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Abstract

Kim Talbot, B.Sc. (Hons.)
Department of Statistics & Operations Research
May 2010
University of Malta

This dissertation examines the probability that a subscriber churns from the current
tariff he is subcribed to. These probabilities differ from one churn model to another
and the optimal churn probabilities will be found by a global optimization algorithm
and a standard optimization algorithm. When the optimal probabilities are obtained,
a prediction of five or eight weeks is calculated, depending on the churn model. These
predictions will then show which of the churn models implemented is the most accurate.
In fact, the shifted-beta geometric (sBG) model is the most accurate and moreover, the
global optimization algorithm performs better than the standard optimization algo-

rithm. Modelling is done by use of Microsoft Excel and Matlab.
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Chapter 1

Introduction

In recent years, the telecommunications industry has reached a level of saturation.
Even though the number of mobile service subscriptions has been increasing, the rate
of this increment is not as fast as it used to be. Companies investing in this sector
are now faced with the problem of churning due to the increase in competition. They
tend to forget to attend to the needs and expectations of their present subscribers, thus
increasing the risk of churn considerably. So nowadays, companies are trying to offer
the best tariffs to retain their current subscribers and offer new attracting tariffs to
acquire new ones.

To retain the current subscribers within a company, it would be useful to have an
idea when a subscriber is most likely to churn. Conventional statistical methods, such
as decision trees and neural networks, are very successful in predicting which customers
might churn. However, these methods could hardly predict when customers will churn,

or how long the customers will stay active [13].



1.1 Purpose of Dissertation

This dissertation examines the probability that a subscriber churns from the current
tariff he is subcribed to. These probabilities differ from one churn model to another
and the optimal churn probabilities will be found by a global optimization algorithm,
namely the simulated annealing algorithm. Its background theory and performance
are examined to demonstrate the benefits when compared with standard optimization
algorithms. When the optimal probabilities are obtained, a prediction of five or eight
weeks, depending on the churn model, is calculated. These predictions will then show
which of the churn models implemented is the most accurate. Modelling is done by use

of Microsoft Excel and Matlab.

1.2 Structure of Dissertation

Chapter 2 gives a brief overview of research in optimization, simulated annealing and
churn models. Chapter 3 gives a deeper mathematical explanation of the global op-
timization algorithm, Simulated Annealing, showing how this algorithm converges to
the global minimum/maximum, and gives necessary and sufficient conditions for con-
vergence. Different churn models used in various areas are discussed in Chapter 4. In
particular, the Cox model, variations of this model and the Shifted-Beta Geometric
model. The data for this dissertation is provided by Vodafone (Malta) Ltd., and con-
sists of the number of pre-paid subscribers in two different tariffs, the It’s Good to Talk
(IGTT) tariff and the Friends tariff. Several churn models will be applied to this data
to optimize the model parameters. The resultant optimal model parameters will then
be used for predictions, and a comparison of the actual data with the predictions will

be made to test the accuracy of each model, as discussed in Chapter 5.



Chapter 2

Review of the Literature

2.1 Global Optimization Algorithms

In real-life problems, functions of many variables have a large number of local minima
and/or maxima. By using local optimization algorithms, it is relatively easy to find
an arbitrary local optimum. A local optimum is a solution which is optimal within a
neighbouring set of solutions. Finding the global maximum/minimum of a function is
more complex. A global optimum is the optimal solution among all possible solutions.

The objective of global optimization is to find the globally best solution of possibly
nonlinear models, in the presence of multiple local optima. Nonlinear models are present
in many applications, such as in advanced engineering design, biotechnology, data anal-
ysis, environmental management, financial planning, process control, risk management,
scientific modelling, and others. Their solution often requires a global search approach.

[20] describes six different heuristic strategies for convergence to global optima:

1. Globalized extensions of local search methods: The idea of these methods is to

apply a preliminary grid search or random search based global phase, followed by
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applying a local convex programming method.

. Evolution strategies: These methods adapt a search procedure based on a popu-
lation of candidate solution points. Iterations involve a competitive selection that
drops the poorer solutions. The remaining pool of candidates are then recombined

with other solutions, for example, by swapping components with another.

. Simulated Annealing: These techniques are based upon the physical analogy of
cooling crystal structures that spontaneously attempt to arrive at some stable

(global) equilibrium.

. Tabu search: The idea of this search is to forbid search moves to points already
visited in the search space, at least for the upcoming few steps. That is, one
can temporarily accept new inferior solutions, in order to avoid paths already
investigated. This approach can lead to exploring new regions of the feasible
set, with the goal of finding a solution by globalized search. Tabu search has

traditionally been applied to combinatorial optimization problems.

. Approximate convex global underestimation: This strategy attempts to estimate
the large scale, overall convexity characteristics of the objective function based

on directed sampling in the feasible set.

. Sequential improvement of local optima: These methods usually operate on adap-
tively constructed auxiliary functions, to assist the search for gradually better

optima.

In this dissertation Simulated Annealing is the strategy that will be implemented.



2.2 Tariff Optimization

In the telecommunications industry, each and every subscriber is associated to one
particular tariff at a time. The two simplest forms of tariffs are the prepaid tariff and
the postpaid/contract tariff. The difference between these two tariffs is that for the
prepaid tariff, subscribers buy a ‘top-up card’ before making use of the service, while
for contract subscribers, subscribers make use of the service before making use of the
service. Usually, at the end of each month a bill is sent to these subscribers to pay for
the service consumed. A subscriber can switch from one tariff to another, as long as
the subscriber is making use of only one tariff.

[22] presents a practical problem of determining an optimal tariff for a subscriber
of a mobile telecommunications company. It explains how a company tries to offer
the best possible combination of services in different contracts to satisfy as much as
possible the subscribers. Services are distributed into several contracts with a fixed
monthly payment. However, a customer is charged accordingly if he makes use of more

services than the proposed services in the contract.

2.3 Simulated Annealing

The simplest form of optimization problems usually deal with one single objective

function having a linear objective function and linear constraints. In general, this



form of optimization problem can be written as:

min /max Z = c¢1z1+cZs+ ... +FCNIN

s.t. a1 a19Zs + ... +aiyzy < by

+ o+

G21%1 a2 + ... + asnzTn < b

ap1T1 + apaeZo+ ...+ aunrty < by

By using adequate techniques or software, it is not difficult to find a direct solution
which maximizes or minimizes the objective function. Moreover, the solution obtained
guarantees a global optimum, that is, the highest or lowest value from the objective
function. However, in many real life cases, optimization problems have more than one
objective function. These problems are known as multiple-objective/multi-objective sim-
ulation optimization problems. A multiple-objective simulation optimization problem

is of the form:

min /max Z; = ¢11%1 +C122%2 + ... + NIy
min/max Zs = c¢1%1 +CeaZa+ ...+ CaNIN-
min /max Zg = 5121+ Cs2Z2 + ... + CsNIN

Unlike optimization problems with a single objective function, multi-objective opti-
mization problems do not converge to a unique solution. Apart from that, improvement
in the convergence made with respect to one objective function, may lead to a deviation

from one or more other objective functions. In this case an adjustment must be made



in order to obtain an acceptable global optimal solution. The criteria to define this
adjustment varies from one problem to another and so it cannot be determined as a
general case.

In many multi-objective simulation optimization problems, the objective function
is obtained from a simulation model with more than one output variable as an opti-
mization objective. A problem which arises with these optimization problems is that
the simulation model cannot be expressed as an exact and deterministic mathematical
expression, and therefore they cannot be solved using direct methods [3].

Simulated Annealing (SA) is a meta-heuristic technique that has proved to be effec-
tive as a solving solution for simulation optimization problems. This algorithm tries to
find an optimum solution that satisfies all objective functions simultaneously according
to a specific criteria which must be determined beforehand. The simulated annealing
method involves searching and evaluating a set of feasible solutions [3]. It tries to avoid
convergence to local optimum solutions in the early stages of the algorithm. In fact,
this is obtained by allowing solutions in a neighbourhood which have a lower optimal
value than the previously evaluated result. The probability of accepting such solutions
is calculated from a mathematical function called the acceptance function.

For example, if a lower quality solution X’ is compared with another solution X
from its neighbourhood, with a variation in the objective function C'—C, the simulated
annealing algorithm still explores the neighbourhood of the lower quality solution X’ if
the acceptance function is satisfied.

Assuming minimization, the acceptance criterion can be written as:
(c' -0

[ 1
exp {—T—J <R

where T is a control parameter and R is an independent, identically distributed random
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number in the range [0, 1].

In order for the algorithm to choose less frequently neighbourhoods of lower quality
solutions as the number of iterations increase, the parameter T is chosen such that it
decreases with time, so that the chance of converging to a local optimal solution in the
first few iterations is eliminated. The relation between the control parameter 7' and
time is called the cooling curve.

At every step of the algorithm, the evaluation of the objective functions can result in
either that all objectives improve, or that all objectives get worse, or that some improve
while others get worse. In the first case it is clear that the last solution obtained is
better than the previous one, and so this solution is retained for the next iteration.
Similarly, if all objectives get worse, the last solution must be evaluated by some other
acceptance function. The more complex case is when some objectives improve and
others get worse. In this case, a decision whether the solution is to be retained or not
must be made, or else, whether to evaluate the objectives using another acceptance
function.

A modified simulated annealing algorithm is proposed in [3] which is designed in
such a way that it guides the search in order to satisfy all objectives simultaneously.
This includes more than one cooling curves, in particular, one global cooling curve and
one particular cooling curve for each objective function. This method decides which of
the multiple objectives should become a reference objective by introducing a selection
function. This function indicates which objective will be treated as reference objective
whenever the third case of the evaluation step is obtained.

Another approach to global stochastic simulation optimization, combines stochastic
approximation with simulated annealing. Stochastic approximation directs a search of

the response surface efficiently, using a conservative number of simulation replications to



approximate the local gradient of a probabilistic loss function. Simulated annealing adds
a random component, a Monte Carlo randomness term, to the stochastic approximation
search, which is needed to avoid local optima [12].

Another variant ot the simulated annealing algorithm tor solving discrete stochastic
optimization problems, where the objective function is stochastic, can be evaluated
through Monte Carlo simulations. In particular, the Metropolis criterion depends on
whether the objective function values indicate statistically significant difference at each
iteration based on confidence intervals associated with these values. To the contrary
of the original simulated annealing algorithm, this method uses a constant control

parameter T, and the first m iterations converge almost surely to a global optimizer

[2).

2.4 Churn Modelling

2.4.1 Churn

Churn is the term used to represent the action that a subscriber abandons the service
from his current service provider. In many research papers, churn is divided into two
categories: involuntary churn and voluntary churn. Involuntary churn is when churn
is initiated by the company itself and it is the least common of the two. Involuntary
churn occurs when the subscriber is disconnected from the service. The grace period is
the term used to refer to the time when the subscriber is allowed to receive the service

even though the credit amount has expired. Failure to recharge credit within the grace

reason for involuntary churn is if the subscriber is found to be making some sort of

fraudulent usage. On the other hand, voluntary churn is when churn is initiated by the



subscriber himself and voluntary churn is considered to be more complex with much
more various reasons why a subscriber decides to churn. Some reasons for voluntary
churn are dissatisfaction from the current service provider (for example lack of service
tfrom customer care), changes 1 geographic locations (for example when migrating to
a different country it makes more sense to switch to a service provider in the other
country), and finally, switching to another competitor when competitor’s promotion
attracts the subscribers. More reasons may arise however the ones mentioned are the
most frequent reasons for churning.

In [24] churn is further divided into financial/non-financial churn, where financial
churn is defined as bad-debt subscribers who churn, while non-financial churn refers to

paying subscribers who churn.

2.4.2 Churn Rate

Churn rate is the number of subscribers who disconnect their use of a service, divided
by the average number of total subscribers within a particular company. The average
number of total subscribers is just an estimate since it is difficult to calculate the exact
total number of subscribers when considering a large company. Churn rate helps the
service providers gain knowledge of the growth or decline of the subscriber base and gives
a hint of the average length of participation in the service. In the telecommunications
industry, a level of saturation has been reached in practically all over the world. Even
though in the past years there was an increase in subscriptions, churn rates have been
increasing, mostly due to an increase in competition. Companies are now investing in
efficient churn models to help them predict churn and keep a stable, low churn rate as

much as possible.
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2.4.3 Churn Management

[8] divides the possible causes of churn into four different components namely:

1. Stalic component. is the behaviour of the subscribers within a particular company

and what type of tariff or contract a subscriber is subscribed to.

2. Dynamic component: is the contract made between a subscriber and the customer

care service provided by the company.

3. Seasonal component: more related to contract bound subscribers where the deac-

tivation date of a contract corresponds to the time at which a subscriber churns.

4. External component: referring to the influence from other competitors’ advertis-

ments which might attract subscribers.

Retaining subscribers is one of the most critical challenges in the maturing mobile
telecommunications service industry. Telecom operators stand to lose a great deal in
price premium, decreasing profit levels and a possible loss of referrals from continuing
service subscribers. Figuring how to deal with churn is turning out to be the key to the
survival of telecom organizations [15]. Companies are now interested in predicting those
subscribers who are most likely to churn, and if possible when will these subscribers
churn. This is important so that they plan strategies to either retain their subscribers,
since often they find out too late that a subscriber is going to churn, or else try to
acquire new subscribers. For postpaid subscriptions it is slightly more easy to predict
churn since usually the time at which a subscriber churns is equal to the deactivation
time of the contract. However, for prepaid subscriptions the time at which a subscriber
churns varies considerably. Despite the best efforts of these companies to prevent churn,

the company will lose some of its subscribers to the competition sooner or later and
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try to win them back by running reacquisition strategies since subscriber acquisition is

relatively more easy. Three fundamental strategic approaches discussed in [15] are:

1. Ignoring loss of subscribers and trying harder to acquire new subscribers as re-

placements
2. Trying to steal subscribers from competitors to make up for the losses

3. Building customer churn management capabilities

2.4.4 Traditional Churn Models

Since large companies have been investing in predicting churn, a number of models
have been discussed over the years. Statistical models typically used to predict churn
are based on logistic regression or classification trees (CART) [8] and survival analysis
models. Most of the models classify data according to predictive accuracy (being able
to identify correctly those individuals that will become churners during the evaluation
phase) [8]. An important difference between survival prediction models and other pre-
diction models is the fact that survival analysis models, model time-dependent data.
Thus logistic regression and classification trees may help to model which subscribers are
at a high risk to churn however they lack information about when will these subscribers
churn. Survival analysis models are hence considered to be more efficient models which
help estimate churn especially when the knowledge of when subscribers will churn is of
utmost importance. Apart from that, survival analysis is most commonly used when

dealing with censored data (discussed later).
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2.4.5 Life Time Value

Life Time Value (LTV) is mainly used when trying to model long-term customer sat-
isfaction. LTV is the present value of the future cash flows attributed to the customer
relationship. A definition of terms associated with LTV should be mentioned before

stating the formula used to calculate the LTV.

e Churn rate is the number of subscribers who disconnect their use of service

divided by the average number of total subscribers.

e Retention Rate is the complement of Churn rate and is given by

(1 — Churn Rate) = Retention Rate

e Profit Margin is the percentage of the net profit.

e Discount Rate is the cost of capital used to discount future revenue from a

subscriber.

e Period is the unit of time into which a subscriber relationship is divided for

analysis.

Consider a subscriber who generates a margin m; for each period ¢ with discount

rate i and probability of retention rate r [8]. The Life Time Value is given by:

A firm acquires ng subscribers at time 0 at an acquisition cost of ¢y per subscriber.

Over time, subscribers defect (churn) so that the firm is left with ng X r subscribers at

13



the end of period 2, and so on. So in general, the LTV for the k** cohort at time 0 is
given [8] by

my— kT NECr
LTV, =
1+zk§(l+ztk (144)F

In general, an LTV model is made up of three components:
1. Customer value over time - v (¢) for time ¢ > 0.

2. Customer length of service - is usually given by a survival function which gives
the probability that a subscriber will be active at time ¢, where a subscriber is

said to be active if this subscriber is currently making use of the service.
3. Discounting factor - D (t) which describes the profit made in some future time ¢.

Let f (t) be the subscribers instantaneous probability of churn at time ¢ such that
f (@) = —22, where S (t) is the survival function. Given the three components, v (t),

S (t) and D (t), the explicit formula for a subscriber’s LTV is given by,
LTV = / S (H)v () D (t) dt
0

So in other words, LTV is used to find the total profit gained while the customer is still

active.

2.4.6 Survival Analysis Models

As mentioned previously, survival analysis is convenient when dealing with censored
time-dependent data. In a survival analysis model,
to indicate the starting time at which the data will be observed. When the origin of

time and end of the origin of time is established, there is a possibility that an event

14



(churn), is not registered since it does not occur during the period of observation. This

is referred to as censoring. There can be three different types of censoring:

e Right censoring
e Left censoring

e Interval censoring

In real life situations, right censoring is the most common. This takes place when the
time that an event (churn) occurs, happens after the end time of the observation period.
Similarly, left censoring takes place when the time that an event occurs, happens before
the start time of the observation period. In interval censoring, the event occurs in an
interval during the observation period, however, the exact time that the event happens
cannot be determined. Clearly, an event that occurs during the period of observation
with the exact time known has no censoring. These types of censoring are illustrated

in Figure 2.1.

No censoring,
I Right censoring o

Left censoriggo
interval censoring
® {1
time
Start of observation End of observation
period period

Figure 2.1: Different types of censoring
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If T > 0 is the random variable denoting the time at which an event occurs, the
density function is given by f (¢) and the distribution function is given by F (t), then

the survival function S (t), is given by
S =P[T>f]=1-F() :.-/ £ (u) du
t

where S (t) is a monotone decreasing function from 1 to 0 with S (0) = 1. This repre-
sents the probability that an observed customer will survive up to time ¢.

The hazard function (or the instantaneous failure rate) A (¢), gives the rate at which
a customer fails to survive up to time ¢. For the hazard function, the interval of time
is taken to be smaller and smaller until the interval becomes infinitely small, At¢. The

hazard function is defined as

L Pit<T<t+ AT >t]  f@t) _ f(1)
AE) = fimg At “ToF® S

(Note: Derivation of the hazard function given in Chapter 4.)

The Cox model became the most used procedure for modelling the relationship of
covariates to a survival or other censored outcomes. Its form is flexible enough to allow
time-dependent covariates, however it has some restrictions. One of the restrictions of
using a Cox model with fixed time is its proportional hazards assumption, that is, that
the hazard ratio between two covariate values has to be constant over time. This is due

to the common baseline hazard function cancelling out in the ratio of the two hazards

[8].
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Chapter 3

Simulated Annealing

Optimization has been introduced in various areas such as, engineering, operations
research, computer science and communication. Combinatorial optimization is one of
the major subfields of optimization, which tries to find an optimal solution out of
a set of feasible solutions. In general, a combinatorial optimization problem can be
expressed as a pair (R, C'), where R is the finite - or possibly countably infinite - set
of configurations (configuration space) and C' is a cost function, such that C : R — R
assigns a real number to each configuration. The configurations and cost functions vary
according to the particular optimization problem one is trying to optimize. Assuming a
minimization problem, the aim is to find a configuration for which C takes a minimum
value. In other words, an optimal configuration, ig, must be found such that it satisfies
Copt = C (ig) = Izlé%l C (1)
where C,p; is the optimum minimum cost. When trying to solve an optimization prob-

lem, one can use either an optimization algorithm or an approximation algorithm. The
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difference between the two is that an optimization algorithm finds a globally optimal
solution, while an approximation algorithm finds an approximate solution. The simu-
lated annealing algorithm is a mixture of both types of algorithms, since it is able to

find approximate optimal solutions.

3.1 Introduction of the algorithm

Annealing of solids is widely used in physics and it is the process of heating solid
metal to a maximum temperature such that it reaches thermal equilibrium and cooling
it slowly so that its particles arrange themselves into a defined lattice (ordered set).
When the solid reaches thermal equilibrium, the probability that a temperature with
value T, is in a state (condition of an object in the system at a particular time) with

energy F, is given by the Boltzmann distribution

P[state = E] = Z—gj;)— exp (_ks%) (3.1)
where T is the temperature measured in Kelvin, Z (T') is a normalization factor (par-
tition function) depending on the temperature T and kg is the Boltzmann constant
such that kg = 1.380650524 x 10~2*J/ K. The factor exp (_EET) is referred to as the
Boltzmann factor.

The Boltzmann factor clearly shows that in the cooling phase, as the temperature
T decreases, the Boltzmann distribution approaches the states with lowest energy. In
particular, as T — 0, only the minimum energy states have a non-zero probability
of occurence. To simul
value of the temperature T', a Monte Carlo method was introduced which generates

sequences of states of the solid [27]. Suppose a small randomly generated perturbation
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(slight deviation) is applied to the current state of the solid. Then the difference in
energy between the current state and the perturbed state is AE. If AE < 0, then
the process is continued using this new perturbed state. Otherwise, if AF > 0, the

probability of accepting the perturbed state is

AFE
exp <_Ef>

This acceptance rule for the new perturbed state is referred to as the Metropolis
criterion [27]. After reaching thermal equilibrium, the probability distribution of the
perturbed states approaches the Boltzmann distribution given by Equation 3.1. This
Monte Carlo method is known as the Metropolis algorithm. When using the Metropolis
algorithm to generate sequences of configurations of a combinatorial problem, the cost
function C and the control parameter ¢ are used instead of energy and temperature re-
spectively. Given a configuration ¢, another configuration j can be obtained by choosing
at random an element from the neighbourhood of 7 [27]. The configuration j corresponds
to the slightly perturbed state. Let the difference between the cost functions of con-
figuration ¢ and configuration j be given by AC;; such that AC;; = C (j) — C (¢). If
AC;; <0, then the probability for configuration j to be the next configuration in the
sequence is 1. Otherwise, if ACj; > 0, the probability for configuration j to be the next

configuration in the sequence is given by the Metropolis criterion, which in this case is,

exp (- ACy ) (3.2)

c
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Thus, the Boltzmann distribution is given by

P [configuration = i] = Ql(c) exp (— Cc(7)> (3.3)

where @ (¢) is a normalization factor depending on the control parameter c.

The algorithm lowers the value of the control parameter ¢ until thermal equilibrium
is reached and the algorithm is then terminated for some small value of ¢, for which
it cannot be lowered further. The acceptance criterion is evaluated by comparing a

random number from a uniform distribution on [0, 1) to Equation 3.2.

A simplified pseudo-code for the algorithm is given below

repeat
perturb (configuration 4 — configuration j), compute AC;;;
if AC;; <0 then accept else
if exp (—é—?—’i) > random [0,1) then accept;
if accept then update (configuration j);

until equilibrium is approached sufficiently closely;

Simulated Annealing works by means of searching and evaluating a set of feasible
solutions, reducing the possibility of finding a solution that might turn out to be a local
optimum. This means it avoids converging to a local optimum solution at early stages

of the search [3].
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3.2 Mathematical model of the algorithm

Simulated Annealing is an algorithm that continuously attempts to transform the cur-

rent configuration into one of its neighbours. This is best described by means of a

Markov chain [27].

Definition 1. A Markov chain is a collection of random variables {X;},t =0,1,2,...
having the property that given present state, the future state is conditionally independent

of the past state, such that
PX;=y|Xo=20,X1=171,..., X1 = 741] = P[X, = Y| X1 = 241

’I,fP [X() = xo,Xl =T1y.-- 7Xt—1 = zt_l] 74 0.

Let a; (k) denote the probability outcome ¢ at the k-trial. Then a; (k) is given by
a'z(k) :Zal(k_l)]gli(k—lak)ak: 1a2a7
!

where the sum is taken over all possible outcomes. Let X (k) denote the outcome of

the k-th trial, such that
P (k—1,k)=P[X (k) =jX(k—1)=1]
and
a; (k) = P[X (k) = 1] (3-4)

The changes of state of the system are called transitions, and the probabilities as-
sociated with various state-changes are called transition probabilities. In the case of

Simulated Annealing, the Markov chain is described by a set of conditional probabili-
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ties P;; (k — 1, k) for each pair of outcomes (z,7). Then P;; (k — 1, k), which represents
the transition probability, is the probability that the k** transition is a transition from
configuration ¢ to configuration j, and P (k — 1,k) is an |R| X |R| matrix called the
transition matrix. The transition probabilites depend on the value of the control pa-
rameter ¢, such that, if ¢ is constant, the corresponding Markov chain is homogeneous

and its transition matrix P = P (c) is defined as,
P, (0) = Gij (c) Aij () when j # i (35)

1-— Zy:[“#z Gi(c) Ay (c) whenj=1

Gij (c) and A;j (c) are two conditional probabilities, where G;; (c), is the generation
probability of generating configuration j from configuration i, and A;; (c), is the ac-
ceptance probability of accepting configuration j, once it has been generated from i.
The corresponding matrices G (c¢) and A (c¢) are called the generation and acceptance

matrix respectively. Then by Equation 3.5, P (¢) is a stochastic matrix such that, V i,

> Bij () =1 [27].

Definition 2. A Stochastic matriz is a square matriz with non-negative entries

whose rows sum to 1.

Since the algorithm lowers the value of the control parameter ¢, two formulations
of the algorithm arise. These are the homogeneous algorithm and the inhomogeneous
algorithm. The homogeneous algorithm is described by a sequence of homogeneous
Markov chains where each Markov chain is generated at a fixed value of ¢ and ¢ is
decreased in between subsequent Markov chains. The inhomogeneous algorithm is
described by a single inhomogeneous Markov chain where the value of ¢ is decreased in

between subsequent transitions [27].
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Definition 3. A Homogeneous Markov chain is a process where
PXpyn=ylXs=z]=PXp=y|Xo=2z] Vi,h>0

and otherwise called Inhomogeneous Markov chain.

The aim of the Simulated Annealing algorithm is to obtain a global minimum. So, after

a large number of transitions K, the following probability must be satisfied,
PIX(K) € Roy] =1

where R, is the set of globally minimal configurations and X (K) is the configuration

obtained after k transitions.

3.3 Asymptotic Convergence Results

3.3.1 The Homogeneous Algorithm

The convergence to global optima for the homogeneous algorithm is based on certain
conditions about the stationary distribution. The stationary distribution is the limiting
distribution in a Markov chain, such that it gives the probability distribution of the
configurations after an infinite number of transitions. Suppose that the stationary
distribution is given by a vector q, where the i** component, g;, is given by

g = lim P[X (k) =X (0) =] (36)

k—o00

for an arbitrary j. Suppose that X (k) = i and X (0) = j are independent. Then by
independence, P [X (k) =4|X (0) = j] = P[X (k) =4]. Furthermore, by Equation 3.4
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and Equation 3.6, ¢; is given by

¢ = lim P[X (k) =1] = lim a(0)' P* (3.7)

k—o0 k—oo

where a (0) is the initial probability distribution, such that it satisfies
VieR:a(0)>0, Zai(O)zl

The algorithm follows such that as ¢ decreases, q(c) converges to a uniform dis-
tribution on the set of globally minimal configurations. So conditions on the matrices

A (c) and G (c) are derived such that existence of q (c) is guaranteed. Suppose that

limq(c)=n (3.8)

c—0

where 7 is an |R|-vector defined by

[Ropt| " if 5 € Rope
0 if i ¢ Ropt

By Equation 3.7 and Equation 3.8,

lim (lim P[X (k) € Ro,,t]) =1

c—0 \k—oo

3.3.1.1 Existence of the Stationary Distribution

Definition 4. A Markov chain is irreducible if and only if for all pairs of configu-
rations (i,7), there is a positive probability of reaching j from i in a finite number of

transitions, such thatVi,j 3n:1<n<ocoA(P"),. > 0.
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Definition 5. A Markov chain is aperiodic if and only if for all configurationsi € R,

the greatest common divisor of all integers n > 1, such that (P™),, > 0, is equal to 1.

The existence of the stationary distribution is assured by the following theorem

which gives the necessary conditions on the vector q.

Theorem 1. The stationary distribution q of a finite homogeneous Markov chain exists
if the Markov chain s irreducible and aperiodic. Furthermore, the vector q is uniquely

determined by,

Vi:ig>0, ) g=1 (3.10)
J
where the matrix P is defined by Equation 3.5.

Assuming that V4, j,¢ > 0 : A;; (¢) > 0, it is sufficient for irreducibility to assume
that the Markov chain induced by G (c) is irreducible itself, so that

Vi, jeRIp>13lg,l,...., e R: (lo=iNl,=7]):

Gletpps (€) > 0,k=0,1,...,p—1 (3.12)

Moreover, an irreducible Markov chain is aperiodic if
Ve>03i. € R: P (c) >0 (3.13)
Thus for aperiodicity, it is sufficient to assume that

Ve>0 Hic,jc < R:Aicjc (C) < lAGicjc >0 (314)
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By Equation 3.14 and by the fact that V 7,5 : A;; <1, then

IR R

> Aiu(©Giale) = D Aw(e)Gia(0) + A, () Gag. (€)
I=1,l74, =145
IR

< Y Giu(©+Gi (0
1=1,1#ic,je
[R|

= Y Gl

I=1,l1,
IR|

< Z G (c)

= 1

Thus aperiodicity holds, since

[R|
P, =1— Y Au(c)Giu(c) >0
I=1,li,
and Equation 3.13 is satisfied.
So, the homogeneous Markov chain with conditional probabilities that satisfy Equa-
tion 3.5, has a stationary distribution if the acceptance matrix A (¢) and generation

matrix G (¢) satisfy Equation 3.12 and Equation 3.14, given that the acceptance prob-

Ay (¢) = min {1, exp <— AS’”) } (3.15)

abilities are
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3.3.1.2 Convergence of the Stationary Distribution

Suppose that for an arbitrary configuration ¢ € R, the corresponding component of the

stationary distribution is
PR ICION
“O = e n.9

where 9 (v, ¢) is a two-argument function satisfying two conditions. In particular,

VieR,c>0:9(C3HE),c)>0

and the global balance condition such that V j € R :

IR| IR
> (C@©),0) Gy () Ay () = ¢ ¢) Y Gii(e) A (c) (3.16)
1=1,i#] i=1,1#£7

In fact, g (c) is the unique stationary distribution because the g¢; (¢)’s satisfy the neces-

sary conditions. Convergence of q (c) is guaranteed by the following conditions

0 ify>0
lime(y,c)={ 1 ify=0
oo ify<0
77[)(’)/170)
AL — vy, C
’Qb(’)/g,C) 77/)(’71 Y2 )

Ve>0:¢(0,c)=1

Equation 3.12, Equation 3.14 and Equation 3.16, give the conditions required for
the acceptance matrix A (c¢) and generation matrix G (c) such that an asymptotic con-

vergence to a global minimum is achieved. The conditions mentioned for convergence
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of the stationary distribution are sufficient to define the stationary distribution of the
Markov chain, however they are not necessary as the conditions given by Equation 3.10
and Equation 3.11. Moreover, the explicit form for the stationary distribution is not
straightforward. So more explicit conditions for the g; (¢)’s at the cost of a more restric-
tive set of conditions on the matrices A (c) and G (c) should be considered by making a
different choice for the two-argument function 9 (v, ¢). In particular, ¥ (C () — Copt, €)
is taken as A;y; (c), for an arbitrary configuration 4y € Ropt, and let G (¢) be independent

of c.

Theorem 2. If the two-argument function v (C (i) — Copt, ¢) is taken as Ay () for an
arbitrary configuration ig € R and if G (c) is not depending on ¢, then the stationary

distribution q(c) is given by

ViER:qi(c):% (3.17)

provided the matrices A (c) and G satisfy the following conditions

Y Z/] eER: Gji = Gij (318)

Vi jk€R:C@)<C()<C k)= Aw(c) = Ai; () Az (¢)
VijeR:C()>C() = Ay (c) =1 (3.19)

Vi,7]ER,c>0:C>i)<C(j)=0< A;;(c) <1
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Proof

1 1

> 4 (@) Piic) = > 7 dios (€) Giidji (c) + >  Aiod (¢) G (c)
i §#4,0(G)<C() #i.0()>C)
+ gi(c) P (o)
1 1
= > ~ Aios (€) Gji + > ~ Aioi (¢) Gij +4i (c) Fii (c)
§#4,C()<CG) §#4,C()>C(6)
= ¢;(c) Z Gy + Z g; (¢) Gij + 4i (c) Py (c)
J#1,C(J)<SCHE) #1,C(5)>C(4)

where N =3, » Aiy; (c) and

G(OPi(e) = al)|[1- D Guydil9— Y.  Gydyl(o

J#LC(F)ZC(E) J#1,C(5)>C(3)
1
= g@—al) >, Gij— >, 7 Aioi (¢) Gig Ay (c)
§#4,CH)<C () §#4,C()>C(i)
= a(@©-al Y, Gy— > 4Gy
§#4,CHI<CO0) #4,CG)>C()

Combining these two equations gives
Vie R:qu(c)Pji(c) = g; (c)
J

Thus Equation 3.17 satisfies the necessary conditions O

Equation 3.8 is satisfied if the following condition holds
C—>
since this condition and Equation 3.19 ensure convergence of the stationary distribution.
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So for the homogeneous algorithm, under certain conditions on the matrices A (c)
and G (c) given by Theorem 2, the Simulated Annealing algorithm converges to a
global minimum with probability 1, if for each value ¢; of the control parameter, where
1=0,1,2,...,the corresponding Markov chain is of infinite length and the ¢; eventually

converge to 0 for [ — oo [27]. Hence
Rope| 1 i1 € Rope

lim (1im P[X (k) = i]) = limg; (c) = (3.20)
e=0 \k-s00 e=0 0 i 6 ¢ Rope

3.3.2 The Inhomogeneous Algorithm

The inhomogeneous algorithm occurs when the limits in the left-hand side of Equa-
tion 3.20 are taken along a path in the (c, k) plane, such that the value of the control
parameter is changed after each transition and therefore for the inhomogeneous algo-
rithm the control parameter is given by ¢ = ¢;. The inhomogeneous Markov chain with

transition matrix P (k — 1,k), for £ =0,1,2,..., is given by

Pyh—1h) =] ) A5 e (3:21)
1— Zz:u# G (ck) Au(ck) J=1i
Assume that the sequence {c;}, for £ =0,1,2,..., satisfies the conditions
klirglo =0 (3.22)
Ck > Cpy1, Tor k=0,1,..., (3.23)

From Equation 3.23 it is clear that the sequence {c;} is a decreasing sequence and

it is possible for ¢, to be constant for some number of transitions, corresponding to a
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homogeneous Markov chain of finite length.

3.3.2.1 Sufficient Conditions for Convergence

Definition 6. An inhomogeneous Markov chain is weakly ergodic if
Vm>1,4,751l€R
lim (Py (m,k) — Pj(m,k)) =0

k—o00

where the transition matriz P (m, k) is defined by
Py (m, k) = P[X (k) = [[X (m) = 1]

Weak ergodicity shows that as k& — oo the dependence of X (k) with respect to
X {0) vanishes. Theorem 3 gives conditions for weak ergodicity of the inhomogeneous

Markov chain.

Theorem 3. An inhomogeneous Markov chain is weakly ergodic if and only if there is

a strictly increasing sequence of positive numbers {k;}, where [ =0,1,2,..., such that

> (1= 71 (P (ky, ki) = o0 (3.24)

=0

where 11 (P) is the coefficient of ergodicity of an n x n-matriz P and is defined by
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vector m which satisfies
[R]

Zmzl Vi:m >0

i=1

such that YVm >1,14,5 € R:

klim P (m, k) =m; (3.25)
Strong ergodicity implies convergence in distribution of the X (k), such that if Equa-
tion 3.25 holds, then
lim P[X (k) =j] =mn;

k—oc0

Theorem 4 gives conditions for strong ergodicity of the inhomogeneous Markov chain.

Theorem 4. An inhomogeneous Markov chain is strongly ergodic if it is weakly ergodic
and if V k there ezists a vector w (k) such that @ (k) is an eigenvector with eigenvalue

10fP(k—1,k), "% m (k) =1 and

J =1

o R

DD Imi (k) —mi(k+1)| < o0 (3.26)

k=0 i=1
Moreover, if m = limy_.o, 7 (k), then m satisfies Equation 3.25.

Under the assumptions of existence of the stationary distribution for the homoge-
neous algorithm on the matrices A (c) and G (c), there exists an eigenvector q(c) of
P (k—1,k), for each £ > 0. Under the assumptions of convergence of the stationary
distribution for the homogeneous algorithm, limg_.., ¢y = 0. Strong ergodicity with

7 (k) = q(cx) can be proved if the Markov chain is weakly ergodic and if q{c), for
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k=20,1,2,..., satisfies Equation 3.26. Then

lim P [X (k) € Rop] = 1

k—o0

By inserting q (cx) in the original formulation of the Simulated Annealing algorithm,

the i** component of the stationary distribution is given by

exp (_ C(z')c—kcogt>

C(H)—Co
SR exp (_ - pt)

qi (Ck) =

It can be shown that under certain conditions on the acceptance matrix, the rate
of convergence of the sequence {cx} cannot be faster than @, for some constant T,
giving a bound on the value of ¢ for each k [27]. In fact, a sufficient condition on the
sequence {cx} where k =0,1,2,..., using Theorem 3, can be derived such that if the

bound on ¢ is given by

|R| AC 4z

ko >2VE>ky: x>
log k

where ACpe, = max{C (i) ]i € R} — min{C (i) |¢ € R}. Then, Equation 3.24 is sat-
isfied for some sequence {c} where £k = 0,1,2,..., and hence weak ergodicity is ob-
tained. Other sharper bounds were also proved to satisfy weak ergodicity. So the
sufficient condition ensures that the algorithm converges to the set of globally minimal
configurations.

If ¢ (¢) is given by c(t) = @, for some constant I', then it can be shown that the

expected time to leave a cup V (set of configurations that can be reached from a local

minimum in a finite number of transitions) is finite if I' > d(V), where d(V) is the
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depth of the cup V (see Definition 9). For I < d(V), there is a positive probability that
the cup will never be left. In fact, the condition I' > D, where D is the largest depth

of any cup, is both necessary and sufficient for convergence to global minima [27].

3.3.2.2 Necessary and Sufficient Conditions for Convergence

Definition 8. A configuration j is called reachable at height L from a configuration

i, if there is a sequence of configurations i =ly,ly,...,l, = 7, such that
Gy, (€) >0 fork=0,1,...,p—1

and

C(y) <L fork=0,1,...,p

Definition 9. A cup is a subset V of the set of configurations such that for some

number E

VieV:V=/{j€R|jis reachable from i at height E}

Foracup V,let Y =min{C (i) i € V}and V =min{C (§) |7 ¢ VA Fi €V :G; > 0}.
The depth d(V) is given by d(V) = V — V. So, a local minimum can be seen as a
configuration ¢ such that no configuration j with C (j) < C (¢) is reachable at height
C (i) from . The depth of a local minimum ¢ is taken to be the smallest number d (7)
such that there is a configuration j with C (j) < C (i) reachable at height C (i) 4 d (z)

from 4. If 7 is a global minimum, then d (7) = 400 [27].

Theorem 5. Suppose that the one-step transition matriz is given by Equation 3.21,
where A (cx) is given by Equation 3.15, and that the generation matriz is independent

of ¢, such that the Markov chain associated with G given by Inequality 3.12 is irreducible,
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and for any real number L and any two configurations i and j, j is reachable at height
L from i. Assume furthermore, that Equation 3.22 and FEquation 8.28 hold. If D is
the mazimum of depths d (i) of all configurations i that are local but not global minima,
then

lim P[X (k) € Rope] =1

k—o0
if and only if

3 exp (-%) — oo (3.27)

k=1
If ¢, is of the form ¢, = @, then Equation 3.27 holds if and only if I' > D. The
constant D is given by
D = max <min Dﬁ)
JERopt \1€Ropt

Under certain conditions related to the matrix II, whose entries are defined by
VZ,] eER: szzkhm Hy(k-l,k))

a necessary and sufficient condition for the annealing algorithm to converge with prob-

ability 1 to a global minimum is given by

r
dko>21Vk>ky:cp > —
log k
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Chapter 4

Churn Modelling

Churn is the term used to represent the action that a subscriber abandons the service
from his current service provider. Churn modelling is of great interest for companies
who offer telecommunication services, since they can model which subscribers are at
high risk to churn and when will these subscribers churn. Then, they can plan strategies
to either retain their subscribers or try to acquire new subscribers. There are various
techniques which can be used to model churn, however the most efficient technique
and the one that can give an idea of when a subscriber might churn, is to represent
subscribers with a survival model.

Survival analysis is concerned with studying the time between entry and a subse-
quent churn event [8]. If 7" > 0 is the random variable denoting the time at which
an event occurs, the density function is given by f (¢) and the distribution function is

given by F'(¢), such that
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Then the survival function S (t), is given by

S(t)=P[T>t]=1—F(t)=/oof(u)du

where S (t) is a monotone decreasing function from 1 to 0 such that S (0) = 1 and
S (00) = 0. This represents the probability that an observed subscriber will survive up
to time £.

Since survival analysis is mostly used for censored data, the following list gives
the different types of censoring in terms of the density function, f (¢), the distribution

function, F'(t), and the survival function S (t).
e Uncensored: P[T =T;| = f(T;)
e Right censoring: P[T' > T;]=1-F(T;) =S (T3)
e Left censoring: P[T < T3] = F(T;) =1 - S (T;)
o Interval censoring: P[T;; < T < T;,| =S5 (Ti;) — S (T;,)

where T is the start of the observation period, T; is the time at which churn occurs,
and T;; < T < T;, is an interval between the start and end of the observation period.
Reference to Figure 2.1 helps to understand this better.

The hazard function (or the instantaneous failure rate) A (t), gives the rate at which
a subscriber fails to survive up to time t. For the hazard function, the interval of time

is taken to be smaller and smaller until the interval becomes infinitely small, At. The
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hazard function is defined as

Pt <T <t+At|T >t

A = AEI-EO At

_ oy PEEST<t+AINT >4
At=0 AtP [T > t]

= lim AF L
At—0 At (1— F (t))

_dF 1

- At (1-F()

_f
1—-F(t)
[ )

(%))

()

There are various churn models that are used in real life applications. The following
sections will give a short description of some of these models, with particular interest

on the shifted-beta geometric model.

4.1 Cox Model

In survival models, the hazard function for a given individual describes the instanta-
neous risk of experiencing an event of interest within an infinitesimal interval of time,
given that the individual has not yet experienced that event [8]. In this case, the hazard
function describes the risk that a subscriber will churn in the near future, given that the
subscriber is still active. The Cox model is frequently used to model the relationship
of covariates (predictors) to a survival or other censored outcome [8].

th

Let X;; denote the j** covariate of the i* subject, fori =1,...,nand j =1,...,p.

Then X is an n X p matrix whose row X; denotes the covariate vector of subject i. The
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Cox hazard function for fixed-time covariates X;, is given by
Ai (t) = Ao (t) exp (X;5)

where \g (t) is the baseline hazard and g is a p-vector of regression coefficients. Ag ()
is defined as a nonnegative function over time for that individual with zero on all
covariates.

The survival function of the Cox model is given by

S (t) = exp {— exp (X!6) /O "o () du}

where the integral part of the survival function is called the baseline cumulative hazard
function.

The Cox model is referred to as the proportional hazard model. This proportional
hazard assumption is in fact one of the restrictions in using the Cox model with time-
fixed covariates. This is because the hazard ratio between two covariate values is

constant over time,
Ai(t) Do (t)exp (Xif) _ exp (Xif)
N0 de@ep (X8) e (X)8)

since the baseline hazard function cancels out in the ratio of the two hazards. This

means that the covariates must have the same effect on the hazard at any point in
time.

The estimation of the parameter § is based on the partial likelihood function and
this is done without estimating the baseline hazard function since the baseline hazard is
typically considered to be a nuisance parameter which is not of immediate interest but

which must be accounted for in the analysis of those parameters which are of interest.
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The likelihood formula can be written as a product of several likelihoods, one for each
event time. The likelihood at time ¢; denotes the likelihood of having an event at time

t;, given survival up to time ¢; [1]. The partial likelihood is given by

L(g) = H exp (X]0) . (4.1)
= [ZjER(ti) exp (X6 )}

where D is the total number of events, d; is the number of events at time %, and R (k)
is the set of individuals at risk, called the risk set, at time k.

When building a Cox model, it is important to identify the variables that are most
associated with the churn event. For a given subscriber ¢, a hazard function indicates
the probability A; (t) of cancellation at a given time ¢ in the future. A hazard curve can
be converted to a survival curve or to a survival function which plots the probability
S; (t) of non-cancellation at any time ¢, given that customer was active at time ¢ — 1
such that

Si(t)=8;(t—1) x[1— X (t)]

with S; (0) = 1 [8].

4.2 Extended Cox Model

A problem which arises in the Cox model is that it is not suitable as a predictive model
for prepaid customers who churn. This is because the covariates are fixed over time. So,
a variation of the Cox model is the Extended Cox model which includes the ability to
accommodate censored data, time-varying covariates and multiple events. In this case,

the proportionality assumption does not have to hold since the covariates are dependent
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on time t. The Extended Cox model is given by

P1 p2
N(t) =X exp | Y XiF+Y Xi6(t)
i=1 j=1
where the covariates are split in p; time-independent covariates and p, time-dependent
covariates.

In order to include time-varying covariates in the Cox model, a counting process
formulation is required. A counting process is a stochastic process starting at 0 and
whose sample paths are right continuous step functions with height 1. The counting
process formulation makes it possible to include multiple event times and multiple at-

risk intervals [1].

4.3 Aalen Model

Another alternative to the Cox model is the additive risk model of Aalen. Let T =
[0,7], for 0 < 7 < o0, be a fixed time interval and consider an n-variate counting
process N (t) = (N;(t),i=1,...,n), together with a matrix of covariates Y;; (t), for
Jj=1,...,p given that p < n, observed for each component N; (¢). The covariate Y; (t)
is set equal to 0 if the individual 4 is not at risk [10]. By assuming an intensity process
v (t) of N; (), the relationship between the covariates Y;; (£) and the counting process
N (t), is given by

% (t) =Z§Q~j ) a;(t) teT

where «; (t) are deterministic baseline intensities that are specified under some regu-
larity conditions.

An estimator for the integrated baseline intensity B (t) = | !

o @ (s)ds is given by a
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generalized Nelson-Aalen estimator

B — /0 Y~ (5)dN (s)

where Y~ (t) is a generalized inverse of Y (¢) such that Y~ (1) Y (¢) =L
Usually the estimation of « (¢) is more useful than estimating B (¢). So let b > 0 and

K a kernel, then an estimator for o is given by

&(t)z%AK(t;S>dﬁ(s) tefbr—14

This model is usually used in life insurance to estimate the cumulative number of

expected events.

4.4 Stratified Cox Model

One of the restrictions of using a Cox model with fixed time is its proportional hazards
(PH) assumption. Let ¢y, ..., t; be d unique ordered event (churn) times, and let X; (s)
be the p x 1 covariate vector for the i** individual at time s. Note that for time-fixed
covariates, X; (s) = X;. The weighted mean of the X; (s) over those still at risk to

churn at time s is given by

wrharas V(o
WIICIT 141 o

) is
at risk at time s, so that Y;(s) = 1 if observation i is still at risk at time s and is

zero otherwise. The estimate § comes from fitting a Cox PH model. In particular, a
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Schoenfeld residual is a p x 1 vector that is defined at the k™ churn event time as
tr _
te—1

where N; (s) is a counting process that counts the number of events for observation i
at time s. Thus s, sums the quantities X; (t,) — X (tx) over observations that have
experienced the event by time .

An alternative to a PH model is to stratify the model across levels of one or more
covariates, leading to a Stratified Cox model. A Stratified Cox model is useful when a
factor does not affect the hazard multiplicatively. The strata divide the subjects into
disjoint groups, each of which has a distinct arbitrary baseline hazard function, but

have common values for the coefficients #. The hazard function for an individual ¢ who

belongs to stratum k is then given by
A (t) = Ae (t) exp (X(65)

The stratified Cox model allows a deviation from proportional hazards and provides
an alternative to the assumption of proportional hazards. The hazard functions for
two different strata do not have to be proportional to one another, however, within a
stratum, proportional hazards are assumed to hold. The partial likelihood for Stratified
Cox models with K strata is a product of K terms, each of the form of Equation 4.1,
but where 7 ranges over only the subjects in stratum k, for k = 1,..., K. Stratification
entails fitting separate baseline hazard functions across strata. A baseline hazard func-
tion represents the hazard rate over time for an individual with all modelled covariates
set to zero. With a Stratified Cox modecl, a proportional hazards structure does not

necessarily hold for the combined data, but it is assumed to hold within each stratum.
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However, the coefficients on the included covariates are common across strata so that
the relative effect of each predictor is the same across strata, unless there is a signifi-
cant strata-by-covariate interaction, which means that the effect of the covariate differs
within strata [8].

A Bayesian version for the Stratified Cox model is

Ai (t) = Ao (t) exp (B'X)

where Ag; (t) are the stratum-specific baseline hazards.

4.5 Shifted-Beta Geometric Model

An alternative to common curve fitting regression models is introduced by Fader and
Hardie in [5] which is a probability model for the churn process. This basic model known
as the shifted-beta geometric model which can be implemented in a simple Microsoft
Excel spreadsheet and this model provides very accurate forecasts of customer retention.
For this model it is important to explain in slightly more detail the definition of
retention rate and churn rate. The retention rate for time ¢, given by r;, is defined as
the proportion of customers active at the end of time ¢ — 1 who are still active at the
end of period ¢. On the other hand, the churn rate for a given period is defined as the
proportion of customers active at the end of time ¢t — 1 who are not active by time ¢.
In the beginning of Chapter 4, the survival function was given in terms of the

distribution function. However, the probability that a customer is still active at time ¢
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can also be given in terms of the retention rate by

t
S(t):T1X"'XTt:HTi
=1

such that
S(t)

ST (4.2)

Ty =

In statistics, the geometric distribution is either of two discrete probability distri-

butions:

e The probability distribution of the number X of Bernoulli trials needed to get

one success, supported on the set 1,23, ...

e The probability distribution of the number ¥ = X — 1 of failures before the first

success, supported on the set 0,1,2,3,...

Often, the name shifted geometric distribution is adopted for the former one.

The shifted-beta geometric model for the duration of customer lifetimes is based on
two assumptions. Suppose that an individual remains a customer of the company with
constant retention probability 1 — 6. This is equivalent to assuming that the duration
of the customer’s relationship with the company, denoted by the random variable T,
is characterized by the shifted-geometric distribution with probability mass function

P (T =t|6) and survival function S (¢|0), given by

P(T=t) = 61—-0)"", t=1,23,...

7l 7 o

S@te) = (1-6), t=1,23,...

The second assumption is about the heterogeneity in # which follows a beta distribution
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with probability density function

o1 (1—6)""

F Ol ) =55

where B (o, 3) is the beta function defined by
1
B (a,0) =—-/ 6>t (1—0)°"dh, a,8>0 (4.3)
0

The beta function can be expressed in terms of gamma functions, such that

T'(e)T(8)

P =Tavg

Figure 4.1 shows that if both parameters, o and 3, of the beta distribution are less
than 1, then the churn probability € is U-shaped, as shown by the red curve. If both
parameters are large, such that «, 3 > 1, then the shape of the beta distribution is
unimodal, that is, for some value m the curve of the beta distribution is monotonically
increasing for x < m and monotonically decreasing for £ > m, as shown by the purple
and black curve. If one parameter is large while the other is small, the beta distribution
shape is either J-shaped or reverse-J-shaped, as shown by the green and blue curves.
These various shapes can model the nature of heterogeneity in churn probabilities across
the customer base.

Since the customer’s value of 6 is unobserved, the equations for the first assumption
cannot be used. So the expectation of P (T =t|@) and S (¢|6) over the beta distribu-
tion are used instead to arrive at the corresponding expressions for a randomly chosen
subscriber. If 6 is known, the probability of churning at time ¢ would simply be the
geometric probability 6 (1 — 6)"". But since § is unobserved, P (T = t) for a randomly
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Figure 4.1: General shapes of the beta distribution as a function of o and

chosen subscriber is the expected value of the shifted-geometric probability of churning
at time ¢, conditionally on © = 6, where the expectation is with respect to the beta
distirbution for ©, E [P (T =t|© = 0)]. So each P (T =t|© = 0) is weighted by the
probability of the value of 6 occuring, f (6).

Since © is a continuous random variable, this is computed as

P(T=te,B) = /Olp(T:u@:a)f(ma,ﬁ)de

1 a—1 _ p\B-1
_ /9(1—9)t—19 =07 4
0
1

B (a, f)

1
a a1 _ p\Btt-2
= Blad (a,ﬁ)/o 6% (1 —6) e
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where P (T =t|© = 8) is the probability distribution function of the geometric dis-
tribution and f (6|e, 0) is the probability density function of the beta distribution.
fol 6% (1 —6)°**"2 df is the integral expression for the beta function with parameters

a -+ 1 and #+ ¢ — 1. Therefore,

B(a+1,8+t—1)

P(T = t|o, ) = S = b
Similarly,
B (o, B+1)
S(t'&,ﬁ) = m—", = 1, 2, (44)

This model is called the shifted-beta geometric (sBG) model with parameters o, £
having an sBG distribution.
This model can be used without having to deal with the beta function. The sBG

probabilites are computed using a forward-recursion formula from P (T = 1), where,

B(a+1,05)

B (a, B)

F(a+1)F(ﬁ)/F(a)F(ﬁ)

Fa+p+1)" T(a+p)
_ I‘(a—i—l)/I‘(a—!—ﬁ—i—l)
~ TI(e) ' T(a+p)

P(T =1, f)

By using the property of recursion for the gamma function,

Ila+1) Fla+0+1)
T ¢ ™ Tarm —otf
Then,
87
P =1la,0) = =5 (4.5)
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For the case when ¢t = 2,3, ..., consider the identity

P(T:t):%}?(if:tun

Given the expression P (' =t) /P (T =t — 1), the value of P (T = 2) can be computed
using the value P (T = 1) = a/ (a + ). Then, given the value of P (T' = 2), the value
of P (T = 3) can be computed, and so on. So,

P(T=t)  B(a+1,f+t—1) Bla+1,0+t—2)

PT=t-1) = B@pd | B@p
Ba+1,0+t—-1)
Ba+1,8+t-2)

By expressing the beta functions in term of gamma functions,

P(T=t) _F(ﬁ+t—1)/ I'(a+B8+t)
P(T=t—1) T(@B+t—-2)T(a+B+t—1)

and by the recursive property,

R e (4.6)
P(IT'=t—-1) a+f+t—-1 ’
By combining Equation 4.5 and Equation 4.6,
P t=1
P(T=t) = { “;iﬂ (4.7)
sl T=t—-1) t=23,...
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By substituting Equation 4.4 into Equation 4.2,

B(a,ﬁ+t)/
B (0,f)
B (o, f+1)
B(a,f+t—1)

B(a,f+t—1)
B (a, §)

Expressing the beta functions in term of gamma functions,

__I(B+H) , Tlatfty
"TT@B+t-1)/T(@+B8+t—1)

By the recursive property of the gamma function, the retention rate associated with
the sBG model is given by,
B+t—1

T arAYi—1

So it is possible to compute S (¢) without having to deal with the beta functions.
The retention rate under the sBG model is an increasing function of time due to
heterogeneity. That is, the high churn subscribers drop out early in the observation

period, with the remaining subscribers having lower churn probabilities.
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Chapter 5

Model Implementation

5.1 Introduction

The number of mobile service subscriptions has been increasing over the past couple
of years. By looking at the total number of mobile telephone subscriptions for the
past year (2009), it is evident that this is true. Table 5.1 shows the total number of
mobile telephone subscriptions and this number divided into the number of post-paid
subscriptions and the number of pre-paid subscriptions for the year 2009 obtained from

an article by the National Statistics Office [18].

| Months | Total | Post-paid | Pre-paid |
Jan - Mar | 388,284 68,754 319,530
Apr - June | 405465 | 74,696 | 330,769
July - Sept || 418,341 59,867 368,474
Sept - Dec || 422,083 78,384 343,694

Table 5.1: Number of mobile telephone subscriptions in 2009
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5.2 Data Set

The data set used for this dissertation was provided by Vodafone (Malta) Ltd. The
dataset consisted of the average subscriber base for two tariffs, It’s Good to Talk (IGTT)
and Friends tariff, for a 20-week period. The number of subscribers for each tariff is
divided into seven segments where for each segment, the initial number of subscribers
is 1,000 and the probability that a subscriber is in one of the seven segments is given,
as shown in Table 5.2. This dataset shows the number of subscribers who churned,
however it does not indicate whether the subscribers churn at the customer level or
else at the contract level. Customer level churning is when the subscriber switches
to a different service provider, whereas contract level churning is when the subscriber

changes the tariff scheme but still remains with the same service provider [9].

| Segment || Probability |
Segment 0 0.08

Segment 1 0.17
Segment 2 0.24
Segment 3 0.16
Segment 4 0.13

Segment 5 0.19
Segment 6 0.03

Table 5.2: Probabilities for each segment

The plots of all segments for both tariffs are shown in Figure 5.1. However by
aggregating the data (multiplying the subscriber base for each segment by the segment
probabilities and adding the answers together), each tariff corresponds to one of the
curves in Figure 5.2. This is done because the segments in both tariffs are very similar

to each other.
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Figure 5.2: Aggregated tariffs
5.3 Implementation

Several strategies were implemented for this data including, dividing the subscribers into
two segments with different fixed segment probabilities and with optimizable probabil-
ities, and dividing the subscribers into three segments with fixed segment probabilities
and with optimizable probabilities. For these churn models the dataset is assumed to
follow a geometric distribution. In these cases, the first eleven weeks of the dataset
were used for optimizing the parameters of the model and then the predicted values for
the remaining eight weeks were computed and compared to the actual data. Finally,
the data for both tariffs was modelled using the sBG distribution. In this case, the first

fourteen weeks were used for optimizing the parameters of the model and then the pre-
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dicted values for the remaining five weeks were computed and compared to the actual
data. The purpose for having fourteen weeks to compute the optimization of the sBG
model is because eleven weeks are not sufficient to obtain an accurate prediction, so the
three extra weeks that were used helped to provide a much more accurate prediction.
For the other models, eleven weeks were sufficient, since if fourteen weeks were used, the
improvement in the predictions was very minimal. These strategies were implemented
into Microsoft Excel and Matlab to compute the maximum likelihood estimations using
various model parameters for the dataset.

Given different initial values for optimization, Microsoft Excel usually generates dif-
ferent optima since the solver implemented in Microsoft Excel does not use a global
optimization algorithm. The Microsoft Excel Solver tool uses the Generalized Re-
duced Gradient (GRG2) nonlinear optimization code. Linear and integer problems use
the simplex method with bounds on the variables and the branch-and-bound method.
Hence the initial values in Microsoft Excel had to be chosen by trial-and-error until the
optimal values were obtained. On the other hand, by using the simulated annealing
algorithm in Matlab given by [26], the global optima could be found straightaway in
most cases. Before providing the results for the mentioned churn models, a brief re-
view of notion for the maximum likelihood estimation is given. Note that in Microsoft
Excel, the log-likelihood function is being maximized, while the negative log-likelihood
function in Matlab is being minimized. So, the maximized log-likelihood function in
Microsoft Excel will give a negative result, while the maximized log-likelihood function

in Matlab will give a positive result.
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5.3.1 Maximum Likelihood Estimation

Suppose the dataset consists of a group of N subscribers for p weeks, such that there
are no subscribers who churn during the initial observing week (week 0). Then n4
subscribers churn in the first week, ..., n, subscribers churn in the pt* week. Then
N —3"P | n; subscribers are still active at the end of the pt* week. The probability that
a randomly chosen subscriber has a lifetime of one week is given by P (T =1/0), ...,
the probability that a randomly chosen subscriber has a lifetime of p weeks is given by
P (T = p|@). By assuming that a subscriber churns independently of the behaviour of
another subscriber, the probability that one randomly chosen subscriber has a lifetime
of one week while another subscriber has a lifetime of two weeks is the product of
the respective geometric probabilities, such that P (T =1|0) P (T = 2|0). Thus, it
follows that given specific values of the model parameters 8, the joint probability of
ny subscribers churning in the first week, ..., n, in the p'* week, and N — 3% _n,

subscribers still being active at the end of the p** week is given by
P (datal6) = P (T = 1|0)" P(T = 200)" x --- x P (T = plo)"* 5 (p|0)" ="

However, the values of 8 are unknown, although it is assumed that 6 follows a
geometric distribution. Maximum likelihood estimation is used to find which values of
the model parameters maximize the probability of the given dataset. The likelihood

function is given by
L(@|data) =P (T =1/0)" P(T =2|0)"” x --- x P(T =p|@)™ S (plg)N—Zi;l ng

and by using a numerical optimization method, the values of @ which maximize the

function are evaluated. The values which maximize the likelihood function are called
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the maximum likelihood estimates of the model parameters. Usually the value of the
likelihood function is very small, and thus the natural logarithm of the likelihood func-

tion is used instead. This is called the log-likelihood function and is given by

L (8|data) = Zln T = t/6)] (N Znt>ln (p|0)]

The same applies for the sBG distribution, with model parameters o and (3, such that

the joint probability is given by

P (data|e, 8) = P(T = o, )™ X - -+ x P(T =p|ley, B)™ S (p'a,ﬁ)N—Ele e
The likelihood function is given by

L (o, Bldata) = P (T = 1|o, B)™ % --- x P (T = pla, B)™ S (plar, B)N " Zt=1™

and the log-likelihood function is given by

(o, B|data) = Zln T =tla, B)] <N Zm) In [S (ple, B)]

57



5.3.2 It’s Good to Talk Tariff
5.3.2.1 Two segments with fixed probabilities 0.4 & 0.6

The first churn model implemented for the IGTT data was that of dividing the data
into two segments with fixed probabilities, where the probability for the first segment is
prob; = 0.4 and the probability for the second segment is prob, = 0.6. This means that
a subscriber has 0.4 probability of being in the first segment and 0.6 probability of being
in the second segment. An initial starting point for 8 must be provided to calculate
P (T = t|0), such that the initial point is within the bounds 0.0001 < 8 < 0.9999. The
values for P (T = t|@) were computed using the initial values and using the forward-
recursion method given by Equation 4.7.

The dataset consists of n = 1,000 customers and the number of customers churning
at the t** week is n; = N;_; — N;. The values of S (t|@) were computed such that
S(1)=1—-P(T=1),fort =1,and S(t) = S(t—-1)—=P(T =t), fort > 1. The
first eleven weeks (p = 11) were used to compute the log-likelihood function, so at
the t** week, the log-likelihood function is given by LL (8t) = 3,2, n,In [P (T = t|6)].
The maximum likelihood estimates of the model where found by maximizing the log-
likelihood function. The initial values for 8 were selected by trial-and-error in Microsoft
Excel until the optimal values were obtained, where 6, = 0.0241, #, = 0.0001, and
LL = —531.1940. Table 5.3 shows the Microsoft Excel computation. This means that
both segments have a very small churn probability.

Similarly to Microsoft Excel, an initial value for @ had to be given to the simulated
annealing algorithm in Matlab. The outputs from Matlab gave the same global optimum
function value with a slight discrepancy. To assess the performance of the simulated

annealing algorithm, 100 different initial points covering evenly the unit square were
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entered as the initial values. The matrix A represents these 100 different initial values
where A;; = 1 if the initial point ¢j results in the global optimum and A;; = 0 if
the initial point ¢ does not give the global optimum. The matrix Z represents the
optimal value for all of the 100 initial points, ‘best’ represents the global optimum
value of the maximized log-likelihood function and ‘bestmin’ represents the parameter
values 8, corresponding to the global optimum. For this model, best = 530.5658 and
bestmin = [0.0242 0.0000]. This means that the global optimum is 530.5658 and the
corresponding model parameter values are 6, = 0.0242 and 62 = 0 meaning that if the
data is divided into two segments, churning is expected from the first segment since
the churn probability of the second segment is 0. In this case A has seventy-five 1’s,
meaning that 75 initial points out of 100 gave the global optimal solution. The matrix
Z gives the log-likelihood value of all 100 initial points. In fact, by comparing A to Z
it is clear which values are not in the range of the global optimal solution and these

sum up to twenty-five.
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To test whether the simulated annealing algorithm truely finds more global optimal
solutions, the same test is carried out using the algorithm fmincon from Matlab. In this
case, the matrix A shows that 38 out of 100 initial points corresponding in obtaining
a global optimal solution. The matrix Z shows the log-likelihood values obtained from
the optimal values represented in A. Since A has less 1 entries than A, it is clear that
the simulated annealing algorithm improves the number of initial values which obtain
the global minimum value. The matrix Z indicates that the standard optimization
algorithm fmincon reaches other local optima, in particular, LL = 857.5971 and LL =
616.8264 amongst others.

The accuracy of the model was tested by predicting the values for the remain-
ing eight weeks, using the optimal parameter estimates obtained from Microsoft Ex-
cel and Matlab. The probabilities of the remaining weeks were calculated so that
the predicted number of subscribers were computed such that Mx (t) = Mx (t — 1) —
Mx (t—1)P[T =t — 1], where Mx (t) are the predictions from Microsoft Excel, and
My (t) = My (t—1) — My (¢t — 1) P[T =t — 1], where My, (t) are the predictions
from Matlab. These values are given in Table 5.4 and Figure 5.4 is the plot of the exact
number of customers per week and their predictions. This figure shows that for this
model, the predictions are quite reasonable. Figure 5.3 shows that the global optimal

value is at the bottom right corner.
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Two segments of subscribers with probabilities 0.4 & 0.6
Segments: 1 2
Thetas: 0.0241 | 0.0001
Probabilities: 0.4 0.6
LL: -530.5889
Week t N P [T =t] ng S[T =t] | LL term
0 1000 0
1 990 0.0097 10 0.9903 | -46.3726
2 984 0.0095 6 0.9809 | -27.9688
3 978 0.0092 6 0.9716 | -28.1140
4 949 0.0090 29 0.9626 | -136.5858
5 944 0.0088 5 0.9538 | -23.6702
6 937 0.0086 7 0.9453 | -33.3076
7 933 0.0084 4 0.9369 | -19.1297
8 914 0.0082 19 0.9287 | -91.3253
9 911 0.0080 3 0.9207 | -14.4923
10 907 0.0078 4 0.9129 | -19.4198
11 907 0.0076 0 0.9053 0.0000
12 0.0074 -90.2027
13 0.0072
14 0.0071
15 0.0069
16 0.0067
17 0.0066
18 0.0064
19 0.0063

Table 5.3: Excel: Two segments of subscribers with probabilities 0.4 & 0.6
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530.5720
530.5877
530.5883
530.5787
530.5746
531.1846
530.5722
530.5695
630.5713
530.6569

530.6010
530.5908
530.5907
530.5774
531.2141
530.5659
530.7535
530.5760
530.5660
531.1864

531.1850
530.5851
530.6260
530.5897
530.6239
530.5975
530.5830
530.5754
530.6557
531.1950

530.5814
530.5711
530.6613
530.6209
531.2272
530.5759
530.5765
530.5863
530.5682
531.2667

530.5837
530.5777
530.6026
530.5836
530.5757
530.5829
531.2906
530.6404
530.5865
531.1989

530.6443
531.6780
530.6025
530.5769
531.6956
530.5888
531.1941
531.2481
530.5737
530.6328

530.6187
531.6480
530.5703
531.2008
530.5743
530.6403
530.5913
530.6158
531.1960
530.5817

531.2059
531.2028
530.6266
531.1891
530.5723
531.3860
530.5835
530.5658
530.6177
530.6221

530.5889
530.5842
530.6078
530.5894
532.5083
530.5795
530.5785
530.5894
531.1873
530.5778

531.2022
530.5680
530.5710
531.1917
530.5928
530.5706
530.5938
530.5864
530.5909
531.1961
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N>

530.5889
530.5889
530.5889
530.5889
530.5889
530.5889
530.5889
530.5889
530.5889
530.5889

531.1940
530.5889
530.5889
530.5889
530.5889
530.5889
530.5889
531.1940
531.1940
530.5889

857.5971
857.5971
531.1940
530.5889
530.5889
530.5889
531.8035
530.5889
530.5889
531.1940

531.1940
531.1940
531.1940
847.4652
531.1940
531.1940
530.5889
530.5889
530.5889
531.1940

857.5971
931.1940
531.1940
530.5889
857.5971
530.5889
531.1940
531.1940
531.1940
531.1940

531.1940
530.5889
616.8264
626.3889
559.2445
531.1940
530.5389
531.1940
531.1940
531.1940

531.1940
531.1940
531.1940
531.1940
533.9439
530.5889
857.5971
857.5971
530.5889
857.5971

550.8603
531.1940
857.5971
530.5889
530.5889
557.5935
531.1940
530.5894
530.5889
531.1940

857.5971
959.9512
53J.5889
857.5971
857.5971
531.1940
531.1940
531.1940
857.5971
531.1940

531.1940
530.5889
530.5889
531.1940
601.1401
857.5971
857.5971
531.1940
660.2535
531.1940



E(t) | Mx(t) | Mu (t)
1000 1000 1000
990 | 990.3157 | 990.3200
984 | 980.9545 | 980.9657
978 | 971.9035 | 971.9240
949 | 963.1504 | 963.1824
944 | 954.6834 | 954.7291
937 || 946.4914 | 946.5527
933 || 938.5638 | 938.6426
914 | 930.8904 | 930.9883
911 | 923.4615 | 923.5803
907 | 916.2678 | 916.4090
907 | 909.3007 | 909.4656
900 | 902.55615 | 902.7415
886 || 896.0124 | 896.2287
882 || 889.6755 | 889.9193
877 || 883.5335 | 883.8060
873 || 877.5795 | 877.8816
861 || 871.8066 | 872.1393
849 || 866.2084 | 866.5727
843 || 860.7788 | 861.1754

Table 5.4: Exact and Model number of subscribers
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Figure 5.3: Contour figure showing the optimal value
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Figure 5.4: Model prediction for two segments with probabilities 0.4 & 0.6
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5.3.2.2 Two segments with fixed probabilities 0.1 & 0.9

The next churn model was to divide the data into two segments with fixed probabilities,
where the probability for the first segment is prob; = 0.1 and the probability for the
second segment is prob, = 0.9. An initial point was given in the range 0.0001 < 8 <
0.9999. The optimal values obtained from Microsoft Excel are 6; = 0.1124, 8, = 0.0019,
meaning that it is more probable for a subscriber in the first segment to churn, and the
maximum log-likelihood function is LL = —528.5553. Table 5.5 shows the Microsoft
Excel computation.

The same procedure was carried out by Matlab using the simulated annealing al-
gorithm. The global optimum for the log-likelihood function was found to be best =
528.5553. This optimum was achieved when bestmin = [0.1124 0.0019], which represent
the values of 8. In this case the model parameters are equal to those obtained from
Microsoft Excel. All of the 100 initial points gave the global optimum solution. Opti-
mization using a standard optimization algorithm indicates that only 20 out of the 100
random initial points obtain the global optimal value. Hence the simulated annealing
performs better.

By computing the number of subscribers per week using the optimal values for 0
it was possible to predict the remaining eight weeks of the data. When the predic-
tions were calculated, a plot of the exact number of subscribers, predictions from the
Microsoft Excel optimal values and predictions from the Matlab optimal values was
constructed to compare the predictions. The prediction values are shown in Table 5.6
and the plot of the predictions is shown in Figure 5.6. This figure shows that the predic-
tion for two segments with fixed probabilities 0.1 and 0.9 is not very accurate, however
the predictions obtained from Microsoft Excel and from Matlab are very similar to each

other. Figure 5.5 shows the global optimal value at the top right corner of the figure.
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'I'wo segments of subscribers with probabilities 0.1 & 0.9
Segments: 1 2
Thetas: 0.1124 | 0.0019
Probabilities: 0.1 0.9
LL: -528.5553
Week t N P[T = t] n S[T =t| | LL term
0 1000 0
1 990 0.0130 10 0.9870 | -43.4399
2 984 0.0117 6 0.9753 | -26.6795
3 978 0.0106 6 0.9647 | -27.2847
4 949 0.0096 29 0.9551 | -134.7464
5 944 0.0087 ) 0.9464 | -23.7168
6 937 0.0079 7 0.9385 | -33.8667
7 933 0.0072 4 0.9313 | -19.7220
8 914 0.0066 19 0.9247 | -95.3875
9 911 0.0061 3 0.9186 -15.3229
10 907 0.0056 4 0.9130 | -20.7683
11 907 0.0051 0 0.9079 0.0000
12 0.0047 -87.6206
13 0.0044
14 0.0041
15 0.0038
16 0.0036
17 0.0034
18 0.0032
19 0.0030

Table 5.5: Excel: Two segments of subscribers with probabilities 0.1 & 0.9
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E(t) | Mx(t) | Mwm(t)
1000 1000 1000
990 | 987.0153 | 987.0500
984 || 975.4491 | 975.5179
978 || 965.1150 | 965.2177
949 || 955.8539 | 955.9900
944 || 947.5291 | 947.6982
937 || 940.0227 | 940.2245
933 || 933.2330 | 933.4672
914 | 927.0719 | 927.3382
911 | 921.4627 | 921.7609
907 || 916.3390 | 916.6687
907 | 911.6426 | 912.0035
900 || 907.3228 | 907.7147
886 || 903.3353 | 903.7579
882 || 899.6411 | 900.0943
877 | 896.2062 | 896.6897
873 | 893.0007 | 893.5142
861 | 889.9983 | 890.5415
849 || 887.1757 | 887.7485
843 || 884.5126 | 885.1149

Table 5.6: Exact and Model number of subscribers
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Figure 5.5: Contour figure showing the optimal value

Figure 5.6: Model prediction for two segments with probabilities 0.1 & 0.9
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5.3.2.3 Two segments with optimizable probabilities

The third churn model was to divide the data into two segments where the probabilities
are optimizable, so that the probabilty of each segment is unknown. An initial point was
provided for @ such that it is within the bounds 0.0001 < 8 < 0.9999 and another initial
point for prob was given such that the bounds are 0 < prob < 1 and prob; +prob, = 1.
The optimal results from Microsoft Excel show that 6, = 0.0910, 6, = 0.0001, prob, =
0.1419, prob, = 0.8581. This means that a higher churn probability is expected for
a subscriber in the first segment, however it is more probable that a subscriber is in
the second segment. The optimal log-likelihood function is LL = —528.2415. Table 5.7
shows the Microsoft Excel computation.

The global optimum in Matlab for the log-likelihood function is given by best =
528.2268. This optimum is achieved when bestmin = [0.0000 0.0920 0.8581 0.1419],
where & = [0.0000 0.0920] and prob = [0.8581 0.1419], which are the same as those
obtained in Microsoft Excel. For this model, the matrix A could not be computed since
this model optimizes four parameters. Instead, a sum was computed giving the number
of initial values which obtain the global optimal value of the log-likelihood function.
This sum gave a value of 96 meaning that 96 out of 100 initial values result in the global
optimal value.

Predictions for the number of subscribers for the remaining weeks were computed
and are shown in Table 5.8. Figure 5.7 shows the plot of the predictions and the exact
number of subscribers. This figure shows that this model is not a very accurate model,

since the last few predictions diverge from the actual number of subscribers.
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Two segments with optimizable probabilities

Segments: 1 2
Thetas: 0.0910 | 0.0001
Probabilities: | 0.1419 | 0.8581 1
LL: -528.2415

Week t N¢ P[T = t] n S[T =t] | LL term
0 1000 0
1 990 0.0130 10 0.9870 | -43.4297
2 984 0.0118 6 0.9752 | -26.6262
3 978 0.0108 6 0.9644 | -27.1941
4 949 0.0098 29 0.9546 | -134.1814
5 944 0.0089 5 0.9457 | -23.6073
6 937 0.0081 7 0.9376 | -33.7112
7 933 0.0074 4 0.9303 | -19.6408
8 914 0.0067 19 0.9236 | -95.0843
9 911 0.0061 3 0.9175 | -15.2956
10 907 0.0056 4 0.9119 | -20.7701
11 907 0.0051 0 0.9068 0.0000
12 0.0046 -88.7008
13 0.0042
14 0.0038
15 0.0035
16 0.0032
17 0.0029
18 0.0026
19 0.0024

Table 5.7: Excel: Two segments with optimizable probabilities
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E®) [ Mx(t) | Mu®
1000 1000 1000
990 | 987.0021 | 986.9452
984 || 975.3326 | 975.2462
978 || 964.8426 | 964.7494
949 || 955.4020 | 955.3209
944 || 946.8968 | 946.8435
937 || 939.2269 | 939.2143
933 || 932.3039 | 932.3429
914 || 926.0499 | 926.1492
911 | 920.3958 | 920.5627
907 || 915.2803 | 915.5208
907 || 910.6489 | 910.9678
900 1 906.4531 | 906.8543
886 | 902.6496 | 903.1360
882 |l 899.1996 | 899.7737
877 || 896.0684 | 896.7321
873 || 893.2250 | 893.9796
861 || 890.6416 | 891.48R0
849 || 888.2931 | 889.2320
843 || 886.1569 | 887.1887

Table 5.8; Exact and Model number of subscribers
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5.3.2.4 Three segments with fixed probabilities 0.1, 0.3 & 0.6

Suppose that the data is divided into three segments with fixed probabilities, such that
prob; = 0.1, prob, = 0.3 and prob; = 0.6. An initial starting point for 8 was given
hving three components in the region 0.0001 < @ < 0.9999. The initial point was
entered by trial-and-error until the optimal solution was obtained. The results show
that 6, = 0.1121, 6, = 0.0001, 85 = 0.0029. So it is more probable to churn from the
first segment, while it is less probable to churn from the second segment. The log-
likelihood function corresponding to these optimal values is LL = —528.5500, as shown
in Table 5.9.

By using the simulated annealing algorithm in Matlab, the global optimum for the
log-likelihood function was found to be best = 528.5311. This optimum was achieved
when bestmin = [0.1117 0.0060 0.0000] such that #; = 0.1117, 8, = 0.0060 and §5 = 0.
Matlab’s optimal solution shows also that it is more likely to churn from the first
segment. Again, the matrices A and Z could not be computed since this model is in
three dimensions. However, a sum of the initial points which resulted into the global
optimum was calculated. This sum added up to 998, meaning that 998 out of 1000
random initial points reach the global optimum value.

Predictions for the remaining weeks were computed by using both optimal values
found by Microsoft Excel and by Matlab. The results are shown in Table 5.10 and the
corresponding plot is shown in Figure 5.8. Again, it can be seen that the predictions

give a slight discrepancy from the exact values.
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Three segments of subscribers with probabilities 0.1, 0.3 & 0.6
Segments: 1 2 3
Thetas: 0.1121 | 0.0001 | 0.0029
Probabilities: 0.1 0.3 0.6 1
LL: -528.5500
Week t Ny | P[T =t] ng S[T = t| LL term
0 1000 0
1 990 0.0130 10 0.9870 -43.4435
2 984 0.0117 6 0.9753 -26.6796
3 978 0.0106 6 0.9647 -27.2828
4 949 0.0096 29 0.9551 -134.7284
5 944 0.0087 5 0.9464 -23.7123
6 937 0.0079 7 0.9385 -33.8587
7 933 0.0072 4 0.9312 -19.7166
8 914 0.0066 19 0.9246 -95.3586
9 911 0.0061 3 0.9185 -15.3180
10 907 0.0056 4 0.9130 -20.7615
11 907 0.0051 0 0.9078 0.0000
12 0.0047 -87.6901
13 0.0044
14 0.0041
15 0.0038
16 0.0036
17 0.0034
18 0.0032
19 0.0030

Table 5.9: Excel: Three segments of subscribers with probabilities 0.1, 0.3 & 0.6

75



E(t) | Mx(t) | Mm(t)
1000 1000 1000
990 | 987.0200 | 987.0300
984 | 975.4538 | 975.4704
987 | 965.1164 | 965.1378
949 || 955.8496 | 955.8751
944 | 947.5173 | 947.5474
937 || 940.0024 | 940.0384
933 || 933.2037 | 933.2474
914 || 927.0334 | 927.0873
911 | 921.4152 | 921.4823
907 || 916.2830 | 916.3664
907 || 911.5788 | 911.6820
900 || 907.2520 | 907.3789
886 || 903.2585 | 903.4128
882 || 899.5595 | 899.7452
877 || 896.1211 | 896.3423
873 || 892.9132 | 893.1741
861 || 889.9097 | 890.2145
849 || 887.0875 | 887.4403
843 || 884.4262 | 884.8313

Table 5.10: Exact and Model number of subscribers
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Figure 5.8: Model prediction for three segments with probabilities 0.1, 0.3 & 0.6




5.3.2.5 Three segments with optimizable probabilities

This churn model divides the data into three segments, however this time the probability
of being in a segment is not fixed, but the segment probabilities are optimizable. For
this model two initial points must be given, one for the probabilties of each segment,
prob, and one for the model parameters 8. These initial values must be within the
bounds 0 < prob < 1, prob,; 4 prob, +prob; = 1, and 0.0001 < 8 < 0.9999. Table 5.11
shows the results obtained from Microsoft Excel, where 8 = [0.0001 0.0925 0.9999]
and prob = [0.8597 0.1403 0.0000]. The segment probabilities show that it is more
likely for a subscriber to be in the first segment with a very small churn probability.
Also, the third segment has probability 0, however, if a subscriber is in this segment,
the subscriber has a very high chance of churning. The corresponding log-likelihood
function is LL = —528.2402.

The same procedure was carried out using the simulated annealing algorithm in Mat-
lab. The initial points were set within the bounds of prob and 6 as in Microsoft Excel.
The global optimum for the log-likelihood function was achieved at best = 528.2391.
This results from the model parameters bestmin = [0.0881 0.0958 0.0001 0.0404 0.0995
0.8602], where 8 = [0.0881 0.0958 0.0001] and prob = [0.0404 0.0995 0.8602]. On the
contrary of the optimal values obtained from Microsoft Excel, these values show that
it is more probable of being in the third segment, but the probability of churning from
this segment is very small. Once again, a sum corresponding to the number of initial
values which result in obtaining the global optimal value, and in this case all initial
points reach the optimal solution such that the sum is equal to 1000.

The predictions were once again calculated and Table 5.12 shows the predictions
of both optimal values obtained from Microsoft Excel and Matlab. The corresponding

figure is shown in Figure 5.9 suggesting that this churn model is not very accurate.
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Three segments with optimizable probabilities

Segments: 1 2 3
Thetas: 0.0001 } 0.0925 | 0.9999
Probabilities: | 0.8597 | 0.1403 | 0.0000 1
LL: -528.2402
Week t N; | P[T=t] ny S|T =t| | LL term

0 1000 0
1 990 0.0131 10 0.9869 | -43.3807
2 984 0.0119 6 0.9751 -26.6067
3 978 0.0108 6 0.9643 | -27.1845
4 949 0.0098 29 0.9545 | -134.1825
) 944 0.0089 ) 0.9456 | -23.6157
6 937 0.0081 7 0.9376 | -33.7344
7 933 0.0073 4 0.9302 | -19.6606
8 914 0.0067 19 0.9236 | -95.2093
9 911 0.0061 3 0.9175 -15.3202
10 907 0.0055 4 0.9120 | -20.8094
11 907 0.0050 0 0.9070 0.0000
12 0.0045 -88.5362
13 0.0041

14 0.0038

15 0.0034

16 0.0031

17 0.0028

18 0.0026

19 0.0023

Table 5.11: Excel: Three segments with optimizable probabilities

79




E(t) || Mx(t) | Mwm(t)
1000 1000 1000
990 || 986.9363 | 986.8226
984 || 975.2280 | 975.0295
978 || 964.7210 | 964.4612
949 | 955.2810 | 954.9790
944 || 946.7904 | 946.4618
937 || 939.1462 | 938.8035
933 || 932.2576 | 931.9109
914 || 926.0447 | 925.7020
911 || 920.4367 | 920.1045
907 || 915.3709 | 915.0542
907 | 910.7918 | 910.4942
900 || 906.6498 | 906.3743
886 || 902.9008 | 902.6495
882 || 899.5055 | 899.2797
877 || 896.4288 | 896.2293
873 || 893.6390 | 893.4664
861 || 891.1082 | 890.9624
849 || 888.8108 | 888.6917
843 || 886.7243 | 886.6313

Table 5.12: Exact and Model number of subscribers
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5.3.2.6 Shifted-Beta Geometric Model

The shifted-beta geometric (sBG) model was the last churn model fitted to the data.
For this model the first fourteen weeks, p = 14, of the data were used to find the optimal
model parameters. In this case the data is not divided into segments and so there are no
segment probabilities. An initial point was given for o and # which are the parameters
of this model. The optimal value for the log-likelihood function was obtained when
a = 0.2405 and § = 20.7964, where the corresponding log-likelihood function is given
by LL = —672.1467. The results by Microsoft Excel are shown in Table 5.13.

By applying the simulated annealing algorithm in Matlab, the optimal values for o
and  were calculated such that the optimal model parameters obtained were a = 0.2319
and 4 = 19.8898 and the corresponding log-likelihood function is given by best =
672.1486. In this case all 100 random initial values resulted in reaching the global
optimal solution.

For this model, the predictions for the optimal value obtained from Microsoft Excel
and the predictions for the optimal value obtained from Matlab were plotted with the
exact number of subscribers per week. Table 5.14 shows the results of the predictions
and Figure 5.10 shows the plot of these predictions. From the figure it can be seen that
the predictions describe the data quite well. In fact, this churn model gives the best

predictions.
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IGTT sBG Model

Alpha 0.2405
Beta 20.7964
LL: -672.1467

Week t | Ny | P[T = t] ng S[T =t] | LL term
0 1000 0
1 990 | 0.0114 10 0.9886 | -44.7116
2 984 | 0.0108 6 0.9778 | -27.1746
3 978 | 0.0102 6 0.9676 | -27.5067
4 949 | 0.0097 29 0.9579 | -134.4859
) 944 0.0092 ) 0.9487 -23.4413
6 937 | 0.0088 7 0.9399 | -33.1596
7 933 | 0.0084 4 0.9316 | -19.1362
8 914 | 0.0080 19 0.9236 | -91.7568
9 911 | o0.0077 3 0.9159 | -14.6189
10 907 | 0.0073 4 0.9086 | -19.6606
11 907 | 0.0070 0 0.9015 0.0000
12 900 | 0.0068 7 0.8948 | -34.9680
13 886 | 0.0065 14 0.8883 | -70.4718
14 882 | 0.0063 4 0.8820 | -20.2833
15 0.0061 -110.7712
16 0.0058
17 0.0057
18 0.0055
19 0.0053

Table 5.13: Excel: sBG Model
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E(t) | Mx (t) | Mu (t)
1000 || 1000 1000
990 || 988.5660 | 988.4751
984 || 977.8990 | 977.7475
978 || 967.9154 | 967.7272
949 || 958.5436 | 958.3380
944 || 949.7225 | 949.5148
937 || 941.3990 | 941.2015
933 || 933.5269 | 933.3495
914 || 926.0661 | 925.9168
911 | 918.9811 | 918.8663
907 || 912.2407 | 912.1654
907 || 905.8172 | 905.7854
900 || 899.6859 | 899.7009
886 || 893.8248 | 893.8889
882 || 838.2140 | 888.3293
877 || 882.8359 | 883.0038
873 || 877.6744 | 877.8958
861 || 872.7149 | 872.9906
849 || 867.9443 | 868.2747
843 || 863.3506 | 863.7358

Table 5.14: Exact and Model number of subscribers
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5.3.3 Friends Tariff
5.3.3.1 Two segments with fixed probabilities 0.4 & 0.6

The churn models deseribed in the previous subsections were again implemented for
the Friends tariff. The first churn model for this tariff was to split the data into
two segments where the first segment has probability prob; = 0.4 and the second
segment has probability prob, = 0.6. The initial values was selected by trial-and-
error in Microsoft Excel until the optimal values were obtained, such that §; = 0.0212,
f; = 0.0001, showing that the second segment has a very small churn probability.
The maximum log-likelihood function corresponding to these optimal values is LL =
—489.0698. Table 5.15 shows the Microsoft Excel computation.

By computing the same model using the simulated annealing algorithm in Matlab,
the global optimum for the log-likelihood function is given by best = 489.0611 where
the model parameters are bestmin = [0.0213 0.0000], such that §; = 0.0213 and 6, = 0.
These values also confirm that the churn probability is highest for the first segment.
The values of the matrix A are all 1, meaning that all 100 initial points gave the global
optimum value. From the values of the matrix A, 74 out of 100 initial points attain
the global optimal solution, which is not a bad result however the simulated annealing
algorithm performed better.

The optimal values found in Microsoft Excel and Matlab were used to predict the
remaining eight weeks. Table 5.16 shows the actual values of the number of subscribers
per week and the predicted values obtained from the Microsoft Excel optimal values
and from the Matlab optimal values. Figure 5.12 shows the plot of the corresponding
optimal values. This figure shows that the predictions are quite reasonable. Figure 5.11

shows the global optimal value at the bottom center of the figure.
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Two segments of subscribers with probabilities 0.4 & 0.6
Segments: 1 2
Thetas: 0.0212 | 0.0001
Probabilities: 0.4 0.6
LL: -489.0698
Week t N P[T =t] n S[T =t] | LL term
0 1000 0
1 990 0.0085 10 0.9915 | -47.6337
2 986 0.0084 4 0.9831 | -19.1385
3 982 0.0082 4 0.9749 | -19.2236
4 961 0.0080 21 0.9669 | -101.3704
bt 956 0.0078 5 0.9591 | -24.2421
6 951 0.0077 5 0.9514 | -24.3484
7 948 0.0075 3 0.9439 | -14.6728
8 924 0.0074 24 0.9365 | -117.8922
9 920 0.0072 4 0.9293 | -19.7337
10 916 0.0071 4 0.9223 | -19.8186
11 916 0.0069 0 0.9154 0.0000
12 0.0068 -80.9957
13 0.0066
14 0.0065
15 0.0063
16 0.0062
17 0.0061
18 0.0059
19 0.0058

Table 5.15: Excel: Two segments of subscribers with probabilities 0.4 & 0.6
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E(t) | Mx(t) | Mu(t)
1000 1000 1000
990 | 991.4632 | 991.4800
986 || 983.1774 | 983.2125
982 || 975.1337 | 975.1886
961 | 967.3236 | 967.3997
956 || 959.7391 | 959.8376
951 || 952.3723 | 952.4944
948 || 945.2157 | 945.3626
924 | 938.2623 | 938.4349
920 | 931.5051 | 931.7045
916 | 924.9375 | 925.1647
916 | 918.5533 | 918.8092
911 | 912.3464 | 912.6317
896 | 906.3108 | 906.6265
893 || 900.4412 | 900.7878
890 | 894.7319 | 895.1103
887 | 889.1780 | 889.5888
870 | 883.7744 | 884.2182
858 || 878.5164 | 878.9937
854 | 873.3992 | 873.9107

Table 5.16: Exact and Model number of subscribers
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Figure 5.12: Model prediction for two segments with probabilities 0.4 & 0.6
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5.3.3.2 Two segments with fixed probabilities 0.1 & 0.9

The next churn model was that of dividing the data into two segments with fixed
probabilities where the first segment has probability prob; = 0.1 and the second segment
has probabililty prob, = 0.9. An initial point was provided for 8, such that 0.0001 <
0 < 0.9999. The optimal values obtained from Microsoft Excel are ; = 0.0732, 6 =
0.0028, so the first segment has a higher churn probability, and the maximized log-
likelihood function corresponding to these values is LL = —488.7240. The computation
in Microsoft Excel is shown in Table 5.17.

Similarly, using the simulated annealing algorithm in Matlab, the optimal results
show that the global optimum for the log-likelihood function is achieved at best =
488.7240 when the model parameters are bestmin = [0.0733 0.0028]. These are the
same values obtained from Microsoft Excel. The matrix A has 100 elements and in this
case they are all 1’s. This shows that all 100 initial points gave the optimal solution.
The matrix A was again calculated, and only 21 out of 100 initial points obtained
the global optimum. Once again, this shows that the simulated annealing algorithm
demonstrates an improvement when compared to a standard optimization algorithm,
where some initial points end up in a local optimal solution.

The predictions for the remaining eight weeks were calculated and the results are
shown in Table 5.18. This table shows the exact number of subscribers per week and
the predictions using the optimal values that were obtained from the computation of
Microsoft Excel and from Matlab. Figure 5.14 is the plot of both predictions and the
actual data. However, from this figure it can be seen that the predictions are not very
accurate.

Figure 5.13 shows the global optimal solution at the top right corner.
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Two segments of subscribers with probabilities 0.1 & 0.9
Segments: 1 2
Thetas: 0.0732 | 0.0028
Probabilities: 0.1 0.9
LL: -488.7240
Week t N¢ P[T =t n S[T =t| | LL term
0 1000 0
1 990 0.0098 10 0.9902 -46.2300
2 986 0.0093 4 0.9809 -18.7196
3 982 0.0088 4 0.9721 -18.9429
4 961 0.0083 21 0.9638 | -100.5997
5} 956 0.0079 ) 0.9559 -24.2204
6 951 0.0075 ) 0.9485 -24.4827
7 948 0.0071 3 0.9414 -14.8434
8 924 0.0068 24 0.9346 | -119.9490
9 920 0.0064 4 0.9282 -20.1868
10 916 0.0061 4 0.9221 -20.3770
11 916 0.0059 0 0.9162 0.0000
12 0.0056 -80.1726
13 0.0054
14 0.0051
15 0.0049
16 0.0047
17 0.0046
18 0.0044
19 0.0042

Table 5.17: Excel: Two segments of subscribers with probabilities 0.1 & 0.9
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E(t) | Mx(t) | Mwm(t)
1000 1000 1000
990 | 990.1768 | 990.1500
986 || 980.9879 | 980.9360
982 || 972.3786 | 972.3031
961 || 964.2995 | 964.2016
956 || 956.7057 | 956.5866
951 | 949.5568 | 949.4175
948 || 942.8160 | 942.6573
924 || 936.4499 | 936.2726
920 || 930.4279 | 930.2329
916 | 924.7226 | 924.5103
916 | 919.3086 | 919.0797
911 || 914.1630 | 913.9180
896 | 909.2647 | 909.0040
893 || 904.5946 | 904.3186
890 || 900.1349 | 899.8441
887 || 895.8698 | 895.5644
870 | 891.7843 | 891.4647
858 || 887.8650 | 887.5314
854 | 884.0996 | 883.7522

Table 5.18: Exact and Model number of subscribers
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Figure 5.14: Model prediction for two segments with probabilities 0.1 & 0.9
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5.3.3.3 Two segments with optimizable probabilities

The third churn model was to divide the data into two segments where the probabilities
are optimizable, so that initially the probabilty of each segment is unknown. An initial
point was provided for @ such that it is within the bounds 0.0001 < 8 < 0.9999 and
another initial point for prob was given such that the bounds are 0 < prob < 1 and
prob; + prob, = 1. The optimal results from Microsoft Excel show that 8; = 0.0023,
6, = 0.0697, prob; = 0.8903, prob, = 0.1097. This means that it is more probable
for a subscriber to be in the first segment with a lower churn probability than the
second segment. The optimal log-likelihood function corresponding to these values is
LL = —488.7149. Table 5.19 shows the Microsoft Excel computation.

The global optimum in Matlab for the log-likelihood function is given by best =
488.9162. This optimum is achieved when bestmin = [0.0053 0.0955 0.9544 0.0456],
where 8 = [0.0053 0.0955] and prob = [0.9544 0.0456]. This confirms that it is more
probable for a subscriber to be in the first segment with a lower churn probability than
the second segment. The number of initial values which obtain the global optimal value
of the log-likelihood function is 75, meaning that 75 out of 100 random initial values
result in the global optimal value.

Predictions for the number of subscribers for the remaining weeks are computed
and are shown in Table 5.20. Figure 5.15 shows the plots of the predictions and the
exact number of subscribers. This figure shows that this model is quite reasonable,
and moreover, the predictions from Matlab are more accurate than the predictions in

Microsoft Excel.
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Two segments with optimizable probabilities

Segments: 1 2
Thetas: 0.0023 | 0.0697
Probabilities: | 0.8903 | 0.1097 1
LL: -488.7149

Week t N P[T = t] ng S[T =t| | LL term
0 1000 0
1 990 0.0097 10 0.9903 | -46.3609
2 986 0.0092 4 0.9811 | -18.7723
3 982 0.0087 4 0.9725 | -18.9970
4 961 0.0082 21 0.9643 | -100.8947
5 956 0.0078 5 0.9565 | -24.2943
6 951 0.0074 5 0.9492 | -24.5614
7 948 0.0070 3 0.9422 | -14.8941
8 924 0.0066 24 0.9356 | -120.3875
9 920 0.0063 4 0.9293 | -20.2662
10 916 0.0060 4 0.9233 | -20.4635
11 916 0.0057 0 0.9175 0.0000
12 0.0055 -78.8230
13 0.0052
14 0.0050
15 0.0048
16 0.0046
17 0.0044
18 0.0042
19 0.0041

Table 5.19: Excel: Two segments with optimizable probabilities
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E() | Mx(t) | Mu(0)
1000 1000 1000
990 I 990.3044 | 990.5869
986 i 981.2349 | 981.7009
982 || 972.7390 | 973.2901
961 |[I 964.7697 | 965.3083
956 || 957.2837 | 957.7145
951 1| 950.2422 | 950.4722
948 || 943.6096 | 943.5488
924 || 937.3535 | 936.9151
920 1| 931.4442 | 930.5453
916 || 925.8549 | 924.4161
916 |l 920.5608 | 918.5067
911 | 915.56394 | 912.7984
896 || 910.7698 | 907.2745
893 || 906.2332 | 901.9200
890 | 901.9120 | 896.7214
887 |I 897.7904 | 891.6665
870 || 893.8535 | 886.7445
858 1l 890.0879 | 881.9455
854 || 886.4811 | 877.2607

Table 5.20: Exact and Model number of subscribers
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5.3.3.4 Three segments with fixed probabilities 0.1, 0.3 & 0.6

Suppose that the data is divided into three segments with fixed probabilities, such that
prob; = 0.1, prob, = 0.3 and prob; = 0.6. An initial starting point for 8 was given
where 0 has three components in the region 0.0001 < 8 < 0.9999. The initial point was
entered by trial-and-error until the optimal solution was obtained. The results show
that 6; = 0.0727, 8, = 0.0001, 05 = 0.0042. Thus it is more probable for a subscriber
in the second segment to churn. The log-likelihood function corresponding to these
optimal values is LL = —488.7182 as shown in Table 5.21.

By using the simulated annealing algorithm in Matlab, the global optimum for
the log-likelihood function was found to be best = 488.7263. This optimum was
achieved when bestmin = [0.0707 0.0018 0.0035] such that #; = 0.0707, 6> = 0.0018
and f3 = 0.0035. These values also show that the second segment has the highest churn
probability. In this case, the matrices A and Z could not be computed since this model
is in three dimensions. However, a sum of the initial points which resulted into the
global optimum was calculated. This sum added up to 988, meaning that 988 out of
1000 initial points reach the global optimum value.

Predictions for the remaining weeks were computed by using both optimal values
found by Microsoft Excel and Matlab. The results are shown in Table 5.22 and the
corresponding plot is shown in Figure 5.16. This figure shows that this churn model

does not provide very accurate results.
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Three segments of subscribers with probabilities 0.1, 0.3 & 0.6
Segments: 1 2 3
Thetas: 0.0727 | 0.0001 | 0.0042
Probabilities: 0.1 0.3 0.6 1
LL: -488.7182
Week t Ny | P[T=t] ng S[T =t LL term
0 1000 0
1 990 0.0098 10 0.9902 -46.2369
2 986 0.0093 4 0.9809 -18.7209
3 982 0.0088 4 0.9721 -18.9429
4 961 0.0083 21 0.9638 -100.5941
5 956 0.0079 ) 0.9559 -24.2180
6 951 0.0075 5 0.9485 -24.4794
7 948 0.0071 3 0.9414 -14.8411
8 924 0.0068 24 0.9346 -119.9292
9 920 0.0064 4 0.9282 -20.1835
10 916 0.0061 4 0.9220 -20.3740
11 916 0.0059 0 0.9162 0.0000
12 0.0056 -80.1981
13 0.0054
14 0.0051
15 0.0049
16 0.0047
17 0.0046
18 0.0044
19 0.0042

Table 5.21: Excel: Three segments of subscribers with probabilities 0.1, 0.3 & 0.6
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E(t) | Mx(t) | Mum(b)
1000 1000 1000
990 | 990.1835 | 990.2900
986 | 980.9975 | 981.1775
982 || 972.3883 | 972.6128
961 || 964.3069 | 964.5507
956 || 956.7094 | 956.9504
951 || 949.5558 | 949.7745
948 || 942.8099 | 942.9892
924 || 936.43R85 | 936.5637
920 || 930.4117 | 930.4698
916 || 924.7022 | 924.6818
916 | 919.2850 | 919.1761
911 || 914.1374 | 913.9314
896 1| 909.2384 | 908.9278
893 1| 904.5692 | 904.1473
890 1| 900.1123 | 899.5735
887 I 895.8517 | 895.1910
870 1| 891.7728 | 890.9859
858 || 887.8621 | 886.9454
854 || 884.1075 | 883.0576

Table 5.22: Exact and Model number of subscribers
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Figure 5.16: Model prediction for three segments with probabilities 0.1, 0.3 & 0.6



5.3.3.56 Three segments with optimizable probabilities

This churn model divides the data into three segments however this time the probability
of being in a segment is not fixed but it can be optimized. For this model two initial
points must be given, one for the probabilties of each segment prob, and one for the
model parameters 8. These initial values must be within the bounds 0 < prob < 1,
prob; + prob, 4+ prob; = 1, and 0.0001 < 8 < 0.9999. Table 5.23 shows the results
obtained from Microsoft Excel. In particular, the probability of being in the third
segment is 0, and it is more probable for a subscriber to be in the first segment. On
the other hand, the first segment has a very small churn probability, while the third
segment has a high churn probability.

The same procedure was carried out using the simulated annealing algorithm in
Matlab. The initial points were set within the bounds of prob and 6. The global opti-
mum for the log-likelihood function was achieved at best = 488.6808. This results from
the model parameters bestmin = [0.0881 0.0958 0.0001 0.0404 0.0995 0.8602], where
6 = [0.0005 0.0188 0.0720] and prob = [0.7614 0.1442 0.0944]. These show that it is
most probable for a subscriber to be in the first segment with the least churn probabil-
ity. The number of initial values which result in obtaining the global optimal value is
968, meaning that 968 out of 1000 initial points result in the global optimum value.

The predictions were once again calculated and Table 5.24 shows the predictions
of both optimal values obtained from Microsoft Excel and Matlab. The corresponding
figure is shown in Figure 5.17. This figure also suggests that this churn model is not very
accurate to predict the number of subscribers in the future. However, the predictions
obtained from Matlab give a more accurate result than those obtained from Microsoft

Excel.
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Three segments of subscribers with optimizable probabilies

Segments: 1 2 3
Thetas: 0.0001 | 0.0540 | 0.8942
Probabilities: | 0.8182 | 0.1818 | 0.0000 1

LL: -488.5951

Week t N |P[T=t] ng S[T=t] | LL term

1000 0
990 0.0099 10 0.9901 -46.1499
986 0.0094 4 0.9807 -18.6802

982 0.0089 4 0.9719 -18.9003
961 0.0084 21 0.9635 | -100.3817
956 0.0079 S 0.9555 -24.1753
951 0.0075 5 0.9480 -24.4500
948 0.0071 3 0.9409 -14.8347
924 0.0067 24 0.9341 | -119.9947

920 0.0064 0.9278 -20.2185
916 0.0060 0.9217 -20.4377
916 0.0057 0.9160 0.0000

0.0054 -80.3721
0.0051
0.0049
0.0046
0.0044
0.0041
0.0039

0.0037

O > >

o S o G S g MG
©OOTDU WD RO ©RTD O AW = o

Table 5.23: Excel: Three segments with optimizable probabilies
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E(t) | Mx(t) | Mwm (t)
1000 1000 1000
990 || 990.0977 | 990.1115
986 || 980.8187 | 980.8560
982 || 972.1188 | 972.1817
961 || 963.9576 | 964.0418
956 || 956.2978 | 956.3936
951 || 949.1050 | 949.1985
948 || 942.3478 | 942.4214
924 |} 935.9969 | 936.0304
920 || 930.0255 | 929.9961
916 || 924.4085 | 924.2919
916 || 919.1229 | 918.8935
911 | 914.1474 | 913.7785
896 || 909.4620 | 908.9266
893 || 905.0485 | 904.3189
890 || 900.8896 | 899.9382
887 || 896.9695 | 895.7689
870 || 893.2733 | 891.7963
858 || 889.7873 | 888.0070
854 || 886.4985 | 884.3888

Table 5.24: Exact and Model number of subscribers
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5.3.3.6 Shifted-Beta Geometric Model

The shifted-beta geometric (sBG) model was the last churn model fitted to the data.
For this model the first fourteen weeks of the data were used to find the optimal model
parameters. In this case the data is not divided into segments and so there are no
segment probabilities. An initial point was given for o and # which are the parameters
of this model. The optimal value for the log-likelihood function was obtained when
a = 0.4530 and G = 49.5971, where the corresponding log-likelihood function is given
by LL = —621.9530. The results by Microsoft Excel are shown in Table 5.25.

By applying the simulated annealing algorithm in Matlab, the optimal values for «
and [ were calculated. The optimal model parameters obtained were o = 0.3653 and
B = 38.9580 and the corresponding log-likelihood function is given by best = 621.9698.
All 100 initial values obtained the global optimal solution, where the difference in the
values of the log-likelihood function are negligible.

For this model, the predictions for the optimal values obtained from Microsoft Excel
and the predictions for the optimal values obtained from Matlab were plotted with the
exact number of subscribers per week. Table 5.26 shows the results of the predictions
and Figure 5.18 shows the plot of these predictions. From this figure it can be seen
that the predictions explain the data very well and in fact, this churn model gives the

best predictions.
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Friends sBG Model

Alpha | 0.4530
Beta | 49.5971
LL: |-621.9530

Week t | N P[T=t] | n¢ | S[T=t||LL term
0 1000 0
1 990 0.0091 10 | 0.9909 | -47.0489
2 986 0.0088 4 | 09822 | -18.9351
3 982 0.0085 4 | 09736 | -19.0483
4 961 0.0083 21| 0.9653 | -100.5869
5 956 0.0081 51 0.9572 | -24.0855
6 951 0.0079 51 0.9493 | -24.2193
7 948 0.0077 3 | 0.9417 | -14.6104
8 924 0.0075 24 | 0.9342 |-117.5020
9 920 0.0073 4 | 0.9269 | -19.6851
10 916 0.0071 4 | 0.9198 | -19.7847
11 916 0.0069 0 | 0.9128 0.0000
12 911 0.0068 5| 0.9061 | -24.9738
13 896 0.0066 15| 0.8995 | -75.2768
14 893 0.0065 3 | 0.8930 | -15.1253
15 0.0063 -101.0709
16 0.0062
17 0.0060
18 0.0059
19 0.0058

Table 5.25: Excel: sBG Model
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E(t) | Mx(t) | My (t)
1000 | 1000 | 1000
990 || 990.9491 | 990.7103
986 || 982.2355 | 981.8186
982 || 973.8395 | 973.2978
961 || 965.7433 | 965.1234
956 || 957.9303 | 957.2732
951 || 950.3850 | 949.7266
948 || 943.0932 | 942.4651
924 || 936.0416 | 935.4714
920 || 929.2180 | 928.7300
916 | 922.6108 | 922.2262
916 || 916.2092 | 915.9467
911 || 910.0035 | 909.8792
896 || 903.9840 | 904.0122
893 || 898.1422 | 898.3352
890 || 892.4698 | 892.8383
887 | 886.9591 | 887.5123
870 || 881.6030 | 882.3487
858 || 876.3945 | 877.3396
854 || 871.3274 | 872.4776

Table 5.26: Exact and Model number of subscribers
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Chapter 6

Conclusions

6.1 Presentation of major results

The difference between the algorithm provided in Microsoft Excel and the simulated
annealing applied in Matlab was very evident during the implementation phase of this
dissertation. The initial values entered in Microsoft Excel had to be entered by trial-
and-error until the optimal values were achieved, whereas for the simulated annealing
algorithm, for the majority of initial value gives the optimal values. There were only a
very few cases in which the global optimization algorithm did not provide the optimal
values as can be seen from the matrix A and the sum of the initial points which
resulted in the optimal solutions. So it is true that the global optimization algorithm
performs better than other constrained nonlinear optimization algorithms. For the cases
when the data was divided into two segments with fixed probabilities, optimization was
also computed with a standard optimization algorithm. The standard optimization
algorithm fmincon showed that the algorithm does not always result in the global

optimum, but in most cases it reaches a local optimum, and so, the simulated annealing
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algorithm performed better than the standard optimization algorithm.

The following is a summary of the values obtained from the churn models, in par-
ticular to show which is the most accurate model. This can be done by taking the
average of the absolute difference between the predicted values and the actual values ol
the subscriber base. The smaller the average is, implies that the churn model is more
accurate.

The first churn model applied to the data was that of dividing the subscriber base
into two segments with fixed probabilities 0.4 and 0.6. For the IGTT tariff, the average
difference between the predicted values and actual values resulting from the Microsoft
Excel optimal values is of 8 subscribers, while the average difference from Matlab’s op-
timal values is of 9 subscribers. On the other hand, for the Friends tariff, the difference
resulting from both Microsoft Excel and Matlab is of 7 subscribers.

For the second churn model, the data was divided into two segments with fixed
probabilities 0.1 and 0.9. For the IGTT tariff, the average difference from Microsoft
Excel is of 13 subscribers, and the difference from Matlab is of 14 subscribers. For the
Friends tariff, both averages from Microsoft Excel and Matlab give a difference of 9
subscribers.

The next churn model was such that it optimizes both the segment probabilities
and the churn probabilities. The average difference between the predicted values and
the actual values for the IGTT tariff resulted in 13 subscribers both from the Microsoft
Excel and Matlab optimal values. For the Friends tariff, a difference of 10 subscribers
resulted from the Microsoft Excel optimal values, and a difference of 8 subscribers
resulted from the Matlab optimal values.

The fourth model divided the data into three segments with fixed segment proba-
bilities 0.1, 0.3 and 0.6. For the IGTT tariff, both difference from Microsoft Excel and
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Matlab are of 13 subscribers. Whereas for the Friends tariff both Microsoft Excel and
Matlab resulted with a difference of 9 subscribers.

For three segments where both the segment probabilities and churn probabilities are
optimized, an average difference of 13 subscribers was obtained from both Microsoft
Excel and Matlab for the IGTT tariff. A difference of 10 subscribers was also obtained
from Microsoft Excel for the Friends tariff, whereas a difference of 9 subscribers was
obtained from Matlab.

The last churn model applied to both tariffs was that of the shifted-beta geometric
(sBG) model. An average difference of 7 subscribers resulted between the actual data
and the predictions from Microsoft Excel and Matlab for the IGTT data, while an
average difference of 6 subscribers resulted from the predictions of Microsoft Excel and
Matlab for the Friends tariff.

This shows that the most accurate churn model is the shifted-beta-geometric (sBG)

model, since it has the smallest difference between the actual data and the predictions.

6.2 Underlining of limitations

Even though a global optimization algorithm was applied to the data in the Matlab
computations, it still does not guarantee that the algorithm results in the global optimal
solution for all initial values. The values of the matrix A show that not all 100 random
initial points always attain the global solution. Also, since the data provided only
showed the number of subscribers for 20 weeks, a longer observation period will surely

help to obtain a more accurate prediction.

112



6.3 Implications for future research

In this dissertation only two tariffs were used for the implementation part. Future
implementations can focus on more tariffs and may also include post-paid/contract
bound subscribers. Since no indication is given on whether the subscribers churn at
the customer level or else at the contract level, future studies might consider taking
into account churning at a contract level and check whether there are any similarities
between the new tariffs that the churned subscribers are attracted to. Also, other churn

models may be implemented in future research.
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Appendix A

Data Set
IGTT Tariff

Segment 0 1 2 3 4 5 6 7 8 9
0 1000 | 1000 | 998 | 997 | 940 | 935 | 933 | 931 | 881 | 880
1 1000 | 974 | 962 | 949 | 946 | 938 | 928 | 922 | 908 | 905
2 1000 | 995 | 990 | 988 | 947 | 945 | 942 | 941 | 915 | 913
3 1000 | 997 | 990 | 985 | 931 | 926 | 916 | 907 | 881 | 877
4 1000 | 995 | 993 | 989 | 948 | 944 | 939 | 935 | 924 | 920
5 1000 | 986 | 981 | 975 | 973 | 968 | 965 | 962 | 960 | 956
6 1000 | 992 | 967 | 948 | 944 | 928 | 899 | 894 | 870 | 865

Segment 10 11 12 13|14 | 1516 | 17 | 18 | 19
0 879 | 879 | 878 | 878 | 877 | 876 | 875 | 875 | 792 | 792
1 899 | 899 | 884 | 881 | 873 | 861 | 859 | 842 | 830 | 819
2 912 | 912 | 909 | 882 | 881 | 878 | 875 | 864 | 860 | 858
3 873 | 873 | 862 | 836 | 828 | 827 | 824 | 822 | 814 | 805
4 916 | 916 | 912 | 910 | 907 | 904 | 899 | 865 | 861 | 858
5 950 | 950 | 945 | 931 | 926 | 921 | 916 | 907 | 903 | 897
6 859 | 859 | 845 | 845 | 841 | 834 | 824 | 818 | 816 | 799
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Segment 0 1 2 3 4 5 6 7 8 9
0 1000 | 1000 | 1000 | 999 | 897 | 897 | 897 | 897 | 860 | 859
1 1000 | 972 | 960 | 952 | 949 | 937 | 925 | 917 | 896 | 886
2 1000 | 999 | 997 | 996 | 963 | 961 | 960 | 959 | 933 | 932
3 1000 | 997 | 992 | 990 | 968 | 962 | 957 | 954 | 921 | 917
4 1000 | 997 | 996 | 994 | 991 | 989 | 987 | 985 | 968 | 966
5 1000 | 981 | 975 | 970 | 967 | 963 | 958 | 955 | 948 | 943
6 1000 | 990 | 988 | 977 | 973 | 961 | 948 | 941 | 862 | 851

Segment 10 11 12 13 | 14 {15 | 16 | 17 | 18 | 19
0 859 | 859 | 859 | 858 | 858 | 858 | 857 | 857 | 758 | 758
1 880 | 880 | 870 | 864 | 858 | 852 | 844 | 836 | 827 | 820
2 930 | 930 | 929 | 899 | 898 | 897 | 896 | 881 | 877 | 876
3 911 | 911 | 904 | 884 | 882 | 879 | 875 | 844 | 839 | 833
4 962 | 962 | 958 | 941|939 | 936 | 933 | 920 | 918 | 915
5 938 | 938 | 933 | 929 | 928 | 924 | 920 | 907 | 902 | 899
6 844 | 844 | 828 | 803 | 799 | 789 | 778 | 714 | 699 | 691

115




Appendix B

Matlab

% IGIT: 2 segments of subscribers with probabilities 0.4 & 0.6
periods = 0:11;
prob = [0.4 0.6];

customers [1000 990 984 978 949 944 937 933 914 911 907 907];
lost (1) = 0;
for i=2:length(customers)
lost(i) = customers(i-1) - customers(i);
end
opt = struct(...
‘CoolSched’,@(T) (.9%T),...
‘Generator’,@(x) generatorl(x,10),...
‘InitTemp’,10,...
‘MaxConsRej’,1000, ...

‘MaxSuccess’,20,...

‘MaxTries’,300,...
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‘StopTemp’,1e-8,...
‘StopVal’,-Inf,...
‘Verbosity’,1);

t = @(x) -LLn(x,prob,periods,customers,lost);

% IGTT: 2 segments of subscribers with probabilities 0.1 & 0.9
periods = 0:11;
prob = [0.1 0.9];

customers [1000 990 984 978 949 944 937 933 914 911 907 907];

lost (1) = 0;

for i=2:length(customers)

lost(i) = customers(i-1) - customers(i);

end

opt = struct(...
‘CoolSched’,@(T) (.9+T),...
‘Generator’,@(x) generatorl(x,10),...
‘InitTemp’,10,...
‘MaxConsRej’,1000, ...
‘MaxSuccess’,20,...
‘MaxTries’,300,...
‘StopTemp’,1le-8,. ..
‘StopVal’,-Inf,...
‘Verbosity’,1);

f = @(x) -LLn(x,prob,periods,customers,lost);
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% IGTT: 3

periods =

prob = [0.

customers

lost(1) =

segments of subscribers with probabilities 0.1 0.3 & 0.6
0:11;

10.30.6];

[1000 990 984 978 949 944 937 933 914 911 907 907];

0;

for i=2:length(customers)

lost(i) = customers(i-1) - customers(i);

end

opt = struct(...

‘CoolSched’,@(T) (.9%T),...

‘Generator’,@(x) generatorl(x,10),...

‘InitTemp’,10,...

‘MaxConsRej’,1000,. ..

‘MaxSuccess’,20,...

‘MaxTries’,300,...

‘StopTemp’,1le-8,...

‘StopVal’,-Inf,...

‘Verbosity’,1);

f = @(x) -LLn(x,prob,periods,customers,lost);

% IGTT: 2
periods =
customers

lost(1) =

& 3 segments of subscribers with optimizable probabilities

0:11;

[1000 990 984 978 949 944 937 933 914 911 907 907];

0;

for i=2:length(customers)

118



lost(i) = customers(i-1) - customers(i);

end

opt = struct(...
‘CoolSched’ ,@(T) (.9*T),...
‘Generator’,@(x) generator3(x,10),...
‘InitTemp’,10,...
‘MaxConsRej’,1000,. ..
‘MaxSuccess’,20,...
‘MaxTries’,300,...
‘StopTemp’,1e-8,. ..
‘StopVal’,-Inf,...
‘Verbosity’,1);

f = @(x) objective2(x,periods,customers,lost);

% IGTT: sBG model
customers = [1000 990 984 978 949 944 937 933 914 911 907 907 900 886 882];
week = 0:length(customers);
lost(1) = 0;
for i=2:length(customers)
lost(i) = customers(i-1) - customers(i);
end

opt = struct(...

3]

L~ o 4y 7 e\ 7 e
CoolSched’ ,@(T) (.9*T),...
‘Generator’,@(x) generatorsbg(x,10),...

‘InitTemp’,10,...
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‘MaxConsRej’,1000,. ..
‘MaxSuccess’,20, ...
‘MaxTries’,300,...
‘StopTemp’,le-8,. ..
‘StopVal’,-Inf, ...
‘Verbosity’,1);

f = @(x) -LLsbg(x,week,customers,lost);

% Friends: 2 segments of subscribers with probabilities 0.4 & 0.6
periods = 0:11;
prob = [0.4 0.6];
customers = [1000 990 986 982 961 956 951 948 924 920 916 916];
lost(1) = 0;
for i=2:length(customers)
lost(i) = customers(i-1) - customers(i);
end
opt = struct(...
‘CoolSched’,@(T) (.9%T),...
‘Generator’,0@(x) generatorl(x,10),...
‘InitTemp’,10,. ..
‘MaxConsRej’,1000,. ..
‘MaxSuccess’,20, ...
‘MaxTries’,300,...
‘StopTemp’,1le-8,...
‘StopVal’,-Inf,...
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‘Verbosity’,1);

f = @(x) -LLn(x,prob,periods,customers,lost);

% Friends: 2 segments of subscribers with probabilities 0.1 & 0.9
periods = 0:11;
prob = [0.1 0.9];

customers [1000 990 986 982 961 956 951 948 924 920 916 916];

lost (1) = 0;

for i=2:length(customers)

lost(i) = customers(i-1) - customers(i);

end

opt = struct(...
‘CoolSched’ ,@(T) (.9%T),...
‘Generator’,@(x) generatorl(x,10),...
‘InitTemp’,10,...
‘MaxConsRej’,1000, ...
‘MaxSuccess’,20, ...
‘MaxTries’,300,...
‘StopTemp’,1e-8, ...
‘StopVal’,-Inf,...
‘Verbosity’,1);

f = @(x) -LLn(x,prob,periods,customers,lost);

% Friends: 3 segments of subscribers with probabilities 0.1 0.3 & 0.6
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periods = 0:11;
prob = [0.1 0.3 0.6];

customers [1000 990 986 982 961 956 951 948 924 920 916 916];

lost (1) = 0;

for i=2:length(customers)

lost(i) = customers(i-1) - customers(i);

end

opt = struct(...
‘CoolSched’ ,@(T) (.9%T),...
‘Generator’,@(x) generatorl(x,10),...
‘InitTemp’,10,...
‘MaxConsRej’,1000, ...
‘MaxSuccess’,20, ...
‘MaxTries’,300,...
‘StopTemp’,1le-8,...
‘StopVal’,-Inf,...
‘Verbosity’,1);

f = @(x) -LLun(x,prob,periods,customers,lost);

% Friends: 2 & 3 segments of subscribers with optimizable probabilities

periods = 0:11;

customers [1000 990 986 982 961 956 951 948 924 920 916 916];
lost{i) = 0;
for i=2:length(customers)

lost(i) = customers(i-1) - customers(i);

122



end

opt = struct(...
‘CoolSched’ ,@(T) (.9%xT),...
‘Generator’,@(x) generator3(x,10),...
‘InitTemp’,10, ...
‘MaxConsRej’,1000, ...
‘MaxSuccess’,20,...
‘MaxTries’,300,...
‘StopTemp’,le-8,...
‘StopVal’,-Inf,...
‘Verbosity’,1);

f = @(x) objective2(x,periods,customers,lost);

% Friends: sBG model

customers = [1000 990 986 982 961 956 951 948 924 920 916 916];

week = 0:length(customers);

lost(1) = 0;

for i=2:length(customers)

lost (i) = customers(i-1) - customers(i);

end

opt = struct(...
‘CoolSched’,@(T) (.9*T),...
‘Generator’,@(x) generatorsbg(x,10),...
‘InitTemp’,10,...
‘MaxConsRej’,1000, ...
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‘MaxSuccess’,20,...
‘MaxTries’,300,...
‘StopTemp’,1e-8, ...
‘StopVal’,-Inf,...
‘Verbosity’,1);

f = @(x) -LLsbg(x,week,customers,lost);

% Generatorl: Generator for n segments with fixed probabilities
function y = generatorl(x,scale)

%

% changes any x(i), no feasibility tests

% use: opt.Generator = @(x) generatorl(x,10)

A

y =%
pos = unidrnd(length(x)); % random position of the change
z = y(pos) + randn/scale; % new value

while z>0.999999 || z<0.000001
z = y(pos) + randn/scale; 7 repeat until in range
end

y(pos) = z;

% Generator3: Generator for n segments with optimizable probabilities

function y = generatorS(x,scale)
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b
% generator for n segments, both thetas and probs optimized

% length of x must be even

% use: opt.Generator

A

@(x) generator3(x,10)

n = length(x);

m = n/2;

y=x

pos = unidrnd(n); % random position of the change
z = y(pos) + randn/scale; % new value

while z>=0.999999 || z<=0.000001

z = y(pos) + randn/scale; 7% repeat until in range

end
y(pos) = z;
if pos > m % restoring feasibility of probs

¢ = 1/sun(y(m+1:n));
y(m+tl:n) = cxy(m+l:n);

end

% Generatorsbg: Generator for sBG model
function y = generatorsbg(x,scale)

h

% changes any x{(i), no feasibility tests

% use: opt.Generator = Q(x) generatorl(x,10)

[

125



y =%
pos = unidrnd(length(x)); % random position of the change
z = y(pos) + randn/scale; % new value
while z<0.000001
z = y(pos) + randn/scale; % repeat until in range
end

y(pos) = z;

% Objective2: Objective function with optimizable probabilities
function y = objective2(x,periods,customers,lost)

h

% Objective function for both thetas and probabilities optimized
%  thetas: 1st half of x

% probs : 2nd half of x (length of x must be even)

b

n

length(x);

m = n/2;

thetas = x(1:m);
probs = x(m+1:n);

y = -LLn(thetas,probs,periods,customers,lost);

% LLn: Log-likelihood function for n segments

function x = LLn(theta,prob,month,customers,lost)
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% Log-likelihood for m segments

B
It

length(month) ;
length(prob) ;

=}
il

probTt (1) = 0;
for 1 = 2:n
probTt(i) = 0;
for j = 1:m
probTt (i) = probTt(i)
+ theta(j)*((1-theta(j)) " (month(i)-1))*prob(j);
end
end;
Probsum = sum(probTt);
probTt(1) = [1;
S(1) = 1 - probTt(1);
for i = 2:n
S(i) = S(i-1) - probTt(i-1);
end
LLterm(1) = 0;
for i = 2:n
LLterm(i) = lost(i)*log(probTt(i-1));
end;
LLterm(1) = [1;

if Probsum ==
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LLTerm

[LLterm -Inf];
else

LLTerm

[LLterm customers(n)*log(1-Probsum)];
end

x = sum(LLTerm) ;

% LLsbg: Log-likelihood function for sBG model
function x = LLsbg(alphabeta,week,customers,lost)
A

% Log-likelihood for m segments

b

n = length(customers);

probTt (1)

0;

probTt(2) = alphabeta(l)/(alphabeta(l) + alphabeta(2));
for i = 3:n
probTt (i) = ((alphabeta(2) + (week(i) - 2))/(alphabeta(l) +
alphabeta(2) + (week(i) - 1)))#*probTt(i-1);
end;
Probsum = sum(probTt);
1;

0;

probTt (1)

LLterm(1)

for i = 2:n
LLterm(i) = lost(i)*log(probTt(i-1));
end;

LLterm(1) = [];

128



LLTerm = [LLterm customers(n)*log(1l-Probsum)];

x = sum(LLTerm) ;

% IGTT: Test 2 segments of subscribers with probabilities 0.4 & 0.6
datal;
globopt = 531;

best = Inf;
for x = 0:9
for y = 0:9

thO = [0.1%x + 0.01 0.1y + 0.01]
[minimum,zz] = anneal(f,th0,opt)
Z(x+1l,y+1) = zz;

if (zz < globopt)

A(x+l,y+1) = 1;
else

A(x+1,y+1) = 0;
end
if zz<best

best = zz;

bestmin = minimum;
end

end

¢}
[}
ja

N >
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globals = sum(sum(A))
best

bestmin

% Friends: Test 2 segments of subscribers with probabilities 0.4 & 0.6
data7;

globopt = 490;

best = Inf;
for x = 0:9
for y = 0:9

thO = [0.1xx + 0.01 0.1xy + 0.01]
[minimum,zz] = anneal(f,thO,opt)
Z(x+1l,y+1) = zz;

if (zz < globopt)

A(x+l,y+1) = 1;
else

A(x+1,y+1) = 0;
end
if zz<best

best = zz;

bestmin = minimum;
end
end

end

130



Z

globals = sum(sum(A))
best

bestmin

% IGIT: Test 2 segments of subscribers with probabilities 0.1 & 0.9
data2;
globopt = 529;

best = Inf;
for x = 0:9
for y = 0:9

thO = [0.1%x + 0.01 0.1%y + 0.01]
[minimum,zz] = anneal(f,thO,opt)
Z(x+1l,y+1) = zz;
if (zz < globopt)
A(x+1l,y+1) = 1;
else
A(x+1,y+1) = 0;
end
if zz<best
best = zz;
bestmin = minimum;
end
end

end
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A

Z

globals = sum(sum(A))
best

bestmin

% Friends: Test 2 segments of subscribers with probabilities 0.1 & 0.9
data8;

globopt = 489;

best = Inf;
for x = 0:9
for y = 0:9

thO = [0.1*x + 0.01 0.1xy + 0.01]
[minimum,zz] = anneal (f,thO0,opt)
Z(x+1,y+1) = zz;

if (zz < globopt)

A(x+l,y+1) = 1;
else

A(x+1,y+1) = 0;
end
if zz<best

best = zz;

bestmin = minimum;
end

end
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end

A

Z

globals = sum(sum(A))
best

bestmin

% IGTT: Test 2 segments of subscribers with optimizable probabilities

data3; % optimization - n segments, both optimized
n = 2; % change this line to fix n

bestl = 529;

best = Inf;

worst = -Inf;

counter = 0;

A =0;

while counter<101
thO = 0.00001 + rand(1,2#n)*0.9999;
¢ = 1/sum(th0(n+1:2%n));
thO(n+1:2*n) = c*thO(n+1:2*n);
counter = counter + 1
[minimum,z] = anneal(f,thO,opt)
if z<bestl

A = A+1;
best = z;

bestmin = minimum;
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elseif z>worst
worst = z;
worstmin = minimum;
end
end
best
bestmin

A

% Friends: Test 2 segments of subscribers with optimizable probabilities

data9; % optimization - n segments, both optimized
n=2; % change this line to fix n

bestl = 489;

best = Inf;

worst = -Inf;

counter = 0;

A = 0;

while counter<101
th0 = 0.00001 + rand(1,2*n)*0.9999;
¢ = 1/sum(thO(n+1:2*n)) ;
thO(n+1:2%n) = cxthO(n+l:2%n);

counter = counter + 1

[minimum,z] = anneal{f,thO,opt)
if z<bestl

A = A+1;
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best = z;
bestmin = minimum;
elseif z>worst
worst = z;
worstmin = minimum;
end
end
best

bestmin

% IGTT: Test 3 segments of subscribers with probabilities 0.1 0.3 & 0.6

data4; % optimization - n segments, probs fixed
n = 3; % change this line to fix n

best = Inf;

bestl = 529;

worst = -Inf;

counter = 0;

A = 0;

while counter<1001
thO = 0.00001 + rand(1,n)*0.9999;
counter = counter + 1
[minimum,z] = anneal(f,thO,opt)
if z<bestl

A=A+1;
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best = z;
bestmin = minimum;
elseif z>worst
worst = z;
worstmin = minimum;
end
end
best

bestmin

% Friends: Test 3 segments of subscribers with probabilities 0.1 0.3 & 0.6

datall; % optimization - n segments, probs fixed
n = 3; % change this line to fix n

best = Inf;

bestl = 489;

worst = —-Inf;

counter = 0;

A= 0;

while counter<1001
th0 = 0.00001 + rand(1,n)*0.9999;
counter = counter + 1
[minimum,z] = anneal(f,thO,opt)
if z<bestl

A=A+1;
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best = z;
bestmin = minimum;
elseif z>worst
worst = z;
worstmin = minimum;
end
end
best
bestmin

A

% IGTT: Test 3 segments of subscribers with optimizable probabilities

datab; % optimization - n segments, both optimized
n = 3; % change this line to fix n

bestl = 529;

best = Inf;

worst = -Inf;

counter = 0;

A= 0;

while counter<1001
thO = 0.00001 + rand(1,2+%n)*0.9999;
c = 1/sum(th0(n+1:2%n));
thO{n+1:2*%n) = c*xthO(n+1:2%n);
counter = counter + 1

[minimum,z] = anneal(f,thO,opt)
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if z<bestl
A = A+l
best = z;
besglmin - minimum,
elseif z>worst
worst = z;
worstmin = minimum;
end
end
best
bestmin

A

% Friends: Test 3 segments of subscribers with optimizable probabilities

datalil; % optimization - n segments, both optimized
n = 3; % change this line to fix n

bestl = 489;

best = Inf;

worst = -Inf;

counter = 0;

A= 0;

while counter<1001
thO = 0.00001 + rand(1,2#%n)*0.9999;
¢ = 1/sum(th0(n+1:2%n));
thO(n+1:2*%n) = c*thO(n+1:2+%n);
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end

best

counter = counter + 1
[minimum,z] = anneal (f,thO,opt)
if z<bestl

A = A+l

best = z;

bestmin = minimum;
elseif z>worst

worst = z;

worstmin = minimum;

end

bestmin

% IGTT: Test sBG model

datab;

globopt = 673;

best

for

= Inf;
x = 0:9
for y = 0:9

thO = [0.1xx + 0.01 0.1*xy + 0.01]

o 17
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Z(x+l,y+1) = zz;
if (zz < globopt)
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[y
we

A(x+1,y+1)
else

A(x+1,y+1)

Il
o

end
if zz<best
best = zz;
bestmin = minimum;
end
end
end
A
Z
globals = sum(sum(4))
best

bestmin

% Friends: Test sBG model
datal2;
globopt = 622;

best = Inf;
for x = 0:9
for y = 0:9
th0 = [0.1%x + 0.01 O.1ixy + 0.01]

[minimum, zz] anneal (f,th0,opt)

Z(x+1,y+1) = zz;
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end
end
A
Z
globals
best

bestmin

if (zz < globopt)
A(x+1l,y+1) = 1;
else
A(x+1,y+1) - 0;
end
if zz<best
best = zz;
bestmin = minimum;

end

= gsum(sum(A))

% Test for constrained nonlinear optimization algorithm

globopt
A = 0;
for x =

for

= B31;

0:9
y = 0:9

1N e I'n 4 3+ N N4
LUV — V. LTX T UV.UL

N

V.

1*y +

n n
V.V

47
1]

[minimum,zz] = fmincon(f,th0’,[1,[1,[],([]1,[0.0001 0.0001]",
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Z(x+1l,y+1) = zz;
if (zz < globopt)
A(x+1l,y+1) = 1;
else
A(zx+1,y+1) = 0;
end
end
end
A
Z
globals = sum(sum(4))

%Simulated Annealing Algorithm

function [minimum,fval] = anneal(loss, parent, options)

def = struct(...
’CoolSched’ ,@(T) (.8%T),...
’Generator’,@(x) (x+(randperm(length(x))==length(x))*randn/100),...
’InitTemp’,1,...
’MaxConsRej’,1000,...
’MaxSuccess’,20, ...

’MaxTries’,300,...

’StopVal’,-Inf,...

’Verbosity’,1);
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if "nargin
minimum = def;
return
elseif nargin<2,
error (’MATLAB:anneal :noParent’,’You need to input a first guess.’);
elseif nargin<3,
options=def;
else
if “isstruct(options)
error (’MATLAB:anneal:badOptions’,...
’Input argument ’’options’’ is not a structure’)
end
fs = {’CoolSched’,’Generator’,’InitTemp’,’MaxConsRej’,...
"MaxSuccess’, ’MaxTries’,’StopTemp’, ’StopVal’,’Verbosity’};
for nm=1:length(fs)
if ~“isfield(options,fs{nm}), options.(fs{nm}) = def.(fs{nm}); end
end

end

newsol = options.Generator;

Tinit = options.InitTemp;

minT = options.StopTemp;
cool = options.CoolSched;
minF = options.StopVal;
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max_consec_rejections = options.MaxConsRej;

max_try = options.MaxTries;
max_success = options.MaxSuccess;
report = options.Verbosity;

k=1;

itry = 0;

success = 0;

finished = O;

consec = 0;

T = Tinit;

initenergy = loss(parent);
oldenergy = initenergy;

total = 0;

if report==2, fprintf(1,’\n T = %7.5f, loss

while "finished;
itry = itry+i;

current = parent,;

%10.5f\n’,T,o0ldenergy); end

if itry >= max_try || success >= max_success;
if T < minT || consec >= max_consec_rejections;
finished = 1;

total = total + itry;

break;
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else
T = cool(T);
if report==2,
fprintf(1,” T - %7.5L, loss - %10.50\n’,T,oldenergy);
end
total = total + itry;
itry = 1;
success = 1;
end

end

newparam = newsol(current) ;

newenergy = loss(newparam) ;

if (newenergy < minF),
parent = newparam;
oldenergy = newenergy,;
break

end

if (oldenergy-newenergy > le-6)
parent = newparam;
oldenergy = newenergy;
success = success+l;

consec = 0;
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if (rand < exp( (oldenergy-newenergy)/(k*T) ));
parent = newparam,
vldeneigy - newenergy,
success = success+l;
else
consec = consec+1;
end
end
end
minimum = parent;
fval = oldenergy;
if report;
fprintf(1, ’\n Initial temperature: \t%g\n’, Tinit);
fprintf(1, > Final temperature: \thg\n’, T);
fprintf(1, ° Consecutive rejections: \t}%i\n’, consec);
fprintf(1, > Number of function calls:\t%i\n’, total);
fprintf(1, ’* Total final loss: \t/g\n’, fval);
end

else
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