 
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If 'I' is fixed, this rotation hinders the decomposition of L in terms of A and 'I' . This 

is solved by rotating the factor loadings to satisfy the following constraint 

A1'P-1A is diagonal. 

An interesting observation can be made by comparing the number of parameters of L 

when it is unconstrained with the number of free parameters in the factor model and 

letting s signify this difference. 

:. s =number of parameters of L- free parameters 

=>s= ~p(p+l)-{pk+p- ~k(k-1)} 

=>s=_!_(p-k)
2 

_ _!_(p+k). 
2 2 

If s ~ 0 , A , 'I' are known and the rotated factor model holds, then L is written in 

terms of A and 'I' subject to the constraint A 1'£'-1 A is diagonal on A . 

In the case of our example, we have that p is equal to 3 while k is equal to 1. Therefore, 

1 2 1 1 1 
s= 2(3-1) -

2
(3+1)= 

2
(4)- 2 (4)=0~0. 

3.1.2.4 Use of the Covariance Matrix S 

An estimation strategy can be devised by replacing L by S in the previous equation. 

Therefore, we have to estimate A and 'I' from S, that is evaluating A and qt such that 

they satisfy the constraint At'P-1A is diagonal for the equation 

s=ii1 +'i'. 
Another representation of the diagonal of S is 

k A 

sii =·~.).~+\Vii, i = 1, ... ,p 
j=l 

k A 

=>'Vii = sii - ~).~, i = 1, ... ,p. 
j=l 

15 
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Let us take into consideration those estimates that satisfy the equation of o/ii and that 

k A 

o/ii 2 0. Then, setting i; = ii 1 +qt implies that &u = LA.~ + o/ii and substituting for 
j=l 

A 

\j/ii 

k k A LA2 LA2 . ~ (J .. = A, .. +s .. - A, .. , 1=1, ... ,p 
11 IJ II IJ 

j=l j=l 

A ' 1 
~ crii = sii' 1 = , ... ,p. 

Depending on the difference value of s, there are three possibilities that can occur in S. 

1. Ifs < 0, S has more parameters then equations. This implies that there exists an 

infinity of exact solutions of A and 'P . As a result the factor model is not well 

defined. 

2. Ifs = 0, S can be solved for exact solutions of A and 'P . Thus, this model has 

the same number of parameters as L . 

3. Ifs > 0, there are more equations than parameters. Hence, to solve S we use 

approximate solutions. 

3.1.2.5 Use of the Correlation Matrix R 

Note that the factor model is scale invariant, so we shall take into consideration 

estimates A = Ax and 'P = 'P x which are scale invariant. 

Let Y = HXD~112 
where Ds = diag(s11 , ... ,sPP), denote the standardized variables so that 

n 1 n LYrj =Oand-Iy~ =1,j=l, ... ,p. 
r=J n 1=! 

Then the estimated factor loading matrix of Y is A = n-112 A and the estimated y s x 

specific variances are qt Y = D~1'P x. Consequently, the correlation matrix of x is 

16 
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The correlation matrix R has the value of 1 in its diagonal so 

k " 
-""'12 " ·-1 1- .L../\j +'lfii, I - , ... ,p 

j=l 

k " 

=> '11 yii = 1 -2: 'A,~j, i = 1, ... , p 
j=l 

implying that '¥ Y is no longer a parameter of the model but a function of AY • 

Observe that R is made up from p fewer free parameters than S. s, the difference 

between the number of equations and the number of free parameters present in R, is still 

calculated by 

s=_!_{p-k)2 
_ _!_{p+k) 

2 2 

where the p equations for the estimates of the scaling parameters are given by 

" . 1 
crii = sii' 1 = , ... ,p · 

Example: Using the data of this thesis, we consider a one-factor model and apply the 

following ( 4 x 4) sample correlation matrix R from x1 till x
4

• 

"2 
'A1'A2 Ai'A3 Ai'A4 Ai +'1111 1 0.26027 

"2 " " 
'A2'A1 'A,2 +'1122 'A2'A3 'A2'A4 0.26027 1 

= " " " " "2 " " 0.21564 0.10072 'A3'Ai 'A3'A2 'A3 +o/33 'A3'A4 
" " "2 0.2454 0.14221 'A,4 'A1 'A4 'A,2 'A,4 'A,3 'A,4 + o/ 44 

With the given values of R, we obtain the following answers 

).,1).,2 = 0.26027J1i 3 = 0.21564 and i 1)..4 = 0.2454 

=> ~3 = i 2 0.82852 and ~4 = 1.138~3 
" " Also, 'A3'A2 = 0.10072 

=> i;o.82852 = 0.10012 

=> i; = 0.12157 
" => 'A,2 = 0.34866 

0.21564 0.2454 

0.10072 0.14221 

1 0.3529 

0.3529 1 

17 
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Therefore ~3 0.34866 = 0.10072 

=> ~3 = 0.28888 
~ 

=> A-4 = 0.32875 

=>~I = 0.74646 

" 2 " 2 " - 2 "' - "2 Now, '1'11 = 1-A.1 , '1'22 = l-A.2 , \jf 33 -1-A.3 and \jf 44 -1-A.4 

=> '1F11 = 0.442797 

'1F22 = 0.878436 

\jf33 = 0.916548 

\jf 44 = 0.891923 

Statistical Methodology 

Since \jlii = 1- h; = 1- ~; , the model explains a higher prop01iion of the variance of x1 

D 

Now, we shall consider two methods of estimating the parameters of the factor model 

when s > 0. The first method is the principal factor analysis and the second one is the 

maximum likelihood factor analysis. The latter is applied when we assume the data to 

be normally distributed. 

3.1.2.6 Methods of Estimation 

(i): Principal Factor Method 

This method is constructed so as to estimate the k-factor model parameters A and 'P. 

Let the data yield the correlation matrix R. 

First, obtain estimates :il; of the communalities h;, i = 1, .. . , p . There are various ways 

to estimate the communalities such as when considering the largest correlation 

coefficient between the ith variable and one of the other variables, that is, max .. Jr. J . 
J>'l IJ 

The most frequent method of estimation is by considering the square of the multiple 

correlation of the ith variable with all the other variables. 

18 
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Then, consider the matrix R - '1' , which is called the reduced correlation matrix since 

the 1 s on the diagonal are replaced by the estimated communalities h~ = 1- \j!ii . 

Applying the spectral decomposition theorem (view Appendix A), it is evaluated by 

where a1 2 ... 2 aP are eigenvalues while Y(i)' ... , Y(p) are the orthonormal eigenvectors. 

Now, consider the supposition that the first k eigenvalues of the reduced correlation 

matrix are positive. Then, the ith column of A is estimated by 

A 1/2 •-
A.(i)=ai y(i)'1-l, ... ,k. 

In other words, it means that ~(i) is proportional to the ith eigenvector of the reduced 

correlation matrix. In matrix form, it is presented as 

A.-r A 112 
- I I 

where 1 1 =(y(1), •• .,y(k))andA1 =diag(a1,. .. ak). Since the eigenvectors are orthogonal, 

then, At A is diagonal which satisfies the constraint A t'P-1 A is diagonal. Then, the 

modified estimates of the specific variances are given by 

k 

wii = 1- ,Li~, i = 1, ... ,p which is in terms of A. 
j~J 

Note that, in this method we are performing data reduction and hence considering the 

estimated value of R - '1' . If the data reduction was to perform well, we will obtain 

some eigenvalues which are positive and others which are 0 or close to 0. In that case, 

the principal factor solution would be suitable if all the \j!ii 's are non-negative. 

However, due to our estimation process, our data reduction may provide us with a 

mixed set of eigenvalues, made up of positive, negative and zero eigenvalues. 

Consequently, our principal factor solution would be suitable depending on the nature 

of the eigenvalues. In fact, it may be the case that the principal factor solution is 

suitable if for example all Wii 's are all positive or if all \j!ii 's are non-negative or also if 

all the wii 's are negative. 
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(ii): Maximum Likelihood Factor Method 

In maximum likelihood estimation, under normality, the data considers both f and u to 

be jointly normally distributed, where f ~ Nk ( 0, I) and u ~ NP ( 0, lJ') . Then x, which is 

a linear function with respect to f and u, is also normally distributed where 

x ~NP(µ, L). Therefore, the joint distribution of the x's is 

The log-likelihood function of L is 

where s = _!_ :t ( xi - -x) ( xi - -x r is the sample covariance matrix. 
n i=I 

Replacing µ by its maximum likelihood estimator x = µ , then the log likelihood 

function becomes 

n I I n -1 l=--log211:L--trL S. 
2 2 

Taking into account that L = AA1 + lJ' is a function of A and lJ', then l can be 

maximized with respect to these parameters. 

Consider the function 

where L = AA1 + lJ'. 

F is a linear function of the log-likelihood l and a maximum in l is equivalent to a 

minimum in F. The minimization of F is split into two stages. The first stage is to 

minimize over lJ' and the second stage is to minimize over A . 
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Let us begin by differentiating with respect to the specific variances. Then, we have that 

Note that, 'P = L - AA 1 is a diagonal matrix and we would like to estimate the 

coefficients with respect to L . Hence, we can consider 

8F = diag(8F) 
8'¥ oL 

Now 

aiogjXI = L-1 since = x-1
• ax 

Where IXI = f xijxij , which implies that o log IXI 
M &ij 

8log1XI _1 
~ =X. ax 

[
8(trL-

1S)J o(trL-1S) 
Now diag is a diagonal matrix with entries . oL ocr .. 

II 

Now, we have that 

where Jii denotes a matrix with 1 in the (i, i)th place and zeros elsewhere. 
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Gathering all these derivatives, we obtain 

Our derivative is not equal to zero, but we set the derivation equal to zero to solve the 

likelihood equations. Therefore 

diag( I:-1 
( i:-s )i:-1

) = o 

=> diag ( I:-1
) = diag( I:-1si:-1

) 

Now, let us obtain the other set of equations by differentiating F with respect to the 

loading parameters. Therefore, we have that 

8F =(8F)(8:L) 
8A 8:L 8A 

We already have 
8F 

8:L 
derived from the above procedure. Therefore, 

OL o(AA1 +'P) 8AA1 o'P 
Now -= =--+-=A. 

'8A 8A 8A 8A 

Grouping these two derivatives together, we obtain 

8F (8F)(8:L) ( _1 ( ) _1 ) -= - - = :L :L-S :L A=O 
8A 8:L 8A . 

Since our derivative is equal to zero, we can simplify the equation to end up with 

si:-1A=A. 

Considering this equation diag ( I:-1
) = diag ( I:-1si:-1

) , pre and post multiply both sides 

by 'i1 = i:- AA 1 
• Then we have 
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diag[(i-iit )(i-1 )(i-iit )] = diag[(i-iit )(i-1si-1 )(i-iit )] . 

Now, using the second derived equation, si-1.A =A, we can simplify 

diag[i-2iit +iiti-1iit] = diag[s-2iit +iiti-1iit J 

=> diag(i) = diag(S) 

or that the estimate of the variance is equal to the sample variance. 

However, there is a problem, since we need to invert a (p x p) matrix. Therefore, 

si-1.A =A is written in an alternative way 

s(iit+Tf A=A 

sq,-1(A_tq,-1A_+1f A=A 

sT-1.A =A.( A.tT-1.A + 1). 

A solution of the maximum likelihood equations is by representing the above equation 

as 

Pre-multiplying both sides by 'i'-112 we obtain 

'i'-112 ( s-T)q,-1.A_ = 'i'-112.A_( A_tq,-1.A_) 

[ q,-
112 

( s-'i')q,-112 j'i'-112 A.= q,-112 AJ where J = A.t'i'-1.A is required to be diagonal. 

The successive diagonal elements of J are the first m characteristic roots of 

'i'-
112 

( S-T) q,-
112 

and the ith column of 'i'-112 A is the characteristic vector of 

'i'-
112 

( S-T) q,-112 corresponding to the ith largest characteristic root. However, the 

solution for the roots and vectors must be made iteratively, for the elements of 
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diag(i:-s) = diag( ii1 + 4'-s) = o 

=> 4' = diag ( s - ii 1 ) 

Statistical Methodology 

are unknown. Hence, we begin with an initial approximation of tP and extract the 

characteristic roots and vectors of 4'-112 
( S - T) 4'-112 to obtain the first approximation 

to A . Then, we compute a second approximation of tP by diag ( S - AA 1 ) and then 

estimate the characteristic roots. Then, we calculate a second approximation of A . This 

iterative process is continued until the elements of T and A matrices have converged 

to a satisfactory degree. 

3.1.2.7 Goodness of Fit Test 

For the maximum likelihood method, it is possible to check the adequacy of the k-factor 

model for generating the observed covariances or correlations. In this case, 

L = AA1 + '¥ and testing the adequacy of the k-factor model is equivalent to testing the 

null hypothesis 

versus the alternative hypothesis ( H1 ), which states that L is any other positive definite 

matrix. 

Now, to test the null hypothesisH0 against the alternative hypothesis HP we use the 

likelihood ratio statistic, which states that asymptotically, as n ---+ oo 

_2 ln(maxL0 J ~ X~ 
maxL1 

where s = ~ (p -k )
2 

- ~ (p + k) degrees of freedom and Li is the largest value which the 

likelihood function can take; i = 0, 1. 
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Now, we have that and 

ln(maxL,) =- n logj2nSI- n p. Therefore, 
2 2 

-2ln(maxLo J = -2[1n(maxL0 )-ln(maxL1)] 

maxL, 

= -2 [- n log j2nLj- n trL-1S + n log j2nSj + n p] 
2 2 2 2 

= [ n log l2nj + n log ILi + ntrL-1S- n log l2nl- n log ISI- np J 
= n[ trL-'S-log1L-1i-loglSj-p] 

= n [ trL-1S- log 1L-1SI- p J 

However, we know that F (A, '1') = trL-1S - log IL-'SI- p, therefore 

_2 ln(maxL0 J = nF(A, '1') 
maxL1 

which is asymptotically chi-squared distributed with s degrees of freedom since it is 

equal to our statistic. 

Bartlett, showed that the chi-squared approximation of -2ln(maxLo J improves if n is 
maxL, 

replaced by 

n'=n-1-_!_(2p+5)-
2

k. 
6 3 

3.1.3 Fitting Without Normality Assumptions 

Until now, we have considered that our model obeys the normality conditions. 

Nevertheless, data rarely satisfy these assumptions. In fact, it is more probable to have 

non-normal distributed data. In particular, our data under test does not satisfy the 

normality assumptions. Hence, now, we will consider the theoretical approach when we 

fit without normality assumptions. 
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Let us consider the case when nothing is assumed about the distributions off and u. We 

can still consider the covariance matrix of the k-factor model to be equated by 

l:=AAt+'I'. 

Hence, we will estimate the values of A and '¥ by the sample covariance matrix S. For 

this to be possible, we need to obtain a scale measure of distance between 2: and S, 

which is minimized with respect to the parameters. The idea of a distance is that it 

separates as much as possible the entities, which are not similar so that they give us 

clarity. Let l be maximized so that we obtain a distance function 

Ll(2:,S) = -tr2:-1S + logl2:-1SI. 

We note that there are other possible methods to measure this distance. For example, a 

simple least squares criterion is 

Another method is that of using the matrix s* = '¥-112S'P-112 as used in maximum 

likelihood estimator 

These two equations are special cases of the general class of measures and the general 

formula is 

An important aspect of A1 and A2 is that the optimization requires only a solution of a 

simple eigenvalues problem. For the case of A1 the function that reqmres to be 

minimized is 

A1 = tr(S-2:)
2

, where 2: = AAt + '¥ 

=:>Al =tr(s-AAt-'I'r. 
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Differentiating with respect to A 

oA1 =-2(S-AA1 -'P)A ={A(A1A )-(S-'P)A} = 0 oA 
~(S-'P)A=A(A1A). 

Now, differentiating with respect to '¥ 

~ diag oA1 = -diagS + '¥ + diagAA t = 0 
a'P 

~ '¥ = diag ( S - AA 1 ). 

Assume that '¥ is known, then ( S - '¥)A = A (A 1 A) is satisfied if: 

a) the columns of A consist of any q eigenvalues of S - '¥ 

b) the diagonal matrix AA 1 has elements equal to eigenvalues of S - '¥ 

corresponding with the vectors in A . 

Therefore, if we have a starting value of '¥ in ( S - '¥)A = A (A 1 A), we will generate a 

first approximation of A which will then be inserted into '¥ = diag ( S - AA 1 
) to 

produce a second estimate of '¥ . This process continues until convergence to a 

satisfactory degree is obtained. 

Example: To clarify the process above, let us consider a one-factor model, where the 

covariance matrix C is a representation of S. From C we obtain the column vector D, 

representing A and let us consider an initial value for B, which is equivalent to '¥ . 

Therefore, we have 

(

2.5833 -0.16667 

c = s = -0.16667 0.72333 

-1.635 -0.457 

-1.635 J (0.5 
-0.457 and B = '¥ = 0 

1.4788 0 

0 

0.35 

0 
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[

2.0833 

Let F = (C-B) = (S-'1') = -0.16667 

-1.635 

-0.16667 

0.37333 

-0.457 

-1.635] [dlJ 
-0.457 and take D = A = d2 • 

1.0688 d3 

Therefore, we have that F=DDt from (S-'P)A=A(A1A), which implies that 

[

2.0833 -0.16667 

-0.16667 0.37333 

-1.635 -0.457 

=> d; = 2.0833 dl = 1.4437 

d~ = 0.37333 and then we get d2 = 0.611 

d~ = 1.0688 d3 = 1.0338 

Now, using iteration 'P = diag ( S - AA 1), we obtain a new value for B. 

[

0.4991] 
:. B = diag(C- DD1

) = 0.3500 

0.4101 

So we can say that for the given sample covariance matrix S and initial value of 'P we 

can generate a value of A. Then, we can continue until we reach the required 

convergence. 

D 

Now, to find the eigenvectors of S- 'P that form part of A, we use the following 

equation 

Al =tr(S-}.;)
2 

=tr(S-'P-AA1 )2 

= tr(S-'11)2 -2tr(S-'P)AA1 +tr( AAt r 

but ( S - 'P) A = A (At A) 

=>A1 =tr(S-'¥)
2 
-2trA(A1A)At+tr(AAt)2 

=tr(S-'P)2-2tr(AAtr +tr(AAtr 

=>A1 =tr(S-'¥)
2
-tr(AAtr. 
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Now AAt has (p-q) zero eigenvalues since it is of rank q. The other eigenvalues still 

form part of S- 'I', so S-'I' is of rank p. Assume that the eigenvalues common 

between the two matrices are 8w .. ,8q and the remaining eigenvalues are 8q+p···,8p. 

Therefore A1 is expressed as 

i=l i=l i=q+l 

For this expression to be a minimum 8q+w··,8p must be the smallest eigenvalues. This 

implies that A is composed of eigenvectors corresponding to the q largest eigenvalues. 

This particular procedure is known as the principal factor (or axis) method because it is 

quite similar to the principal components analysis where 'I' = 0 . 

Now, we consider the estimation process of A2 by differentiating with respect to A. 

Let us consider differentiating A2 with respect to 'I' . We note that this process is very 

complicated. In fact, the above-mentioned methods are a lot easier if we know 'I' . A 

method of how to avoid this problem is by eliminating 'I' since it only forms part of the 

diagonal elements of :L . This approach is known as the minres method. In this case, If 

we consider the case for A1 , we would then minimize 

A~ = tr(S - AA t) . 

3.1.3.1 Estimability 

A necessary condition for the parameters to be estimated is that we need to have at least 

as many sample statistics as there are parameters. In the k-factor model, there are 

(pk + p) parameters but to have a unique solution, we need _!_ k (k -1) constraints. 
2 

Therefore the number of free parameters is 
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1 
pk + p - - k ( k -1) . 

2 

Statistical Methodology 

S has _.!_ p ( p + 1) distinct elements, so for a consistent estimation, we need 
2 

_!_p(p + 1)-pk-p +!k(k-1) = ![(p-k )2 -(p + k )] 2: 0. 
2 2 2 

3.1.3.2 Goodness of Fit and Choice of q 

Amemiya and Anderson (1985) showed that if the elements off are independent and 

that both f and u have finite second moments, then, if -2 ln( max Ho ) = nF (A, 'I') is 
maxH1 

evaluated by the maximum likelihood estimators, it has the same distribution as in the 

normal case. This result also holds for another goodness of fit statistic 

There are also two other methods which do not depend on distributional assumptions. 

They are based on the role of the eigenvalues of the sample correlation matrix within 

the principal component analysis. 

The first method is the Kaiser - Guttman criterion that chooses q equal to the number of 

eigenvalues greater than one. The underlying principle is that the average contribution 

of the evident variable to the total variation is one. Also, the principal component which 

did not contribute at least as much variation as a single variable represents no 

advantage. 

The second method, presented by Cattell, is known as the 'scree test'. The concept is 

that the eigenvalues are plotted on a decreasing curve against their rank order. Then, we 

search for a prod in the curve that will indicate the point from which further addition of 

factors shows diminishing yield in terms of variation explained. 
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3.2 Factor Scores 

3.2.1 Introduction 

So far, we have concentrated on the point of how the observed variables are functions of 

the unknown factors. Now, let us consider the other side of the coin, where we want to 

know how the factors depend upon the observed variables. This second approach is the 

concept of factor scores. 

3.2.2 Estimation Method 

The most commonly used methods of estimation are the Bartlett's also known as least 

squares method and Thomson's known as the regression estimate. Now, we will focus 

on the theoretical approach of these two methods. 

3.2.2.1 Bartlett's Method 

Let x be a multinormal random vector of the model x = Af + u + µ and assume that 

A, 'P andµ= 0 are known. Let f be a (k x 1) vector formed from the common factor 

scores and let x have a NP ( Af, '¥) distribution, i.e. 

Therefore the log likelihood of x is: 

/(x,f) = _ _!_( x-Af )t 'P-1 
( x-Af )-_!_ logj2n'Pj. 

2 2 

Taking the derivative of l with respect to f and setting equal to O gives: 

az = A1'P-1 
( x-Af) = At'P-1x-A1'P-1Af = 0 

ar 

=> A1'P-1x = A1'P-1Af 

=> f = (A 1'P-1A f A t'P-1x. 
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Bartlett's procedure is intended to keep the non-common factors fixed so that they are 

used only to explain the discrepancies between the observed scores and those 

reproduced from the common factors. From this, one can estimate the specific factor 

scores through the equation: 

u=x-Af. 

Let us evaluate the expected value and the predicted error. Therefore, 

Bartlett's expectation is: 

E(f jf) = E( ( At'P-1A f At'P-1x) 

=> E(fjf) = ( At'P-1A r At'P-1E(x) 

=> E(fjf) = (At'P-1A f At'P-1Af since E(x) =Af 

=> E ( i If) = f . 

and Bartlett's predicted error is: 

AE( (i-f )(i-f r )At 

=E(A(r-r)(r-ryAt) 

= E( (x-x+u)(x-x+uY) 

=E(uut) 

but E ( uu t) = 'P . 

So AE( (i-f )(i-f )t )At= 'P 

.·. E( (i-f )(i-f )t) = ( At'PA )-1 

D 
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3.2.2.2 Thomson's Method 

For the alternative estimate, let f be a random vector with a NP ( 0, I) distribution. First, 

we consider the Bayesian approach for the common factor f: 

P(flx) oc exp(-~ (x-Af)' 'P-
1 (x-Af) )xexp(- ~ f1f) 

=> f oc exp[-~ (x-Af)' 'P-1 (x-Af)- ~ f1f J. 

Taking logs and then differentiating with respect to f, implies: 

l = lnf =-_!..(x-Af)' 'P-1 (x-Af)-_!..f1f 
2 2 

::::> az = A1'P-1 (x-Af)-f =A1'P-1x-A1'P-1Af-f = 0 
ar 

=> A1'P-1x = A1'P-1Af +f 

=> A1'P-1x = (1+A1'P-1A )f 

::::>f* =(I+A1'P-1Af A1'P-1x. 

If we evaluate the expected value, we obtain the following 

E(r* If)= E( (1 +A1'P-1A r A1'P-1x) 

=> E(f* If)= (I+A1'P-1Af A1'P-1E(x) 

=>E(r*lf)=(I+A1'P-1Af A1'P-1Af since E(x)=Af. 

Similarly, we evaluate the predicted error to obtain 

E ( ( f * - f) ( f * - f) 
1 

) = E ( r* f *t )- R ( r* f 1 
)- E (ff *t ) + E (ff 1 

) 

Now E(ff1 )=I. 

Lct f = [: J ruillf =[ n ili=fore ff'=[: J (d e f)=[:: :: 
cd ce 

:J 
cf 
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Also, ff"=[;}• b c) =[: : : J =(fr')' 
Hence E ( ff*t) = { E ( r* ft)} t . 

Now, we require to show that E(r*r*1 )=E(r*r1
). Note that 

1 x ( 1 ) 1--=-~(l+x) 1-- =x. 
l+x l+x l+x 

Let x=At'P-1A. 

:. (1 +At'P-1A )[ 1-(1 +At'P-1A rJ = At'P-1A 

So [1-(1 + At'P-1A rJ = (1 +At'P-1A r At'P-1A. 

Now, E( f*ft) = E[(1 +At'P-1A r1 
At'P-1xft J = (1 +At'P-1A r A1'P-1E( xf1

) 

but Cov ( xf1
) = E ( xf 1 )- E ( x) E ( f 1

) =A since E ( f 1
) = 0 so E ( xf1

) = A . 

Now we consider E( r*r*t) 

= E[ (1 + A''P-'A r' A''P-'x( (1 +A ''P-'A r' A''P-'x rJ 
= E[(1 + At'P-1A )-1 At'P-1xxt'P-1A(I + At'P-1A )-1] 

= (I+ A t'P I Ar A t'P IE ( xxt) '¥ I A (I+ A t'P I Ar 

=(1 + At'P-1Af At'P-1 ('P+AA1)'P-1A(1 + A1'P-1Af 

= (1 + At'P-1A r (At+ At'P-IAAt )'P-1A(1 + At'P-1A r 

= {(1 + At'P-IA r At +(1 + At'P-IA r At'P-IAAt}( 'P-IA(I + At'P-IA rl). 
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= (l + At'P-1A t At'P-1A(l + At'P-1A t +At'P-1A(l + At'P-1A t 
-(l + At'P-1A r At'P-1A(l + At'P-1A t 

... E ( ( f * - f) (f. - f) t ) = E ( r* r*t )- E (r* ft )- E ( rr*t) + E (ff t ) 

= [ 1-(l +At'P-1A rJ-[1-(1 +At'P-1A t]-[ 1-(l + At'P-1A r1
J+1 

= (l + At'P-1A )-1. 

Now, if we compare the expected value of these two methods: 

Bartlett's: E(ilf) = f 

Thomson's: E(f*lt)=(l+At':I:' 1Af At':I:' 1Af 

D 

we see that the Bartlett's score is an unbiased estimate off while the Thompson's score 

is biased. 
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In addition, for the predicted errors we have the following formulae: 

Bartlett's: E( (r-f )(r-f r) = ( At'PA r 
Thomson's: E( ( f* -f )( f* -fr)= (1 + At'P-1A t 

Having computed and thus comparing the predicted errors for both Bartlett's and 

Thomson's scores, it is clear that the predicted error is smaller in value for Thomson's 

score. Therefore, we can conclude that Thomson's score is more accurate. 

Now, if the columns of A satisfy the condition that At'P-1A is diagonal, then the 

components of both factor scores are uncorrelated with one another. In addition, if the 

eigenvalues of A tqt-1 A are large, then the predicted errors are small implying that the 

two factor scores are alike. 
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4 TOURISM CASE STUDY 

4.1 Purpose and Aim of Survey 

The traveller survey is a questionnaire in which the Malta Tourism Authority (MTA) 

gathers information about the tourist's visit to the Maltese Islands. Its main aim is to 

obtain a wide knowledge of the tourist profile and expenditure information by place of 

residence. In addition, it is an important source for market research, because it gives 

essential information for the MTA to plan its strategy and take action to improve the 

physical environment and the service provided in the Maltese Islands. 

The traveller survey was first launched in the early 90's and the information gathered 

was social demographic. Its focus was on marketing reasons. The new version of the 

British traveller survey was launched in the beginning of 2003 and was implemented 

during the summer season of that year. The initiation of the other markets 

questionnaires took place in the beginning of 2004. This new edition amplified the 

marketing, promotional and human resources sections. Furthermore, more questions 

were added to the surveys to obtain a wider knowledge of the tourist perspective. The 

main aim was to group ideas to reduce the cost of research whilst at the same time 

amplifying the data obtained. The survey is distributed randomly - every fifth tourist 

checking in is given a questionnaire in the security area B of the arrivals at the Malta 

International Airport. In the case when there are few arrivals, a questionnaire is 

distributed to each tourist. This random distribution of sampling is known as systematic 

sampling where units are selected from the population at a regular interval. For the 

British market, around ten to fifteen questionnaires are distributed to each flight. The 
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Malta Tourism Authority distributes around twenty thousand surveys in a year that is 

around five thousand per quarter. From these five thousand they receive five hundred. 

Hence, the response rate is of 12%, which is quite good when compared to the response 

rate of 10% of the general mail questionnaires. 

4.2 Details about the Questionnaire 

In this dissertation, I based my study on the British market only, which till now is the 

highest tourism market for the Maltese islands. I gathered the data of four different 

seasons. Since this new survey format was launched in Summer of 2003, data for the 

whole of 2003 was obviously not available. Therefore, so as to cover a one-year span, I 

considered data ranging from Summer 2003 till Spring 2004. 

Various difficulties were encountered during this process. The main problem was that 

each season had its own codebook. Therefore, for the sake of continuity, I had to build 

up a new codebook and recode a lot of the information into a new format. In addition, 

there were some variations in the inputting procedures used for the different seasons and 

this had to be taken into consideration too. All this was rather time consuming though 

certainly necessary as this was the first time that an analysis of traveller survey data was 

to be carried out on annual data. Usually reports about this questionnaire are published 

by the MT A each quarter. 

From the twenty-four questions, I focused my research on question number twelve and 

on the first two questions. In question twelve, tourists are asked to rate various aspects 

of their trip in Malta in terms of physical environment and about the service provided by 

employees. This type of question is known as Likert scale. There are twenty-five 

aspects or variables grouped under physical environment and seventeen variables under 

service provided. The main focus of this question is to point out the strong and weak 

points of the Maltese tourism industry. 

The physical environment aspects are divided into three sections. The first section 

covers a general area of the environment because tourists are asked to rate the Malta 

International Airport, restaurants, taxi service, beaches etc. In other words, this first 

section contains a group of different variables that are only related in the sense that they 
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all serve the tourism industry. The second part focuses on attractions of Malta, such as 

guided tours, museums and historical sites. The third and last part concentrates on the 

infrastructure such as roads, road signs, level of cleanliness and air quality. 

The question on service provided covers the same variables as outlined for the physical 

environment question. Obviously, for the infrastructure, no employees are involved. 

Therefore, the service provided by employees is clustered into two sections. 

A Likert scale, as the name implies, requires some sort of scale and in our case, this is 

provided in the form of six columns - the first five columns are numbered from one to 

five and the last one is labelled as N/ A. The following table defines what the scale 

represents 

1 2 3 4 5 NIA 

Very Good Good 
Not So 

Poor Very Poor 
Not 

Good Applicable 
Table 1: The Likert Scale. 

This scale is applicable to both the variables of the physical environment and of the 

service provided. 

The first two questions of the questionnaire ask for personal information. In fact, the 

tourist is asked where he lives and other personal information such as gender and 

marital status. These two questions helped me to bring out a general outline of the 

tourist. This outline is called the profile of the tourist. View Appendix B for these 

questions. 

4.3 Profile of Respondents 

The socio and demographic aspects compose the profile of the tourist. The majority of 

the respondents (28%) visited the Maltese Islands during the autumn season and the 

least amount of respondents amounting to 4 79 (19%) visited during the winter season. 

Most of the tourists (85%) resided in England, followed by 8% from Scotland. 
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Figure 1 : Pie chart showing seasons 

No11hern Ireland 

17 / 1% 

Ireland 

62 / 3% 

Wales 

78 / 4% 

England 

1841/ 85% 

Figure 2: Pie chart showing countries of origin 

Tourism Case Study 

Scotland 

176 / 8% 

The highest frequency of respondents (7%) that lived in England came from the north I 

west or south Yorkshire followed by a 5% form the Lancashire and Kent regions. From 

the Scottish areas, the highest frequency was of 2% and originated from the Tayside and 

Strathclyde regions. 
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Region 

Figure 3: Bar chart of frequency against region 

Male respondents amounted to 51 % while female respondents accounted for 49%. As 

to marital status, the preponderance of respondents were married or cohabiting (80% ). 

Single respondents amounted to 10%, 5% were divorced/separated, and 5% were 

widowed. 

Figure 4: Pie chart showing gender 
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widowed 

116 I 5% 

divorced/separated 

123 I 5% 

married/living to~t 

1975 I 80% 

Figure 5: Pie chart showing marital status 
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single 

249 /10% 

The majority of the respondents (34%) belong to the age bracket 56 - 65 years. 23% 

and 19% in the age brackets 46 - 55 and 66+ respectively followed this main group. 

The remaining age groups amounted up to 24%. 

66+ 

341 I 19% 

56 - 65 

606 134% 

Figure 6: Pie chart showing age ranges 

16 - 25 

42 / 2% 

26 - 35 

122 I 7% 

36 - 45 

269 I 15% 

46 - 55 

408 123% 
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Retired respondents, who had a frequency of 781 (34.7%), formed the largest group 

while 22.5% had a professional position as their full-time occupation. The third largest 

segment (10 .1 % ) was made up of respondents in managerial positions. Office/retail 

workers amounted to 8.2% and skilled workers/tradesmen to 4.6%. 

1000 

800 

600 

400 

>. 
g 200 
ii) 

g. 
£ 0 

Full time job 

Figure 7: Bar chart of frequency against full time job 

Of the total 2549 respondents, 436 said that they did part-time work. The majority of 

these (34.9%) worked as professionals. Another 22.7% did office or retail work whilst 

7.8% were self-employed. 

Parttime job 

Figure 8: Bar chart of frequency against part time job 
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66.3% of respondents earned between £0 and £1000 per month whilst another 21.4% 

had an income within the range of £1001 and £2000. Respondents earning more than 

£2000 totalled 12.3%. Overall, respondents ' mean income per month stood at £895.72. 

0 - 1000 200 l - 3000 400 I - 5000 

1001 - 2000 3001 - 4000 5001 + 

Net income 

Figure 9: Bar chart of frequency against net income 

Now, we compare where possible these profile variables with the United Kingdom 

demographics. The UK data was obtained from the website of the official UK statistics 

and is based on the 2001 census. 

Here, we can observe variables that feature both in the traveller survey as well as in the 

UK official statistics. The variables are gender, age and marital status. For the other 

variables, either the data was not available or it was structured differently from ours. 

The following are the tahles and graphs of these three variahles. 
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AgeRange Total Males Females 

0-24 18314618 9323786 8990832 

25 - 34 8360547 4095236 4265311 

35 - 44 8777390 4334223 4443167 

45 - 54 7776562 3854549 3922013 

55 - 64 6219078 3061080 3157998 

65+ 9340999 3910995 5430004 

Total 58789194 28579869 30209325 

Table 2: Gender total grouped according to age range. 

49% DMales 

Figure 10: Pie chart showing gender. 
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10000000 
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Age range 

Figure 11: Bar chart of frequency against age range. 
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Single people (never married) 
Married or re-married people 

Separated or divorced 
Widowed 

Table 3: Marital status. 

10000000 

5000000 

Marital Status 
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14186988 
23853128 
4942512 
3947709 

D Single people 
(never married) 

• Married or re­
married people 

D Separated or 
divorced 

DWidowed 

Figure 12: Bar chart showing frequency against marital status. 

Comparing these plots, we can conclude that where gender and age are concerned, our 

survey does not really describe the population of United Kingdom. On the other hand, 

the pattern of our respondents' marital status is parallel to that of the UK population. 

Focussing our attention to the traveller survey once again, the following tables show the 

variables of the two aspects, physical environment and service provided by employees, 

on which we are performing our analysis. Together with these variables, we are going to 

display the percentages of each of the points present in the Likert scale, where 0 

signifies no answer. 
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Physical Environment Percenta2es obtained. 
Variable 0 1 2 3 4 5 6 

MIA 0.1 30.9 53.4 11.7 1.1 0.4 2.4 
Gozo heliport 49.9 1.6 2.4 0.7 0.4 0.1 44.9 

Gozo ferry points 32.4 10.9 21.4 10.2 2.5 0.9 21.7 
Accommodation 4.1 35.9 38.1 14.1 3.8 2.9 1.1 

Restaurants 13.9 22.3 42.8 12 1.8 0.5 6.6 
Entertainment 30.7 5.5 18 14.9 5.3 2.9 22.8 

Car hire 38.4 6.9 10.4 5.8 2.3 1.6 34.6 
Taxi 37.5 8.3 12 5.3 1.3 1.5 34.3 

Public transport 13.2 24.8 31.4 11.8 4.9 2.7 11.1 
Retail outlets 20.2 8.7 39.3 20.6 4.6 1.5 5.3 

Sports facilities 44.8 2 6 4 1.5 0.6 41.1 
Beaches 23.5 8.1 20 17.9 6.9 4.2 19.5 

Guided tours 28 16.2 21.7 5.8 1.6 0.8 25.9 
Historical sites 18.4 25.6 36.4 9.1 2.2 0.5 7.8 

Museums 24.8 19.6 28.1 7.6 1.4 0.4 18.2 
Cathedrals I Churches 15.3 40.2 30.1 4.8 0.4 0.4 8.9 

Theatre I Performing arts 47.6 2.6 3.3 1.1 0.3 0.2 44.9 
Road 6.4 0.9 7.3 24 27.5 30.7 3.2 

Road signs 12.5 3.9 20.9 23.9 16.5 4.2 8 
Traffic 12.1 1.7 13.6 31.7 19.4 17.1 4.4 
Parking 23.9 2.2 9.7 15.1 11.3 12.4 25.4 

Public conveniences 9.7 6.5 25.5 22.9 15.6 12.1 7.7 
Level of cleanliness 6.1 7.9 27.9 26.6 16.6 13.3 1.6 

Air quality 7.5 21.2 42.3 18.3 6.2 3.4 1.2 
Sea quality 12.3 26.3 33.9 11.2 2.8 1.1 12.4 

Table 4: Percentages of the physical environment variables. 

Service Provided Percentages obtained. 
Variable 0 1 2 3 4 5 6 

MIA 10.6 26.4 44.7 12.9 2.7 1.3 1.3 
Gozo heliport 52.5 1.2 2.2 0.9 0.4 0.1 52.7 

Gozo ferry points 38.l 9.9 20.5 7.8 2 0.7 21.1 
Accommodation 12.9 38.6 31.5 9.7 3.3 2 2 

Restaurants 22.2 25.2 34.1 9.8 1.5 0.7 6.5 
Entertainment 38.8 5.3 15.9 10.6 3.3 2.3 23.8 

Car hire 42.3 8 9.4 4.7 1.3 1.2 33 
Taxi 41J 9 10.5 4.4 0.8 26.1 32.6 

Public transport 21.9 22.5 29.9 9.5 3.3 1.9 11.2 
Retail outlets 28.1 12 35.3 15.5 2.6 0.9 5.6 

Sports facilities 48.1 2.2 4.9 3.2 0.8 0.5 40.3 
Beaches 36.5 6.2 14 11.7 3.9 2.4 25.3 

Guided tours 36 16.7 16.8 4.6 1.6 0.9 23.5 
Historical sites 30 19.2 27.9 10.2 2.2 1.1 9.5 

Museums 34.6 15.8 21.9 7.8 1.4 0.6 17.9 
Cathedrals I Churches 28.3 25.2 24.7 8.4 1 0.6 11.9 

Theatre I Performing arts 51.3 2.3 2.7 0.9 0.1 0.2 42.6 
Table 5: Percentages of the service provided by employees variables. 
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4.4 General Outline of the Procedure 

Considering the above-mentioned variables, we perform two methods of data reduction: 

factor analysis and parceling. Also, within these two methods, we have applied two 

extraction methods. The reason of applying two methods is to compare the traditional 

system of tourism analysis and the statistical improvement through parceling. But 

before we perform these analyses, we had to reduce our data due to the presence of a 

large amount of missing data. These missing figures were composed of the values 0 and 

6. After this reduction, we performed the analysis of the variables with both methods 

and extractions to end up with sets of values known as factor scores. 

These factor scores, which are values that signify the influence of that particular 

variable over the set of all variables, were transformed so that they do not depart from 

the normal behaviour. Then these normal distributed scores were linearly related with 

our socio-demographic variables, which form our tourist profile. The necessity of 

normality is required so that we can apply linear models. The scope is to observe 

whether there were profile variables that were related to our extracted scores. 
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5 FACTOR ANALYSIS APPLICATION 

5.1 Introduction 

The aim of this section is to apply techniques discussed earlier to the data collected by 

the Strategic Planning and Research Division within the Malta Tourism Authority. In 

this chapter, we will focus on the first part of the applicative method since here we will 

discuss the steps required to end up with a set of factor scores. These steps form the 

basis of exploratory factor analysis and will lead us to the result where we have a set of 

significant variables on which we base our study. This forms confirmatory factor 

analysis after which we continue to extract the factor scores. Hence, our exploratory 

factor analysis steps begins by first tackling the problem of which variables we will 

consider for the analysis due to the fact of a large amount of missing data. Then, we will 

apply our two data reduction techniques in which we are applying two extraction 

methods. From these we end up with a set of significant variables. Here we finish 

exploratory and merge into confirmatory factor analysis. Then we extract the factor 

scores which will be discussed in the next chapter. 
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5.2 Exploratory Factor Analysis 

5.2.1 Introduction 

The primary objectives of exploratory factor analysis are to determine the number of 

common factors influencing a set of measures and to determine the strength of the 

relationship between each factor and each observed measure. 

Exploratory factor analysis is applied in various applications, for example, when we 

want to determine which features are most important when classifying a group of items. 

In addition, it is useful when we want to determine which set of items can be clustered 

together in a questionnaire or to demonstrate the dimensionality of a measurement scale. 

Another application is when we want to generate factor scores that represent the values 

of the underlying constructs for use in other analyses. 

5.2.2 Reduction of Variables and Respondents 

First, we had to reduce the number of variables because as we can notice from the table 

below there are eleven variables highlighted in bold for which the number of valid cases 

(N) is very near to the number of missing values. In fact, we only considered those 

variables that have a percentage of valid cases higher than 73%. In addition, to this 

variable reduction, we also viewed the amount of missing values that each respondent 

had and removed those respondents that have more then four missing values. These 

missing values are the numbers 0 and 6 which they respectively represent no answer 

and not applicable. For the case of the physical environment, we have reduced the data 

from 2549 to 2191 valid cases while for the service provided; we reduced the data to 

2240 from 2549 valid cases. For both aspects of the question, physical environment and 

service provided by employees, the removed variables were the same except for the 

parking variable, since the variables falling under the infrastructure section are not 

present in the service provided by employees' aspect. 
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Cases 
Valid Missing 

N Percent N Percent 
MIA 2488 97.6% 61 2.4% 

Gozo heliport 132 5.2% 2417 94.8% 
Gozo ferry points 1170 45.9% 1379 54.1% 
Accommodation 2416 94.8% 133 5.2% 

Restaurants 2027 79.5% 522 20.5% 
Entertainment 1187 46.6% 1362 53.4% 

Car hire 688 27.0% 1861 73.0% 
Taxi service 720 28.2% 1829 71.8% 

Public transport 1929 75.7% 620 24.3% 
Retail outlets 1900 74.5% 649 25.5% 

Sports facilities 360 14.1% 2189 85.9% 
Beaches 1453 57.0% 1096 43.0% 

Guided tours 1177 46.2% 1372 53.8% 
Historical Sites 1881 73.8% 668 26.2% 

Museums 1455 57.1% 1094 42.9% 
Cathedrals I Churches 1933 75.8% 616 24.2% 

Theatre I Performing arts 190 7.5% 2359 92.5% 
Road 2306 90.5% 243 9.5% 

Road signs 2026 79.5% 523 20.5% 
Traffic 2129 83.5% 420 16.5% 

Parking 1292 50.7% 1257 49.3% 
Public conveniences 2105 82.6% 444 17.4% 
Level of cleanliness 2352 92.3% 197 7.7% 

Air quality 2328 91.3% 221 8.7% 
Sea quality 1920 75.3% 629 24.7% 

Table 6: The value (N) and percentage of valid and missing cases of the variables. 

5.2.3 Data Reduction Techniques 

5.2.3.1 Introduction 

In this section, we are going to discuss the two techniques that we have applied. The 

first method is the factor analysis and the second method is parceling. Factor analysis is 

the traditional approach of these surveys while parceling is a statistical improvement of 

factor analysis. Both methods deal with the process of reducing the data from a large 

group to sets of smaller groups and in the process unmasking the latent factors. Within 

these two techniques, we applied two extraction methods, maximum likelihood and 

principal axis factoring. We have chosen these two methods so that we have two 

different approaches where maximum likelihood assumes the data to be normally 
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distributed while principal axis factoring does not require the data to satisfy this 

distribution. 

Each of these extractions was applied to both the physical environment and to the 

service provided by employees' variables. Note also that in this process, we have 

applied a varimax rotation so that it would be more possible to give an interpretation of 

the factor matrix. 

Now we will start each technique with both extraction methods for both aspects. Hence, 

our first method is factor analysis on the physical environment variables. 

5.2.3.2 Method 1: Factor Analysis 

(i): Physical Environment 

The step involved here is applying factor analysis with a maximum likelihood and 

principal axis factoring extraction to the physical environment variables. In the analysis, 

each missing value is replaced with the variable mean. For both extraction methods, we 

obtained the same following descriptive statistics. 

Mean Std. Deviation AnalysisN MissingN 
MIA 1.85 .710 2191 18 

Accommodation 1.96 .966 2191 57 
Restaurants 1.94 .703 2191 351 

Public transport 2.08 .917 2191 449 
Retail outlets 2.35 .750 2191 395 

Historical Sites 1.87 .723 2191 412 
Cathedrals I Churches 1.57 .622 2191 397 

Road 3.89 .985 2191 67 
Road signs 3.21 1.078 2191 272 

Traffic 3.43 1.008 2191 179 
Public conveniences 3.02 1.117 2191 229 
Level of cleanliness 3.00 1.169 2191 52 

Air quality 2.22 .985 2191 59 
Sea quality 1.92 .792 2191 404 

Table 7: The descriptive statistics of the physical environment variables. 

Observing the mean, we can notice that Road and Cathedrals I Churches, written in 

italics, are the most influential variables rated by the tourists. Since Road has the 
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highest mean of 3.89 it implies that the tourists rate the roads very badly. On the other 

hand, Cathedrals I Churches have the lowest mean value of 1.57, which signifies that 

the tourists are very interested in the architectural richness of our temples. 

Now, let us consider the results obtained for both extraction methods. From the 

descriptive statistics table, we focus our attention on the total variance explained table. 

For both extraction methods, we have obtained an extraction of four factors, which 

describe around 56% of the data. From the table we take note of those factors that have 

an eigenvalue higher than one while the rest are irrelevant since their eigenvalue does 

not satisfy our criterion. The ones marked in red are the significant factors since they 

have an eigenvalue greater than one. 

Initial Eigenvalues 
Factor Total % of Variance Cumulative % 

1 4.106 29.327 29.327 
2 1.457 10.409 39.736 
3 1.180 8.429 48.165 
4 1.031 7.367 55.532 
5 .859 6.134 61.666 
6 .852 6.084 67.750 
7 .753 5.381 73 .131 
8 .738 5.272 78.404 
9 .603 4.309 82.712 
10 .548 3.912 86.625 
11 .522 3.731 90.355 
12 .494 3.532 93.887 
13 .467 3.334 97.221 
14 .389 2.779 100.000 

Table 8: The total variance explained of the factors using maximum likelihood. 
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Initial Eigenvalues 
Factor Total % of Variance Cumulative % 

1 4.106 29.327 29.327 
2 1.457 10.409 39.736 
3 1.180 8.429 48.165 
4 1.031 7.367 55.532 
5 .859 6.134 61.666 
6 .852 6.084 67.750 
7 .753 5.381 73.131 
8 .738 5.272 78.404 
9 .603 4.309 82.712 
10 .548 3.912 86.625 
11 .522 3.731 90.355 
12 .494 3.532 93.887 
13 .467 3.334 97.221 
14 .389 2.779 100.000 

Table 9: Total variance explained of the factors using principal axis factoring. 

Now, we have the scree plot, which is a graph of the eigenvalues against all the factors. 

This helps us to determine the number of factors to retain. Our point of interest is where 

the curve starts to flatten. This occurs between two factors where the smallest one is 

considered significant while the other is not. For our case, this occurs between the 

fourth and fifth factor. This indicates that we can retain four significant factors, which 

confirms the same decision made earlier. For both extraction methods the scree plot is 

similar. 

2 3 4 5 6 7 8 9 10 11 12 13 14 

Factor Number 

Figure 13: The scree plot of the eigenvalue against the factor number. 
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Next, we focus on the following table, which is the rotated factor matrix and the concept 

behind this matrix is to reduce the number of factors on which the variables under 

investigation have high loadings. In other words, it helps us obtain a better 

interpretation of the analysis. 

Factor 
1 2 3 4 

MIA .413 .148 .105 
Accommodation .355 .166 

Restaurants .440 .115 .153 
Public transport .347 .214 

Retail outlets .478 .179 .127 
Historical Sites .614 .128 

Cathedrals I Churches .588 .131 
Road .168 .705 .132 

Road signs .197 .628 .103 
Traffic .120 .599 .190 .204 

Public conveniences .155 .190 .114 .672 
Level of cleanliness .225 .245 .249 .665 

Air quality .198 .198 .859 .184 
Sea quality .315 .466 .186 

Table 10: The rotated factor matrix obtained by maximum likelihood extraction .. 

Factor 
1 2 3 4 

MIA .428 .145 .117 
Accommodation .394 .221 

Restaurants .495 .219 
Public transport .342 .214 .123 

Retail outlets .501 .176 .141 
Historical Sites .557 .154 .199 

Cathedrals I Churches .522 .258 
Road .167 .702 .129 

Road signs .188 .624 .103 .103 
Traffic .107 .604 .213 .186 

Public conveniences .146 .214 .588 .155 
Level of cleanliness .198 .254 .658 .279 

Air quality .188 .206 .255 .641 
Sea quality .254 .170 .602 

Table 11: The rotated factor matrix obtained by principal axis factoring extraction .. 

From the above tables, we note that the variables are colour-coded. This helps us to 

relate the different variables to each factor or component. For the maximum likelihood 

extraction, the first factor represents the highest number of variables. These are 

described under the general and the attractions section of the analysed question. The 

second, third and fourth factors describe the infrastructure section. The second refers to 
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the road infrastructure, the third to the environment quality and the last to public 

conveniences and cleanliness. 

Now, if we compare the rotated factor table of the principal axis factoring with the 

maximum likelihood extraction table, we have that the factors represent the same 

variables except the last two since the third factor describes public conveniences and 

level of cleanliness while the fourth describes the air and sea quality. 

During this whole procedure, we have obtained our factor scores and here we end this 

process. Hence, from the above tables we have obtained two sets formed by four factor 

scores. Our extracted factor scores represent or describe the loadings of these variables. 

(ii): Service provided by employees 

Considering the other aspect - service provided - we applied the same procedure with 

the only difference being that we now have a lesser amount of variables. In fact, as we 

can notice the infrastructure section is not present in this table since no employees are 

involved in this section. 

Mean Std. Deviation AnalysisN MissingN 
MIA 1.95 .825 2240 83 

Accommodation 1.81 .923 2240 120 
Restaurants 1.85 .715 2240 445 

Public transport 1.99 .837 2240 550 
Retail outlets 2.17 .706 2240 557 

Historical sites 1.98 .736 2240 702 
Cathedrals I churches 1.78 .673 2240 722 
Table 12: The descriptive statistics of the service provided by employees variables. 

Retail outlets having the highest mean of 2.17 signify that the services are not 

appreciated much by the tourists while Churches I Cathedrals have a mean of 1. 78 

signifying that the relevant employees run our places of worship efficiently. 
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Initial Eigenvalues 
Factor Total % of Variance Cumulative % 

1 2.582 36.885 36.885 
2 1.049 14.981 51.866 
3 .854 12.207 64.073 
4 .784 11.198 75.270 
5 .679 9.701 84.971 
6 .610 8.711 93.682 
7 .442 6.318 100.000 

Table 13 : The total variance explained by the factors using maximum likelihood. 

Initial Eigenvalues 
Factor Total % of Variance Cumulative % 

1 2.582 36.885 36.885 
2 1.049 14.981 51.866 
3 .854 12.207 64.073 
4 .784 11.198 75.270 
5 .679 9.701 84.971 
6 .610 8.711 93.682 
7 .442 6.318 100.000 

Table 14: The total variance explained by the factors using principal axis factoring. 

Observing the above tables, we note that only two significant factors are extracted, 

describing 52% of the data. In addition, from the scree plot, we notice that between the 

second and third factor the curve starts to flatten. This means that the factors after the 

second one are not significant. 
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Figure 14: Scree plot. 
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The rotated matrix helps us to understand better the loadings of these factors. Here we 

see that for both extractions, we have that factor one is loaded with the general section 

(highlighted in blue) of the variables while the other factor clusters the attraction 

variables (highlighted in green). 

Factor 
1 2 

MIA .363 .253 
Accommodation .546 

Restaurants .570 .167 
Public transport .389 .186 

Retail outlets .488 .266 
Historical sites .219 .737 

Cathedrals I churches .213 .689 
Table 15: The rotated matrix of the factors extracted by maximum likelihood. 

Factor 
1 2 

MIA .365 .256 
Accommodation .541 

Restaurants .564 .164 
Public transport .393 .191 

Retail outlets .496 .266 
Historical sites .224 .719 

Cathedrals I churches .208 .702 
Table 16: The rotated matrix of the factors extracted by principal axis factoring. 

Here we finish our process of this technique. We ended up with two sets each composed 

of two factor scores. 

5.2.3.3 Method 2: Parceling 

(i): Idea 

A dictionary's definition of the word 'parcel' is 'to divide into portions' and this is 

precisely the idea behind the parceling method. Reading various papers, such as "To 

Parcel or Not to Parcel: Exploring the Question, Weighing the Merits." by Little Todd 

D., William A. Cunningham, Golan Shahar and Keith F. Widaman., helped us identify 

the main points of the parceling method. 
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First, we gather all the available variables and then apply factor analysis. From the 

output, we focus on the rotated factor matrix so that we can group the variables 

according to the components. Now, the mixed variables are grouped into a number of 

components, so they are identified into different groups. Let's say that after the first 

process we ended up with a five-component matrix. Then, we repeat the factor analysis 

process but this time only with those variables present in the first component. Hence, a 

new rotated factor matrix is obtained. An important point is that each time we repeat the 

process we suppress the value for the coefficient to be displayed. We repeat this 

procedure until we finish with the most significant variables of the first component. 

When we view the rotated matrix, the coefficients displayed show us whether it is 

possible to suppress any further. If we reach the limit where the next suppression leads 

to no values in the matrix, then we stop and consider those results as our main variables. 

After we obtain the variables, we start again with the next component and so on until 

the fifth component. At the final step, the most significant variables of each component 

are gathered together and factor analysis is performed. This time the factor scores are 

evaluated because they are then linearly related with the respondents' profile. 

(ii): Physical Environment 

The first step is to gather all the variables and apply factor analysis whilst setting the 

condition that those values that are less than 0.2 will not be available in the factor and 

rotated factor matrix. The following table is obtained from both extraction methods. 

Mean Std. Deviation AnalysisN MissingN 
MIA 1.85 .710 2191 18 

Accommodation 1.96 .966 2191 57 
Restaurants 1.94 .703 2191 351 

Public transport 2.08 .917 2191 449 
Retail outlets 2.35 .750 2191 395 

Historical Sites 1.87 .723 2191 412 
Cathedrals I Churches 1.57 .622 2191 397 

Road 3.89 .985 2191 67 
Road signs 3.21 1.078 2191 272 

Traffic 3.43 1.008 2191 179 
Public conveniences 3.02 1.117 2191 229 
Level of cleanliness 3.00 1.169 2191 52 

Air quality 2.22 .985 2191 59 
Sea quality 1.92 .792 2191 404 

Table 17: The descriptive statistics of the physical environment variables. 
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As before, we obtain the total variance table. This gives us how many components the 

variables are grouped into. In, fact those factors whose eigenvalues are less than one are 

discarded. Hence, we note that in all there are four factors since from the fifth factor 

onwards have an eigenvalue less than one. These four factors are highlighted in red and 

they describe around 56% of the data. Both extraction methods lead to the following 

table. 

Initial Eigenvalues 
Factor Total % of Variance Cumulative % 

1 4.106 29.327 29.327 
2 1.457 10.409 39.736 
3 1.180 8.429 48.165 
4 1.031 7.367 55.532 
5 .859 6.134 61.666 
6 .852 6.084 67.750 
7 .753 5.381 73.131 
8 .738 5.272 78.404 
9 .603 4.309 82.712 
10 .548 3.912 86.625 
11 .522 3.731 90.355 
12 .494 3.532 93.887 
13 .467 3.334 97.221 
14 .389 2.779 100.000 

Table 18: The total variance explained. 

Hence, the same graphical output is obtained. Here, we note that four factors are 

extracted. In fact, between the fourth and fifth factor it is evident that the curve is 

flattening, which signifies that we retain the four factors as concluded from the table. 
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Figure 15: The scree plot. 
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Now, we have the rotated factor matrix in which we note that the empty cells imply that 

the coefficient value is less than 0.2. In this case, we obtain two different results for the 

two extraction methods. 

The following is the maximum likelihood table. 

Factor 
1 2 3 4 

MIA .413 
Accommodation .355 

Restaurants .440 
Public transport .347 .214 

Retail outlets .478 
Historical Sites .614 

Cathedrals I Churches .588 
Road .705 

Road signs .628 
Traffic .599 .204 

Public conveniences .672 
Level of cleanliness .225 .245 .249 .665 

Air quality .859 
Sea quality .315 .466 

Table 19: The rotated factor matrix obtained from maximum likelihood method. 

Now, we observe the principal axis factoring table. 

Factor 
1 2 3 4 

MIA .428 
Accommodation .394 .221 

Restaurants .495 .219 
Public transport .342 .214 

Retail outlets .501 
Historical Sites .557 

Cathedrals I Churches .522 .258 
Road .702 

Road signs .624 
Traffic .604 .213 

Public conveniences .214 .588 
Level of cleanliness .254 .658 .279 

Air quality .206 .255 .641 
Sea quality .254 .602 

Table 20: The rotated factor matrix obtained from principal axis factoring method. 
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Each value represents the partial correlation between the variable and the rotated factor. 

These correlations can help us formulate an interpretation of the factors or components. 

From this output, we will notice the relations of the factors with the variables. Note that 

every variable is interpreted by a factor. 

Now, we group the variables present in the first factor and apply factor analysis with the 

same extraction method and rotation. The only difference is that this time we consider 

only those that have a coefficient value greater than 0.5. 

Observing the above tables, we note that the variables of the first factor are similar 

except for an extra variable present in the maximum likelihood extraction. This variable 

is Level of cleanliness. 

Mean Std. Deviation Analysis N MissingN 
MIA 1.85 .710 2191 18 

Accommodation 1.96 .966 2191 57 
Restaurants 1.94 .703 2191 351 

Public transport 2.08 .917 2191 449 
Retail outlets 2.35 .750 2191 395 

Historical Sites 1.87 .723 2191 412 
Cathedrals I Churches 1.57 .622 2191 397 
Level of cleanliness 3.00 1.169 2191 52 

Sea quality 1.92 .792 2191 404 
Table 21: Descriptive statistics of the variables present in the first factor extracted by 

the maximum likelihood. 

Mean Std. Deviation Analysis N MissingN 
MIA 1.85 .710 2191 18 

Accommodation 1.96 .966 2191 57 
Restaurants 1.94 .703 2191 351 

Public transport 2.08 .917 2191 449 
Retail outlets 2.35 .750 2191 395 

Historical Sites 1.87 .723 2191 412 
Cathedrals I Churches 1.57 .622 2191 397 

Sea quality 1.92 .792 2191 404 
Table 22: Descnpt1ve statistics of the variables present in the first factor extracted by 

the principal axis factoring. 

When considering the maximum likelihood method we have obtained the following 

output. Observing the following table we note that we have obtained two significant 
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factors since their eigenvalue is greater than one. Here the significant factors describe 

around 44% of the data. 

Initial Eigenvalues 
Factor Total % of V ariancc Cumulative % 

1 2.923 32.477 32.477 
2 1.020 11.329 43.807 
3 .924 10.266 54.072 
4 .881 9.792 63 .864 
5 .758 8.424 72.288 
6 .734 8.158 80.446 
7 .656 7.294 87.740 
8 .592 6.576 94.316 
9 .512 5.684 100.000 

Table 23: Total variance explained by the nine variables when applying maximum 

likelihood. 

Applying the other extraction method, we obtained a two-component factor since only 

two factors have their eigenvalue greater than 1. For this method, the factors explain 

around 46% of the data. 

Initial Eigenvalues 
Factor Total % of Variance Cumulative % 

1 2.701 33 .763 33 .763 
2 1.012 12.644 46.407 
3 .881 11.017 57.424 
4 .818 10.223 67.647 
5 .752 9.401 77.048 
6 .726 9.078 86.126 
7 .598 7.474 93.600 
8 .512 6.400 100.000 

Table 24: Total variance explamed by the eight variables when applying principal axis 

factoring. 

A varimax rotation was applied and when the factor coefficient is suppressed under the 

value of 0.5, we obtained only these three variables. Hence, these variables are our most 

significant variables for this particular component as obtained for the two extraction 

methods. 
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Factor 
1 2 

MIA 
Accommodation 

Restaurants .561 
Public transport 

Retail outlets 
Historical Sites .684 

Cathedrals I Churches .620 
Level of cleanliness 

Sea quality 
Table 25: The rotated factor matrix of the first factor variables extracted by maximum 

likelihood. 

Factor 
1 2 

MIA 
Accommodation 

Restaurants .602 
Public transport 

Retail outlets 
Historical Sites .662 

Cathedrals I Churches .640 
Sea quality 

Table 26: The rotated factor matrix of the first factor variables extracted by principal 

axis factoring. 

This process is repeated for the other components until finally we finish with the most 

significant variables. For the two methods, we end with the same variables. These are 

gathered in the following table. 

Mean Std. Deviation Analysis N MissingN 
Accommodation 1.96 .966 2191 57 

Restaurants 1.94 .703 2191 351 
Historical Sites 1.87 .723 2191 412 

Cathedrals I Churches 1.57 .622 2191 397 
Road 3.89 .985 2191 67 

Road signs 3.21 1.078 2191 272 
Traffic 3.43 1.008 2191 179 

Public conveniences 3.02 1.117 2191 229 
Level of cleanliness 3.00 1.169 2191 52 

Air quality 2.22 .985 2191 59 
Sea quality 1.92 .792 2191 404 

Table 27: Descriptive statistics of the most significant variables. 
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We repeat factor analysis on these variables but apply a maximum likelihood extraction. 

We ended up with three significant eigenvectors having their eigenvalue greater than 

one. 

·-~- - -L 

Initial Eigenvalues 
Factor Total % of Variance Cumulative % 

1 3.396 33.965 33.965 
2 1.348 13.481 47.446 
3 1.126 11.263 58.709 
4 .868 8.678 67.387 
5 .813 8.126 75 .513 
6 .558 5.584 81.097 
7 .529 5.285 86.383 
8 .501 5.007 91.389 
9 .470 4.701 96.091 
10 .391 3.909 100.000 

Table 28: The total variance explained using maximum likelihood. 

We repeated the same procedure as above but applied a principal axis factoring 

extraction and ended with four factors having eigenvalues greater than 1. 

Initial Eigenvalues 
Factor Total % of Variance Cumulative % 

1 3.532 32.110 32.110 
2 1.392 12.657 44.768 
3 1.127 10.243 55.011 
4 1.008 9.167 64.178 
5 .850 7.723 71.901 
6 .644 5.858 77.759 
7 .557 5.062 82.821 
8 .528 4.804 87.626 
9 .500 4.548 92.174 
10 .470 4.273 96.446 
11 .391 3.554 100.000 

Table 29: The total vanance explamed usmg prmcipal axis factoring. 

For a maximum likelihood extraction method, we suppressed values less than 0.5 and 

we obtained the following table. Our ten major factors are grouped into these three 

factors. Our first factor component describes the infrastructure regarding the 

environment cleanliness and public conveniences state and the second component 

represents Malta's road infrastructure. The third component focuses on the attraction 

sites. 
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Factor 
1 2 3 

Restaurants 
Historical Sites .629 

Cathedrals I Churches .685 
Road .704 

Road signs .645 
Traffic .591 

Public conveniences .623 
Level of cleanliness .744 

Air quality 
Sea quality 

Table 30: Rotated factor matrix extracted by maximum likelihood. 

For Restaurants, Air quality and Sea quality we do not have a value, which implies that 

these variables have a factor loading less than 0.5 . From the graphical output below, we 

observe that the variable Restaurants is grouped with the third factor while the other 

two variables are grouped with the first variable. 

Factor 2 

Factor l Factor 3 

Figure 16: Factor plot of factors 1, 2, 3. 

In this process, we suppressed values less than 0.5 and we obtained the following table. 

Our eleven major factors are grouped into these four factors. Hence, our frrst factor 

component represents Malta's road infrastructure and the second component focuses on 

the attraction sites. The third component describes the infrastructure regarding the 
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environment cleanliness and public convemences state. While the last component 

represents the infrastructure but regarding our environment quality. 

Factor 
1 2 3 4 

Accommodation 
Restaurants 

Historical Sites .644 
Cathedrals I Churches .638 

Road .702 
Road signs .641 

Traffic .604 
Public conveniences .628 
Level of cleanliness .703 

Air quality .748 
Sea quality .544 

Table 31: Rotated factor matrix extracted by principal axis factonng. 

For Accommodation and Restaurants, we do not have a value that signifies that these 

variables have a factor loading less than 0.5 . Since we have a four-factor matrix, it is not 

possible to obtain a better graphical interpretation. 

When we obtain these significant variables and performed factor analysis on these 

variables, we evaluate the factor scores. Here, the process of parceling finishes since we 

have gathered the most significant variables and analyzed them. 

(iii): Service provided by employees 

In the following table, we have those variables within this aspect that were analysed. 

Here we note that, Retail Outlets having the highest mean of 2.17 signifying that the 

services are not appreciated much by the tourists while Churches I Cathedrals have a 

m~nn of 1 78 8ignifying that the relevant employees rnn our places of worship 

efficiently. 
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Mean Std. Deviation Analysis N MissingN 
MIA 1.95 .825 2240 83 

Accommodation 1.81 .923 2240 120 
Restaurants 1.85 .715 2240 445 

Public transport 1.99 .837 2240 550 
Retail outlets 2.17 .706 2240 557 

Historical sites 1.98 .736 2240 702 
Cathedrals I churches 1.78 .673 2240 722 
Table 32: The descriptive statistics of the service provided by employees variables. 

Applying the same procedure with both extraction methods, we end up with the same 

number of factors representing approximately 52% of the data. This result is viewed in 

the following two outputs; the total variance explained table and the scree plot. These 

outputs are identical for both extraction methods. 

Initial Eigenvalues 
Factor Total % of Variance Cumulative % 

1 2.582 36.885 36.885 
2 1.049 14.981 51.866 
3 .854 12.207 64.073 
4 .784 11.198 75.270 
5 .679 9.701 84.971 
6 .610 8.711 93 .682 
7 .442 6.318 100.000 

Table 33: Total variance explained. 

3.0 

2.5 

2.0 

1.5 

1.0 

Q) 

~ .5 
> 
i::: 
Q) 
Cl} 

m 0.0 

2 3 4 5 6 7 

Factor Nwnber 

Figure 17: Scree plot of the eigenvalues against the factors. 
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Then we viewed the rotated factor matrix. For both methods, the variables of each factor 

component are the same and the only difference is the loading value. In fact, these two 

tables are the rotated factor matrix of both methods and note the value difference of 

each variable within each component. The empty values present in these tables 

represent those values that value their factor loading less than 0.2. 

Factor 
1 2 

MIA .363 .253 
Accommodation .546 

Restaurants .570 
Public transport .389 

Retail outlets .488 .266 
Historical sites .219 .737 

Cathedrals I churches .213 .689 
Table 34: Rotated factor matrix obtained by a maximum likelihood extraction. 

Factor 
1 2 

MIA .365 .256 
Accommodation .541 

Restaurants .564 
Public transport .393 

Retail outlets .496 .266 
Historical sites .224 .719 

Cathedrals I churches .208 .702 
Table 35: Rotated factor matrix obtained by a principal axis factoring extraction. 

Now, the same procedure as in the other aspect was applied until we finished with the 

most significant variables. In the following table, we have these variables and for both 

methods, they are the same. 

Mean Std. Deviation Analysis N MissingN --0 
Historical sites 1.98 .736 2240 702 

Cathedrals I churches 1.78 .673 2240 722 
Accommodation 1.81 .923 2240 120 

Restaurants 1.85 .715 2240 445 
Table 36: Descriptive statistics of the final significant variables. 

Applying factor analysis using both extractions, we ended up with a two-factor model 

describing 73% of the data. 

69 



Chapter 5 Factor Analysis Application 

Initial Eigenvalues 
Factor Total % of Variance Cumulative % 

1 1.893 47.326 47.326 
2 1.031 25.768 73.094 
3 .632 15.792 88.886 
4 .445 11.114 100.000 

Table 37: Total variance explained. 

Utilizing a varimax rotation and suppressing values under 0.5, we obtain the following 

two components in which the attractions variables are grouped in the first component 

while the other two variables are gathered in the other component. 

Factor 
1 2 

Historical sites .726 
Cathedrals I churches .721 

Accornrnodati on .576 
Restaurants .592 

Table 38: Rotated factor matrix. 

Here, the process of parceling for the service provided by employees finishes. We ended 

with two sets, one for each method, each containing two factor scores. 

Now, after all this process, we take a note of those variables that at the end are 

considered significant for our analysis and from which we draw our factor scores. This 

leads to confirmatory factor analysis. 

5.3 Confirmatory Factor Analysis 

The primary objective of confirmatory factor analysis is to determine the ability of a 

predefined factor model to fit an observed set of data. 

Some common uses of confirmatory factor analysis are to establish the validity of a 

single factor model and to compare the ability of two different models to account for the 

same set of data. Other uses are to test the significance of a specific factor loading or to 

test the relationship between two or more factor loadings. These are only few ways in 

which confirmatory factor analysis is applicable, in fact there are more other procedures 

where this method is applicable. 
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Exploratory factor analysis is applied in various applications, for example, when we 

want to determine which features are most important when classifying a group of items. 

In addition, it is useful when we want to determine which set of items can be clustered 

together in a questionnaire or to demonstrate the dimensionality of a measurement scale. 

Another application is when we want to generate factor scores that represent the values 

of the underlying constructs for use in other analyses. 

Now, we will discuss the significant variables of each process. For the first technique, 

that is factor analysis, the final sets of variables considered are all those valid variables 

that we have considered for the analysis. For both extraction methods, the variables are 

the same. For the physical environment, we have fourteen variables while for the 

service provided by employees we have seven variables. 

For the second technique, we have started with these fourteen and seven variables but 

were reduced to a lesser amount. For the case of the physical environment applying the 

maximum likelihood extraction, we ended up with ten significant variables while doing 

the same procedure but applying the principal axis factoring extraction, we had eleven 

significant variables. For the case of service provided by employees, for both extraction 

methods, we have obtained four significant variables. 

Now, after all these processes, we consider each technique, method and aspect and 

evaluate the factor scores. These factor scores are important because these scores are 

then related with the tourists' profile. Hence, we are trying to find any relationship 

between the variables forming the tourists' profile and these factor scores derived from 

these different methods. This application will be discussed in the next chapter. 
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6 FACTOR SCORES AND LINEAR MODELS 

As discussed in the previous chapter we have ended up with different sets of factor 

scores for each method applied within each technique. The purpose of extracting these 

factor scores is that we can obtain a linear relationship of these scores with the tourists' 

profile variables. Before we discuss this relationship, the factor scores were analysed to 

check whether they satisfy the normality condition. This is required because to obtain 

linear models, the normality assumption must be satisfied. 

6.1 Factor Scores 

As we said in the previous paragraph, these scores are analysed to check for normality. 

In fact, the Kolmogorov-Smimov test is applied to each factor score and from the p­

value (Asymp. Sig) we observe whether they satisfy the normal distribution. 

The criterion to accept whether a variable is normally distributed or not, is based on the 

fact that if the p-value is greater than 0.05, then the variable does not depart 

significantly from normal behaviour and conversely if the p-value is less than 0.05. 

When the case that the variable, in our case the factor score, is not normally distributed, 

we need to apply a transformation to render it adequate to observe the normal 

behaviour. 

For example, consider the following factor score extracted by the maximum likelihood 

method when applied on the physical environment variables. This is already normally 

distributed since the p-value is greater than 0.05. 
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Factor score 2 
N 2191 

Normal Parameters Mean .0000000 
Std. Deviation .81979066 

Most Extreme Differences Absolute .026 
Positive .026 
Negative -.026 

Kolmogorov-Smirnov Z 1.196 
Asymp. Sig. (2-tailed) .115 

Table 39: The One-Sample Kolmogorav Smimov Test of the second factor score. 

In fact, observing the following histogram, we notice that the normal curve fits very 

smoothly over the bars except for the tail ends. With the help of a Q-Q plot, we can 

confirm this statement since the majority of the points are on the line except the ends. 

A Q-Q plot is a graph where the quantiles of a variable's distribution are plotted against 

the quantiles of any of a number of test distributions. Probability plots are generally 

used to determine whether the distribution of a variable matches a given distribution. If 

the selected variable matches the test distribution, the points cluster around a straight 

line 
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Figure 18: Histogram with normal curve of factor score 2. 
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Figure 19: Q-Q plot of the second factor score. 

Generally, the distribution of the obtained factor scores departs significantly from the 

normal behaviour. Hence, in such cases, we applied a transformation to satisfy as much 

as possible our request for normal behaviour. The following shows is an example of a 

factor score with a p value of 0.001, which is less than 0.05, hence implying that this 

score is not normal. The scores of this example are obtained from the physical 

environment when extracted by the principal axis factoring method. 

Factor score 1 
N 2191 

Normal Parameters Mean .0000000 
Std. Deviation .79851264 

Most Extreme Differences Absolute .041 
Positive .041 
Negative -.016 

Kolmogorov-Smirnov Z 1.903 
Asymp. Sig. (2-tailed) .001 

Table 40: One-Sample Kolmogorov-Smirnov Test 

Graphically this is noticed with the help of the Q-Q plot since the data points do not fit 

the green line. The green line present in these plots represents the distribution we wish 

to fit and in our case, it represents a normal distribution. 
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Figure 20: Q-Q plot of factor score 1 
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Now, examining this example and other similar ones, we require applying a method that 

renders our data, factor scores, significantly normally distributed. The technique used is 

the Box-Cox Transformation. In the Box-Cox, we are transforming a response feature 

either to correct for non-normality or a heteroscedastic variance structure. A useful class 

A - 1 
of transformations for this purpose is the power transform _Y __ , where Ais a 

'A 

parameter to be determined. 

For this transformation, we have used a software package called GLIM in which we 

have inputted our data and called the Box-Cox directive. First, we have to recode the 

data because for the use of the Box-Cox there must be no zeros or negative values 

present in the data. Therefore, for each score the minimal value is found and then is 

added to each value so that the data becomes positive. Then we insert the data in this 

package and run the directive. When the directive responds we have to determine a 

range for lambda and the increment. After repeating the process for a number of times, 

we end up with a significant value lambda. Then, this lambda is power by which the 

data is transformed. For each factor score we have a different value for lambda. 

Considering the same factor score as above and applying the Box-Cox transformation, 

we obtain our lambda value equal to 0.6685. 
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Now, using the other statistical package Spss, we transform our data by multiplying to 

the power of 0.6685. From the Kolmogorov-Smimov test, we verify whether our 

transformed score does not significantly depart from normal behaviour. 

varl = (newfacl) ** 0.6685 
N 2191 

Normal Parameters Mean 1.5597 
Std. Deviation .42999 

Most Extreme Differences Absolute .024 
Positive .022 
Negative -.024 

Kolmogorov-Smimov Z 1.136 
Asymp. Sig. (2-tailed) .151 

Table 41: The Kolmogorov-Smimov Test of var 1. 

From the above table, we note that the p-value is 0.151, which is greater than 0.05 and 

hence implies that this transformed score satisfies the normality behaviour. Observing 

this result from a graphical point of view, we note that the histogram fits the normal 

distribution curve smoothly, except at the edges. This is further verified form the Q-Q 

plot where the data points fit the green line perfectly except for a few points present at 

the ends. 
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varl = (newfacl) ** 0.6685 

Figure 21 : Histogram of varl. 
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As we said before, each factor score has its own lambda for the transformation. This 

table shows the lambda values required for each individual score to be best fitted into a 

normal distribution. 

Technique Extraction Aspect Score Lambda 
Factor Analysis Maximum Likelihood Physical 1 0.7 

2 1 
3 0.486 
4 0.6345 

Service 1 0.393 
2 0.3885 

Principal Axis Factoring Physical 1 0.6685 
2 1 
3 0.6725 
4 0.2545 

Service 1 0.42 
2 0.381 

Pa.reeling Maximum Lik.elihoou Physical 1 0.6515 
2 1 
3 0.2985 

Service 1 0.3935 
2 0.2045 

Principal Axis Factoring Physical 1 1 
2 0.3295 
3 0.627 
4 0.42015 

Service 1 0.363 
2 0.477 

Table 42: The lambda required for each factor score to be transformed. 
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Although we have performed this Box-Cox transformation, some factor scores still 

depart significantly from the normal behaviour. A typical example is the following 

factor score composed of the service provided variables and extracted from a maximum 

likelihood method. In the following table, we have the factor score before the 

transformation and the factor score after the transformation. From the p-value, we note 

that the p-value of this factor score is 0 before and after transformation. Hence, it still 

departs significantly from the normal behaviour. 

Factor score 2 
var2 = (newfac2) 

** 0.3885 
N 2240 2240 

Normal Parameters Mean .0000000 1.2832 
Std. Deviation .81614727 .20696 

Most Extreme Differences Absolute .176 .143 
Positive .176 .135 
Negative -.094 -.143 

Kolmogorov-Smimov Z 8.347 6.762 
Asymp. Sig. (2-tailed) .OOO .OOO 

Table 43: The Kolmogorov-Smirnov test. 

Graphically, we note the presence of multi-peaks, which reflect that there are several 

different processes with different centres. In this case, we have five peaks so we need 

five processes so that we can obtain a clearer view of what is really happening in either 

individual process. To do this process we need to separate each peak to obtain separate 

distributions and then analyse each distribution to see whether each distribution does or 

does not depart significantly from normal behaviour. Due to lack of time, these factor 

scores are not tackled in this dissertation. 
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Figure 23: Histogram of the factor score. 

Now, considering the histogram of the above-mentioned variable, it should be noted 

that the normal distribution curve seems to fit the distribution of the 'transformed' 

scores well. However, since the resulting p-value is less than 0.05 the underlying 

distribution of the data is not the normal distribution. 
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Figure 24: Histogram of the newly categorised data. 

Until now, we have analysed these factor scores extracted from the different methods 

and we have encountered three types of possible outcomes. The first is when the factor 
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score obtain is normally distributed. Secondly is when we apply a transformation and 

obtain a factor score that does not significantly depart from normal distribution. Finally 

is when we end up with factor scores that even though they are transformed, they still 

do not satisfy the normal behaviour. Now, for the first two types we will continue our 

analysis since to obtain linear models we need to satisfy the normal distribution. For the 

third type, we need further investigation to identify the different processes hidden in 

each factor score. 

Our next step is to consider those normally distributed factor scores and obtain a 

relation ship of these scores with the socio-demographic variables of the tourists'. This 

leads us to the next section, where we are going to discuss these results. 

6.2 Linear Models 

To obtain these linear relationships, we utilized the statistical package Spss and applied 

the general Univariate linear model function. In this section, we will discuss the outputs 

that we acquired from this analysis. Here we have considered the best relationship 

results obtained by each technique and each extraction method. First, we will go 

through a quick look at the variables forming the tourists' profile. 

6.2.1 Tourists' Profile 

The tourist profile is composed of eight variables, which are season, regions grouped 

into country, gender, marital status, full time and part time job, net income and age­

groups. Each variable has a number of parameters. In the following table, we have 

grouped the variables and their categories. 
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Country Gender 
Marital Full time Part time 

Income Age Season Status job job 

0-
16 

Summer Scotland Male Single Director Director 1000 
-

25 
Married/ 1001- 26 

Autumn England Female Living Manager Manager 2000 
-

together 35 
Divorced Office I Office I 2001- 36 

Winter Wales I Retail Retail 3000 
-

Separated worker worker 45 

3001- 46 
Spring Ireland Widowed Professional Professional 4000 

-

55 

Northern 
Skilled Skilled 4001 - 56 

worker I worker I 5000 
-

Ireland 
tradesman tradesman 65 

Manual Manual 5001+ 66+ 
worker worker 

Self- Self-
employed employed 
Student Student 

Housewife Housewife 
Unemployed Unemployed 

Retired Retired 
Table 44: Profile variables and their respective categories. 

6.2.2 Factor Analysis Technique 

When applying the factor analysis technique with a maximum likelihood extraction 

method, we obtained a factor score which, when analyzed with the profile variables, 

gave the following results. The profile variables considered for the analysis are 

highlighted in red. 
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Type III Degrees Mean 
Source Sum of of 

Square F Sig. 
Squares freefom 

Corrected Model 22.132 37 .598 .945 .568 
Intercept 5.232E-02 1 5.232E-02 .083 .775 
Season 1.201 3 .400 .632 .599 

Grouped region into country 2.013 4 .503 .795 .536 
Gender .626 1 .626 .989 .327 

Marital Status 1.226 3 .409 .645 .591 
Fulltime job 5.746 8 .718 1.134 .365 
Part time job 3.205 10 .320 .506 .874 

Net new income 2.481 3 .827 1.306 .287 
Age group 2.138 4 .535 .844 .506 

Error 22.791 36 .633 
Total 47.096 74 

Corrected Total 44.924 73 
Table 45 : Test of between-subjects effects of the dependent variable factor score 2. 

This is the first output, where we considered all the variables without interactions. The 

purpose of not considering the interaction terms is because we have a high number of 

levels present in some of the variables such as full time job and part time job. In fact, 

these two variables contain eleven different jobs. From this model, we obtained an R 

Squared value of 0.493. This signifies that this model represents 49.3% of the 

variability of the data. 

Now, observing the table, we take note of the significant values (Sig). From these 

values, we choose the one with the highest significance and discard it. In this particular 

case, we have part time job with the highest p-value equal to 0.874. Then we repeat the 

process until we end up with a number of variables that have a p-value less than 0.05. 

Hence, the values that have a p-value less than 0.05 are significant ones for this factor 

score. 

For this regression factor score, we ended up with five significant variables (highlighted 

in red) with a p-value (Sig) less than 0.05. From the R Squared value, we conclude that 

this linear model is explaining 4.5% of the variability of the data. 
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Type III Degrees of Mean 
Source Sum of freedom Square 

F Sig. 
Squares 

Corrected Model 36.149 16 2.259 3.618 .OOO 
Intercept 1.145 1 1.145 1.833 .176 
Season 6.176 3 2.059 3.297 .020 

Grouped region into country 6.112 4 1.528 2.447 .045 
Gender 5.289 1 5.289 8.471 .004 

Marital status 7.063 3 2.354 3.771 .010 
Age group 8.401 5 1.680 2.691 .020 

Error 758.637 1215 .624 
Total 794.879 1232 

Corrected Total 794.786 1231 
Table 46: Tests of Between-Subjects Effects of the second factor score extracted by 

maximum likelihood method. 

In addition to these results, we also obtained the parameter estimates in the column 

labelled B. Observing the parameter estimates table, we note that the last level or 

parameter of each variable is zero, which signifies that this parameter is redundant. This 

is so since the Spss is programmed to alias the last level of each variable, hence the 13 -

value of these levels is zero. 

From the t statistics (t), we can determine the relative importance of each variable in the 

relationship. The t statistic is B divided by the standard error (Std. Error). As a guide 

regarding useful predictors, we look fort values well below -2 or above +2. 
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Std. Error Sig. 
95% Confidence 

B t Interval 
Lower Upper 

Parameter Bound Bound 
Intercept -.549 .292 -1.880 .060 -1.121 2.376E-02 

[SEASON=l] 1.541E-02 .071 .216 .829 -.125 .156 
[SEASON=2] .162 .059 2.764 .006 4.705E-02 .277 
[SEASON=3] .133 .065 2.037 .042 4.883E-03 .260 
[SEASON=4] 0 

[REGGROUP=l] -.199 .278 -.715 .475 -.744 .347 
[REGGROUP=2] -.117 .269 -.434 .664 -.645 .411 
[REGGROUP=3] .112 .294 .381 .703 -.465 .689 
[REGGROUP=4] -.409 .295 -1.387 .166 -.988 .170 
[REGGROUP=5] 0 

[GENDER=l] .138 .047 2.910 .004 4.488E-02 .231 
[GENDER=2] 0 
[MARTST=l] .358 .137 2.609 .009 8.874E-02 .626 
[MARTST=2] .379 .113 3.341 .001 .156 .601 
[MARTST=3] .318 .155 2.049 .041 1.349E-02 .622 
[MARTST=4] 0 

[AGEGROUP=l] 3.938E-02 .166 .238 .812 -.285 .364 
[ AGEGROUP=2] .309 .107 2.892 .004 9.951E-02 .519 
[AGEGROUP=3] .171 .083 2.059 .040 8.055E-03 .334 
[AGEGROUP=4] .226 .075 3.027 .003 7.941E-02 .372 
[AGEGROUP=5] .186 .070 2.672 .008 4.935E-02 .322 
[AGEGROUP=6] 0 
Table 47: Parameter Estimates of the dependent variable factor score 2 extracted by 

maximum likelihood method. 

In this table we have ten useful predictors since their value is higher than 2. These 

predictors are the ones highlighted in blue where each parameter signifies a label. For 

each variable, we have an amount of levels. By levels, we understand the different 

values inputted for each variable. For the season variable, we have four levels that 

indicate the four seasons. From the above table, we have that season has two important 

values that are most influential in this relationship. Hence, season = 2 signifies autumn 

while season = J represents winter. GenJe1 has two levels and gender = 1 represents 

male population. For the marital status, we have three levels 1, 2 and 3 which 

respectively mean single, married I living together and divorced I separated. Regarding 

the last variable, age group we have six levels but only four are the most useful. These 

are from the second to the fifth level. Each level represents an age bracket. Hence, our 

most significant age brackets are 26 - 35, 36 - 45, 46- 55 and 56 - 65. 
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Now using the same data reduction technique, we analyzed another factor score 

extracted from the other method, principal axis factoring . Here we have the result of the 

most significant variables for this factor score. The same process was performed, where 

we started with all the variables and each time reduced the variable with the highest p­

value until we finished with those having a p-value less than 0.05 . 

Type III Degrees 
Mean 

Source Sum of of 
Square 

F Sig. 
Squares freedom 

Corrected Model 30.368 13 2.336 3.687 .OOO 
Intercept .811 1 .811 1.281 .258 

Regrouped region into country 6.083 4 1.521 2.400 .048 
Gender 5.749 1 5.749 9.075 .003 

Marital Status 6.452 3 2.151 3.395 .017 
Age grouped 8.153 5 1.631 2.574 .025 

Error 771.646 1218 .634 
Total 802.164 1232 

Corrected Total 802.013 1231 
Table 48: The test between subjects effect of the second factor score. 

From these variables, we obtained the parameter estimates table, where we will observe 

the t value. From this t value, we identify the most important variables for this 

relationship. 

B Std. Error t Sig. 95% Confidence 
Interval 

Parameter Lower Upper 
Bound Bound 

Intercept -.417 .286 -1.458 .145 -.978 .144 
[REGGROUP= 1] -.201 .278 -.724 .469 -.747 .344 
[REGGROUP=2] -.144 .268 -.538 .590 -.669 .381 
[REGGROUP=3] 9.483E-02 .294 .322 .747 -.483 .672 
[REGGROUP=4] -.436 .295 -1.476 .140 -1.016 .143 
[REGGROUP=5] 0 

[GENDER=l ] .143 .048 3.012 .003 5.004E-02 .237 
[GENDER=2] 0 
[MARTST=l] .352 .138 2.550 .011 8.114E-02 .623 
[MARTST=2] .364 .114 3.186 .001 .140 .588 
[MARTST=3] .325 .156 2.082 .038 1.873E-02 .630 
[MARTST=4] 0 

[AGEGROUP=l] -1.778E-02 .165 -.108 .914 -.341 .306 
[ AGEGROUP=2] .272 .106 2.569 .010 6.434E-02 .480 
[AGEGROUP=3] .147 .082 1.785 .074 -l.455E-02 .308 
[AGEGROUP=4] .216 .074 2.906 .004 7.021E-02 .362 
[ AGEGROUP=5] .190 .070 2.708 .007 5.222E-02 .327 
[AGEGROUP=6] 0 
Table 49: Parameter estimates of the dependent factor score. 
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These useful predictors are highlighted in blue and are very similar to the previous table 

except that in this relationship, the season variable is not significant. 

6.2.3 Parceling Technique 

Applying the other technique of data reduction, parceling, we have the following well­

defined relationships. Let us start with the first extraction method, maximum likelihood, 

when applied on the physical environment variables. Here we have the following 

significant variables of the socio-demographic variables for this factor score. 

Note that these variables are significant since their significance value is less than 0.05. 

From the following table we have five variables, which are identical to those obtained in 

the previous technique when applying the same extraction method. 

Type III Sum 
Degrees 

Mean 
Source of Squares 

of 
Square 

F Sig. 
freedom 

Corrected Model 36.852 16 2.303 3.696 .OOO 
Intercept 1.100 1 1.100 1.765 .184 
Season 6.268 3 2.089 3.353 .018 

Regrouped region into country 6.404 4 1.601 2.569 .037 
Gender 5.358 1 5.358 8.598 .003 

Marital Status 6.938 3 2.313 3.712 .011 
Age grouped 8.862 5 1.772 2.844 .015 

Error 757.062 1215 .623 
Total 794.013 1232 

Corrected Total 793.914 1231 
Table 50: The test between subjects effect of the second factor score. 

From the parameter estimates table we note the following results. These parameters 

contribute to the relationship of the above variables with this factor score. The ones 

highlighted in blue signify the ones that are of a greater influence in this relationship. 
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B Std. Error t Sig. 
95% Confidence 

Interval 

Parameter 
Lower Upper 
Bound Bound 

Intercept -.560 .291 -1.921 .055 -1.132 l.180E-02 
[SEASON=l] 4.666E-03 .071 .065 .948 -.135 .145 
[SEASON=2] .159 .059 2.706 .007 4.358E-02 .274 
[SEASON=3] .133 .065 2.048 .041 5.616E-03 .261 
[SEASON=4] 0 

[REGGROUP=l] -.186 .278 -.669 .504 -.730 .359 
[REGGROUP=2] -.109 .269 -.407 .684 -.637 .418 
[REGGROUP=3] .125 .294 .424 .671 -.451 .701 
[REGGROUP=4] -.415 .295 -1.407 .160 -.993 .164 
[REGGROUP=5] 0 

[GENDER=l] .139 .047 2.932 .003 4.586E-02 .231 
[GENDER=2] 0 
[MARTST=l] .347 .137 2.537 .011 7.870E-02 .616 
[MARTST=2] .375 .113 3.314 .001 .153 .598 
[MARTST=3] .317 .155 2.050 .041 1.358E-02 .621 
[MARTST=4] 0 

[AGEGROUP=l ] 8.149E-02 .165 .493 .622 -.243 .406 
[ AGEGROUP=2] .320 .107 2.994 .003 .110 .530 
[AGEGROUP=3] .182 .083 2.197 .028 l.950E-02 .345 
[AGEGROUP=4] .237 .074 3.179 .002 9.067E-02 .383 
[ AGEGROUP=5] .198 .069 2.843 .005 6.121E-02 .334 
[AGEGROUP=6] 0 
Table 51: Parameter estimates of the significant variables of this relationship. 

Applying the same process but considering a principal axis factoring extraction, we 

obtain the following five significant variables. 

Type III Sum Degrees 
Mean Source 

of Squares of 
Square F Sig. 

!freedom 
Corrected Model 37.155 16 2.322 3.695 .OOO 

Intercept 1.184 1 1.184 1.884 .170 
Season 6.707 3 2.236 3.557 .014 

Regrouped region into country 6.368 4 1.592 2.533 .039 
Gender 5.320 1 5.320 8.465 .004 

Marital Status 6.852 3 2.284 3.634 .013 
Age grouped 8.797 5 1.759 2.800 .016 

Error 763.595 1215 .628 
Total 800.875 1232 

Corrected Total 800.750 1231 
Table 52: The test between subjects effect of the first factor score. 

From these five variables, we obtain the following parameter estimates. 

87 



Chapter 6 Factor Scores and Linear Models 

Std. Error t Sig. 
95% Confidence 

B Interval 
Lower Upper 

Parameter Bound Bound 
Intercept -.562 .293 -1.921 .055 -1.137 1.186£-02 

[SEASON=l] -9.265E-04 .072 -.013 .990 -.142 .140 
[SEASON=2] .162 .059 2.747 .006 4.620£-02 .277 
[SEASON=3] .136 .065 2.092 .037 8.460£-03 .265 
[SEASON=4] 0 

[REGGROUP=l] -.174 .279 -.624 .533 -.721 .373 
[REGGROUP=2] -.102 .270 -.377 .706 -.632 .428 
[REGGROUP=3] .132 .295 .448 .654 -.446 .711 
[REGGROUP=4] -.409 .296 -1.381 .168 -.990 .172 
[REGGROUP=5] 0 
[Q2GENDER=l] .138 .047 2.909 .004 4.497£-02 .231 
[Q2GENDER=2] 0 
[Q2MARTST=l] .346 .137 2.519 .012 7.665E-02 .616 
[Q2MARTST=2] .373 .114 3.278 .001 .150 .596 
[Q2MARTST=3] .313 .155 2.011 .045 7.566£-03 .618 
[Q2MARTST=4] 0 
[AGEGROUP=l] 5.962£-02 .166 .359 .720 -.266 .385 
[AGEGROUP=2] .312 .107 2.910 .004 .102 .523 
[ AGEGROUP=3] .178 .083 2.141 .032 1.491£-02 .341 
[AGEGROUP=4] .236 .075 3.153 .002 8.914£-02 .383 
[ AGEGROUP=5] .195 .070 2.802 .005 5.858E-02 .332 
[AGEGROUP=6] 0 
Table 53: Parameter estimates of the significant variables. 

In this section, we focused on the most prominent relationships. In fact, we had other 

relationships but were not as prominent as these were. There were also situations where 

we ended with no relation. These cases could have occurred due to the fact that we only 

considered these eight variables grouped into two questions of the questionnaire. There 

can be other variables which could result in a relationship with the factor scores. 

Unfortunately, due to lack of time and due to the complexity of the data it was not 

possible to consider all the variables for our relationship. From various papers, we note 

that these socio-demographic variables are the most utilised variables for relationship 

analysis. 

As a concluding note, we realize that from these two techniques, we ended with the 

same results. In fact, only one factor score was different. The difference was in the 

amount of variables but not the presence of an other variable which is substituting one 

of the others. 
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7 CONCLUSIONS AND RECOMMENDATIONS 

7 .1 Conclusions 

In this dissertation, we have put into use statistical methods to solve problems arising in 

tourism data. In particular, it tackles problems of analysing Likert scale questions. The 

application concerns real tourism data collected by the Malta Tourism Authority 

(MTA). The objective was to apply data reduction techniques to evaluate these types of 

ratings, thus rendering it valid for future studies. Also, a relationship of the factor scores 

with the respondents' profile was studied. 

Now we will outline the problems encountered during the whole process and discuss the 

reasons why and how they were tackled if possible. 

Starting with the theoretical aspect, one of the main problems was that most theoretical 

results assume normality conditions. However, in practice it is more likely to deal with 

non-normal populations. Hence, the concept of non-normal factor analysis had to be 

introduced since our scale was not normally distributed. 

On the practical side, I decided to use yearly data composed of four seasons but 

collected over a span of two years since this survey was launched in Summer 2003. The 

question considered for this analysis was the one in which the tourist was asked to rate a 

number of physical aspects and services provided by the tourism industry. One of the 

problems encountered in the use of these variables was the fact that the MTA analyse 

this survey on quarterly basis. Therefore, the idea of analysing yearly data required a lot 
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of recoding since for each quarter a different person used to input the data. This fact 

resulted in the problem that for each quarter there was a different codebook. Hence, 

considerable work had to be taken to ensure that the data of these four quarters was 

appropriately linked. This difficulty was particularly present in the recoding of the 

socio-demographic variables that were later used to obtain our relationship with the 

factor scores. 

Another difficulty was the decision of which variables and respondents to consider for 

the analysis. This was so since in our data we had an amount of variables that had a 

large amount of missing values. By missing values, we understand that either the tourist 

did not respond or they did not use or have any opinion regarding that variable. After 

deciding on which variables to consider for our analysis, we considered each 

respondents response and decided that those respondents that had more than four 

missing values were removed. 

The final stage of factor analysis and parceling was factor scores. Here we met with 

three possibilities. We had factor scores that when extracted were normally distributed. 

We also had factor scores that when transformed with some sort of transformation 

satisfied the normality conditions and lastly we had those factor scores that remained 

non-normal throughout. For the first two types, we continued our process but for the 

third type, further study was required. 

The last part of the application focused on the use of general univariate linear models to 

obtain a relationship of these factor scores with the profile, namely the socio­

demographic variables. We concluded that some factor scores were in fact linearly 

related to these variables. However, other factor scores lacked this linear relationship 

since there may have been other variables that could have been considered for our 

relationship. 

7.2 Recommendations 

From this study, I have acquired knowledge of the procedures involved when applying 

statistical theory to real life. In fact, the combination of theory and practice applied 

together is now more appreciated and absorbed for future reference. Without doubt, my 
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work needs improvements and further readings would convince me to consider the 

following points 

1. the application of other estimation techniques; 

2. the possibilities of other linear relation methods; 

3. the study of further analysis of non-normal scores; 

4. the use of more variables to obtain a more knowledgeable model of the linear 

relationship. 

My dissertation is based on four quarters collected over two years and it would be a 

motivating idea if future studies of this data were also considered on a yearly span 

rather than quarterly. In addition, it can be proposed as a new approach for the Malta 

Tourism Authority to analyse this data. 
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Theorem: Spectral Decomposition Theorem. 

Any symmetric matrix A (p x p) can be written as 

Appendix A 

where A is a diagonal matrix of eigenvalues of A, and r is an orthogonal matrix 

whose columns are standardized eigenvectors. 

Proof: 

Let us assume that we can obtain the orthonormal vectors Y(l), ... , y(P) such that 

Ay (i) = Ai y (i) for some Ai • Then 

or in matrix form 

Now, pre- and post-multiplying by r and r1 respectively gives 

rrtArr1 =A=rAr1 

Therefore, the elements of A are the same as the eigenvalues of A with the same 

multiplicities. 
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Appendix A 

Hence, we need to find an orthonormal basis of eigenvectors. If \ -:t A, i are distinct 

eigenvalues with eigenvectors x + y, respectively, then 

Therefore, for a symmetric matrix, eigenvectors corresponding to distinct eigenvalues 

are orthogonal to one another. 

Assume that there exist k distinct eigenvalues of A with H1, ••• , Hk corresponding 

k 

eigenvectors of dimensions r1, ••• , rk , hence, let r = L ri . 
j=l 

Given that separate eigenspaces are orthogonal, there exists an orthonormal set of 

vectors e1, ••• , er such that the vectors 

j-1 j 

I~ +i, ... ,I~ 
i=J i=l 

form a basis of Hi. But ri is less than or equal to the multiplicity of the corresponding 

eigenvalues. Thus, restructuring, if necessary, the eigenvalues A,i, we may assume that 

Now, consider when r = p, then substitute y(i) by ei and the proof is obtained. 

Consider the case when r < p. 

In this case, we obtain a contradiction and so this cannot be possible. Assuming that all 

the eigenvalues of A are strictly positive and setting 

r 

B =A- LAieie: 
i=l 

r p 

=> trB = trA- LA,i ( e:ei) = L A,i > 0 
i=l i=r+l 
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Appendix A 

since r < p. Therefore B has at least one non-zero eigenvalue 8 . Let x =F 0 be the 

corresponding eigenvector, then for 1 :=::; j :=::; r 

so that x is orthogonal to ej for j = 1, ... ,r. 

implying that x is also an eigenvector of A. Consequently, 8 = \ for some i and x is a 

linear combination of a number of the ei . This, contradicts the orthogonality between x 

D 
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AppendixB 

APPENDIXB 

The following are the questions from MTA's traveller survey that have been considered 

in my thesis. The first two questions were used to obtain the tourist profile. The emphasis 

of my thesis was on the last question (question 12) which is measured on a Likert scale. 

1. Where do you live? 

Region I Province I State:--------------------

Country:--------------------------
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2. Where are you in each of the following groups? 

Gender 

l\1ale o 
Female o 

Marital Status 

Single 

l\1arried I Living 

together 

Divorced I Separated 

Widowed 

Occupation 

Director 

l\1anager 

Office I Retail worker 

Professional 

Skilled 

worker !Tradesman 

l\1anual Worker 

Self-employed 

Student 

Housewife 

Unemployed 

Retired 

0 

0 

0 

0 

Full time 

0 

0 

0 

0 

0 

0 

0 

0 

D 

0 

0 

What is your net income per month'? 

Amount 
~~~~~~~~~ 

Currency 
~~~~~~~~~ 

Part time 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Appendix B 
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Armendix B 

12. How would you rate the following aspects of your trip in Malta in terms of 

physical environment and service provided by employees? 

l=Very Good 

2= Good 

3= Not So Good 

4= Poor 

5= Very Poor 

NIA= Not Applicable 

Physical Aspect Service Provided 

Very good Very poor Very good Very poor 

1 2 3 4 5 NIA 1 2 3 4 5 NIA 

Malta International 

Airport 
0 0 0 0 0 0 0 D 0 D 0 0 

Gozo heliport 0 0 0 0 0 0 0 D 0 0 0 0 
Gozo ferry points 0 0 0 0 0 0 D D 0 0 0 0 
Accommodation 0 0 0 0 D 0 0 D 0 0 0 0 
Restaurants 0 0 0 0 0 0 0 D 0 0 0 D 
Entertainment 0 D 0 0 0 0 0 D 0 0 0 0 
Car hire 0 0 0 0 D 0 0 D 0 0 0 0 
Taxi service 0 0 0 0 0 0 0 D 0 0 0 0 
Public Transport 0 0 0 0 0 0 0 0 0 0 0 0 
Retail outlets 0 0 0 0 0 0 0 0 0 D 0 0 
Sports facilities 0 0 0 0 0 0 0 0 0 0 0 0 
Beaches 0 0 0 0 0 0 0 D 0 0 0 0 

Attractions 

Guided Tours 0 0 0 0 0 0 0 0 0 0 0 0 
Historical Sites 0 0 0 0 0 0 0 D 0 0 0 0 
Museums 0 0 0 0 0 0 0 D 0 0 0 0 
Cathedrals I 

Churches 
0 D 0 0 0 0 0 0 0 0 0 D 

Theatre I 

Performing arts 
0 0 0 0 0 0 D 0 0 0 0 0 
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Appendix B 

Infrastructure 

Road D D D D D D D D D D D D 

Road signs D D D D D D D D D D D D 

Traffic D D D D D D D D D D D D 

Parking D D D D D D D D D D D D 

Public 

Conveniences 
D D D D D D D D D D D D 

Level of cleanliness D D D D D D D D D D D D 

Air Quality D D D D D D D D D D D D 

Sea Quality D D D D D D D D D D D D 
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