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Abstract 

Kim Talbot, B.Sc. (Hons.) 

Department of Statistics & Operations Research 

May 2010 

University of Malta 

This dissertation examines the probability that a subscriber churns from the current 

tariff he is subcribed to. These probabilities differ from one churn model to another 

and the optimal churn probabilities will be found by a global optimization algorithm 

and a standard optimization algorithm. When the optimal probabilities are obtained, 

a prediction of five or eight weeks is calculated, depending on the churn model. These 

predictions will then show which of the churn models implemented is the most accurate. 

In fact, the shifted-beta geometric (sBG) model is the most accurate and moreover, the 

global optimization algorithm performs better than the standard optimization algo­

rithm. Modelling is done by use of Microsoft Excel and Matlab. 
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Chapter 1 

Introduction 

In recent years, the telecommunications industry has reached a level of saturation. 

Even though the number of mobile service subscriptions has been increasing, the rate 

of this increment is not as fast as it used to be. Companies investing in this sector 

are now faced with the problem of churning due to the increase in competition. They 

tend to forget to attend to the needs and expectations of their present subscribers, thus 

increasing the risk of churn considerably. So nowadays, companies are trying to offer 

the best tariffs to retain their current subscribers and offer new attracting tariffs to 

acquire new ones. 

To retain the current subscribers within a company, it would be useful to have an 

idea when a subscriber is most likely to churn. Conventional statistical methods, such 

as decision trees and neural networks, are very successful in predicting which customers 

might churn. However, these methods could hardly predict when customers will churn, 

or how long the customers will stay active [13]. 
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1.1 Purpose of Dissertation 

This dissertation examines the probability that a subscriber churns from the current 

tariff he is subcribed to. These probabilities differ from one churn model to another 

and the optimal churn probabilities will be found by a global optimization algorithm, 

namely the simulated annealing algorithm. Its background theory and performance 

are examined to demonstrate the benefits when compared with standard optimization 

algorithms. When the optimal probabilities are obtained, a prediction of five or eight 

weeks, depending on the churn model, is calculated. These predictions will then show 

which of the churn models implemented is the most accurate. Modelling is done by use 

of Microsoft Excel and Matlab. 

1.2 Structure of Dissertation 

Chapter 2 gives a brief overview of research in optimization, simulated annealing and 

churn models. Chapter 3 gives a deeper mathematical explanation of the global op­

timization algorithm, Simulated Annealing, showing how this algorithm converges to 

the global minimum/maximum, and gives necessary and sufficient conditions for con­

vergence. Different churn models used in various areas are discussed in Chapter 4. In 

particular, the Cox model, variations of this model and the Shifted-Beta Geometric 

model. The data for this dissertation is provided by Vodafone (Malta) Ltd., and con­

sists of the number of pre-paid subscribers in two different tariffs, the It's Good to Talk 

(IGTT) tariff and the Friends tariff. Several churn models will be applied to this data 

to optimize the model parameters. The resultant optimal model parameters will then 

be used for predictions, and a comparison of the actual data with the predictions will 

be made to test the accuracy of each model, as discussed in Chapter 5. 
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Chapter 2 

Review of the Literature 

2.1 Global Optimization Algorithms 

In real-life problems, functions of many variables have a large number of local minima 

and/ or maxima. By using local optimization algorithms, it is relatively easy to find 

an arbitrary local optimum. A local optimum is a solution which is optimal within a 

neighbouring set of solutions. Finding the global maximum/minimum of a function is 

more complex. A global optimum is the optimal solution among all possible solutions. 

The objective of global optimization is to find the globally best solution of possibly 

nonlinear models, in the presence of multiple local optima. Nonlinear models are present 

in many applications, such as in advanced engineering design, biotechnology, data anal­

ysis, environmental management, financial planning, process control, risk management, 

scientific modelling, and others. Their solution often requires a global search approach. 

[20] describes six different heuristic strategies for convergence to global optima: 

1. Globalized extensions of local search methods: The idea of these methods is to 

apply a preliminary grid search or random search based global phase, followed by 
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applying a local convex programming method. 

2. Evolution strategies: These methods adapt a search procedure based on a popu­

lation of candidate solution points. Iterations involve a competitive selection that 

drops the poorer solutions. The remaining pool of candidates are then recombined 

with other solutions, for example, by swapping components with another. 

3. Simulated Annealing: These techniques are based upon the physical analogy of 

cooling crystal structures that spontaneously attempt to arrive at some stable 

(global) equilibrium. 

4. Tabu search: The idea of this search is to forbid search moves to points already 

visited in the search space, at least for the upcoming few steps. That is, one 

can temporarily accept new inferior solutions, in order to avoid paths already 

investigated. This approach can lead to exploring new regions of the feasible 

set, with the goal of finding a solution by globalized search. Tabu search has 

traditionally been applied to combinatorial optimization problems. 

5. Approximate convex global underestimation: This strategy attempts to estimate 

the large scale, overall convexity characteristics of the objective function based 

on directed sampling in the feasible set. 

6. Sequential improvement of local optima: These methods usually operate on adap­

tively constructed auxiliary functions, to assist the search for gradually better 

optima. 

In this dissertation Simulated Annealing is the strategy that will be implemented. 
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2.2 Tariff Optimization 

In the telecommunications industry, each and every subscriber is associated to one 

particular tariff at a time. The two simplest forms of tariffs are the prepaid tariff and 

the postpaid/ contract tariff. The difference between these two tariffs is that for the 

prepaid tariff, subscribers buy a 'top-up card' before making use of the service, while 

for contract subscribers, subscribers make use of the service before making use of the 

service. Usually, at the end of each month a bill is sent to these subscribers to pay for 

the service consumed. A subscriber can switch from one tariff to another, as long as 

the subscriber is making use of only one tariff. 

[22] presents a practical problem of determining an optimal tariff for a subscriber 

of a mobile telecommunications company. It explains how a company tries to offer 

the best possible combination of services in different contracts to satisfy as much as 

possible the subscribers. Services are distributed into several contracts with a fixed 

monthly payment. However, a customer is charged accordingly if he makes use of more 

services than the proposed services in the contract. 

2.3 Simulated Annealing 

The simplest form of optimization problems usually deal with one single objective 

function having a linear objective function and linear constraints. In general, this 
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form of optimization problem can be written as: 

min / max Z c1x1 + c2X2 + ... + cNxN 

s.t. a11X1 + ai2X2 + ... + aiNXN :=:::;bi 

a21X1 + a22X2 + ... + a2NXN ::::; b2 

By using adequate techniques or software, it is not difficult to find a direct solution 

which maximizes or minimizes the objective function. Moreover, the solution obtained 

guarantees a global optimum, that is, the highest or lowest value from the objective 

function. However, in many real life cases, optimization problems have more than one 

objective function. These problems are known as multiple-objective/multi-objective sim­

ulation optimization problems. A multiple-objective simulation optimization problem 

is of the form: 

min/max Z1 

min/max Z2 

min/max Zs 

C11X1 + C12X2 + ... + C1NXN 

C21X1 + C22X2 + · · · + C2NXN · 

Unlike optimization problems with a single objective function, multi-objective opti­

mization problems do not converge to a unique solution. Apart from that, improvement 

in the convergence made with respect to one objective function, may lead to a deviation 

from one or more other objective functions. In this case an adjustment must be made 
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in order to obtain an acceptable global optimal solution. The criteria to define this 

adjustment varies from one problem to another and so it cannot be determined as a 

general case. 

In many multi-objective simulation optimization problems, the objective function 

is obtained from a simulation model with more than one output variable as an opti­

mization objective. A problem which arises with these optimization problems is that 

the simulation model cannot be expressed as an exact and deterministic mathematical 

expression, and therefore they cannot be solved using direct methods [3]. 

Simulated Annealing (SA) is a meta-heuristic technique that has proved to be effec­

tive as a solving solution for simulation optimization problems. This algorithm tries to 

find an optimum solution that satisfies all objective functions simultaneously according 

to a specific criteria which must be determined beforehand. The simulated annealing 

method involves searching and evaluating a set of feasible solutions [3]. It tries to avoid 

convergence to local optimum solutions in the early stages of the algorithm. In fact, 

this is obtained by allowing solutions in a neighbourhood which have a lower optimal 

value than the previously evaluated result. The probability of accepting such solutions 

is calculated from a mathematical function called the acceptance function. 

For example, if a lower quality solution X' is compared with another solution X 

from its neighbourhood, with a variation in the objective function C' -C, the simulated 

annealing algorithm still explores the neighbourhood of the lower quality solution X' if 

the acceptance function is satisfied. 

Assuming minimization, the acceptance criterion can be written as: 

r f rv' - C\ l 
exp l \'""' T ; J < R 

where T is a control parameter and R is an independent, identically distributed random 
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number in the range [O, l]. 

In order for the algorithm to choose less frequently neighbourhoods of lower quality 

solutions as the number of iterations increase, the parameter T is chosen such that it 

decreases with time, so that the chance of converging to a local optimal solution in the 

first few iterations is eliminated. The relation between the control parameter T and 

time is called the cooling curve. 

At every step of the algorithm, the evaluation of the objective functions can result in 

either that all objectives improve, or that all objectives get worse, or that some improve 

while others get worse. In the first case it is clear that the last solution obtained is 

better than the previous one, and so this solution is retained for the next iteration. 

Similarly, if all objectives get worse, the last solution must be evaluated by some other 

acceptance function. The more complex case is when some objectives improve and 

others get worse. In this case, a decision whether the solution is to be retained or not 

must be made, or else, whether to evaluate the objectives using another acceptance 

function. 

A modified simulated annealing algorithm is proposed in [3] which is designed in 

such a way that it guides the search in order to satisfy all objectives simultaneously. 

This includes more than one cooling curves, in particular, one global cooling curve and 

one particular cooling curve for each objective function. This method decides which of 

the multiple objectives should become a reference objective by introducing a selection 

function. This function indicates which objective will be treated as reference objective 

whenever the third case of the evaluation step is obtained. 

Another approach to global stochastic simulation optimization, combines stochastic 

approximation with simulated annealing. Stochastic approximation directs a search of 

the response surface efficiently, using a conservative number of simulation replications to 
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approximate the local gradient of a probabilistic loss function. Simulated annealing adds 

a random component, a Monte Carlo randomness term, to the stochastic approximation 

search, which is needed to avoid local optima [12]. 

Another variant o± the simulated annealing algorithm ±or solving discrete stochastic 

optimization problems, where the objective function is stochastic, can be evaluated 

through Monte Carlo simulations. In particular, the Metropolis criterion depends on 

whether the objective function values indicate statistically significant difference at each 

iteration based on confidence intervals associated with these values. To the contrary 

of the original simulated annealing algorithm, this method uses a constant control 

parameter T, and the first m iterations converge almost surely to a global optimizer 

[2]. 

2.4 Churn Modelling 

2.4.1 Churn 

Chum is the term used to represent the action that a subscriber abandons the service 

from his current service provider. In many research papers, churn is divided into two 

categories: involuntary churn and voluntary churn. Involuntary churn is when churn 

is initiated by the company itself and it is the least common of the two. Involuntary 

churn occurs when the subscriber is disconnected from the service. The grace period is 

the term used to refer to the time when the subscriber is allowed to receive the service 

even though the credit amount has expired. Failure to recharge credit within the grace 

period or right after will result in disconnection from the service provider. Another 

reason for involuntary churn is if the subscriber is found to be making some sort of 

fraudulent usage. On the other hand, voluntary churn is when churn is initiated by the 
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subscriber himself and voluntary churn is considered to be more complex with much 

more various reasons why a subscriber decides to churn. Some reasons for voluntary 

churn are dissatisfaction from the current service provider (for example lack of service 

±rom customer care), changes m geographic locations (for example when migrating to 

a different country it makes more sense to switch to a service provider in the other 

country), and finally, switching to another competitor when competitor's promotion 

attracts the subscribers. More reasons may arise however the ones mentioned are the 

most frequent reasons for churning. 

In [24] churn is further divided into financial/non-financial churn, where financial 

churn is defined as bad-debt subscribers who churn, while non-financial churn refers to 

paying subscribers who churn. 

2.4.2 Churn Rate 

Churn rate is the number of subscribers who disconnect their use of a service, divided 

by the average number of total subscribers within a particular company. The average 

number of total subscribers is just an estimate since it is difficult to calculate the exact 

total number of subscribers when considering a large company. Churn rate helps the 

service providers gain knowledge of the growth or decline of the subscriber base and gives 

a hint of the average length of participation in the service. In the telecommunications 

industry, a level of saturation has been reached in practically all over the world. Even 

though in the past years there was an increase in subscriptions, churn rates have been 

increasing, mostly due to an increase in competition. Companies are now investing in 

efficient churn models to help them predict churn a.nd keep a stable, low churn rate as 

much as possible. 
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2.4.3 Churn Management 

[8] divides the possible causes of churn into four different components namely: 

1. StaLic componeuL. is Lhe behaviour ofLhe subsclibe1s wiLhin a pai Liculai company 

and what type of tariff or contract a subscriber is subscribed to. 

2. Dynamic component: is the contract made between a subscriber and the customer 

care service provided by the company. 

3. Seasonal component: more related to contract bound subscribers where the deac­

tivation date of a contract corresponds to the time at which a subscriber churns. 

4. External component: referring to the influence from other competitors' advertis­

ments which might attract subscribers. 

Retaining subscribers is one of the most critical challenges in the maturing mobile 

telecommunications service industry. Telecom operators stand to lose a great deal in 

price premium, decreasing profit levels and a possible loss of referrals from continuing 

service subscribers. Figuring how to deal with churn is turning out to be the key to the 

survival of telecom organizations [15]. Companies are now interested in predicting those 

subscribers who are most likely to churn, and if possible when will these subscribers 

churn. This is important so that they plan strategies to either retain their subscribers, 

since often they find out too late that a subscriber is going to churn, or else try to 

acquire new subscribers. For postpaid subscriptions it is slightly more easy to predict 

churn since usually the time at which a subscriber churns is equal to the deactivation 

time of the contract. However, for prepaid subscriptions the time at which a subscriber 

churns varies considerably. Despite the best efforts of these companies to prevent churn, 

the company will lose some of its subscribers to the competition sooner or later and 
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try to win them back by running reacquisition strategies since subscriber acquisition is 

relatively more easy. Three fundamental strategic approaches discussed in [15] are: 

1. Ignoring loss of subscribers and trying harder to acquire new subscribers as re­

placements 

2. Trying to steal subscribers from competitors to make up for the losses 

3. Building customer churn management capabilities 

2.4.4 Traditional Churn Models 

Since large companies have been investing in predicting churn, a number of models 

have been discussed over the years. Statistical models typically used to predict churn 

are based on logistic regression or classification trees (CART) [8] and survival analysis 

models. Most of the models classify data according to predictive accuracy (being able 

to identify correctly those individuals that will become churners during the evaluation 

phase) [8]. An important difference between survival prediction models and other pre­

diction models is the fact that survival analysis models, model time-dependent data. 

Thus logistic regression and classification trees may help to model which subscribers are 

at a high risk to churn however they lack information about when will these subscribers 

churn.· Survival analysis models are hence considered to be more efficient models which 

help estimate churn especially when the knowledge of when subscribers will churn is of 

utmost importance. Apart from that, survival analysis is most commonly used when 

dealing with censored data (discussed later). 
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2.4.5 Life Time Value 

Life Time Value (LTV) is mainly used when trying to model long-term customer sat­

isfaction. LTV is the present value of the future cash flows attributed to the customer 

relationship. A definition of terms associated with LTV should be mentioned before 

stating the formula used to calculate the LTV. 

• Churn rate is the number of subscribers who disconnect their use of service 

divided by the average number of total subscribers. 

• Retention Rate is the complement of Churn rate and is given by 

( 1 - Churn Rate) = Retention Rate 

• Profit Margin is the percentage of the net profit. 

• Discount Rate is the cost of capital used to discount future revenue from a 

subscriber. 

• Period is the unit of time into which a subscriber relationship is divided for 

analysis. 

Consider a subscriber who generates a margin mt for each period t with discount 

rate i and probability of retention rate r [8]. The Life Time Value is given by: 

00 

LTV= L ffitTt 

t=O (1 + i/ 

A firm acquires n 0 subscribers at time 0 at an acquisition cost of c0 per subscriber. 

Over time, subscribers defect (churn) so that the firm is left with n 0 x r subscribers at 

13 



the end of period 2, and so on. So in general, the LTV for the eh cohort at time 0 is 

given [8] by 

In general, an LTV model is made up of three components: 

1. Customer value over time - v (t) for time t > 0. 

2. Customer length of service - is usually given by a survival function which gives 

the probability that a subscriber will be active at time t, where a subscriber is 

said to be active if this subscriber is currently making use of the service. 

3. Discounting factor - D ( t) which describes the profit made in some future time t. 

Let f (t) be the subscribers instantaneous probability of churn at time t such that 

f (t) = - ~~, where S (t) is the survival function. Given the three components, v (t), 

S (t) and D (t), the explicit formula for a subscriber's LTV is given by, 

LTV= fo 00 

S (t) v (t) D (t) dt 

So in other words, LTV is used to find the total profit gained while the customer is still 

active. 

2.4.6 Survival Analysis Models 

As mentioned previously, survival analysis is convenient when dealing with censored 

time-dependent data. In a survival analysis model, an origin of time must be established 

to indicate the starting time at which the data will be observed. When the origin of 

time and end of the origin of time is established, there is a possibility that an event 
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(churn), is not registered since it does not occur during the period of observation. This 

is referred to as censoring. There can be three different types of censoring: 

• Right censoring 

• Left censoring 

• Interval censoring 

In real life situations, right censoring is the most common. This takes place when the 

time that an event (churn) occurs, happens after the end time of the observation period. 

Similarly, left censoring takes place when the time that an event occurs, happens before 

the start time of the observation period. In interval censoring, the event occurs in an 

interval during the observation period, however, the exact time that the event happens 

cannot be determined. Clearly, an event that occurs during the period of observation 

with the exact time known has no censoring. These types of censoring are illustrated 

in Figure 2.1. 

No censorincr 

Rfaht censorin 

Leftcenso~ 

Interval censorincr 

Start of observation 

period 

End of observation 

period 

Figure 2.1: Different types of censoring 
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If T 2:: 0 is the random variable denoting the time at which an event occurs, the 

density function is given by f ( t) and the distribution function is given by F ( t), then 

the survival function S ( t), is given by 

S(t) = P[T > t] = l-F(t) = 1= J (u)du 

where S (t) is a monotone decreasing function from 1 to 0 with S (0) = 1. This repre­

sents the probability that an observed customer will survive up to time t. 

The hazard function (or the instantaneous failure rate) A (t), gives the rate at which 

a customer fails to survive up to time t. For the hazard function, the interval of time 

is taken to be smaller and smaller until the interval becomes infinitely small, f}.t. The 

hazard function is defined as 

.A (t) = lim P [t < T < t + f}.tlT > t] = J (t) J (t) 
Llt-+O f}.t 1 - F (t) s (t) 

(Note: Derivation of the hazard function given in Chapter 4.) 

The Cox model became the most used procedure for modelling the relationship of 

covariates to a survival or other censored outcomes. Its form is flexible enough to allow 

time-dependent covariates, however it has some restrictions. One of the restrictions of 

using a Cox model with fixed time is its proportional hazards assumption, that is, that 

the hazard ratio between two covariate values has to be constant over time. This is due 

to the common baseline hazard function cancelling out in the ratio of the two hazards 

[8]. 
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Chapter 3 

Simulated Annealing 

Optimization has been introduced in various areas such as, engineering, operations 

research, computer science and communication. Combinatorial optimization is one of 

the major subfields of optimization, which tries to find an optimal solution out of 

a set of feasible solutions. In general, a combinatorial optimization problem can be 

expressed as a pair (R, C), where R is the finite - or possibly countably infinite - set 

of configurations (configuration space) and C is a cost function, such that C : R -t JR. 

assigns a real number to each configuration. The configurations and cost functions vary 

according to the particular optimization problem one is trying to optimize. Assuming a 

minimization problem, the aim is to find a configuration for which C takes a minimum 

value. In other words, an optimal configuration, i 0 , must be found such that it satisfies 

Capt = C (io) =~in C (i) 
iER 

where Capt is the optimum minimum cost. When trying to solve an optimization prob­

lem, one can use either an optimization algorithm or an approximation algorithm. The 
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difference between the two is that an optimization algorithm finds a globally optimal 

solution, while an approximation algorithm finds an approximate solution. The simu­

lated annealing algorithm is a mixture of both types of algorithms, since it is able to 

find approximate optimal solutions. 

3.1 Introduction of the algorithm 

Annealing of solids is widely used in physics and it is the process of heating solid 

metal to a maximum temperature such that it reaches thermal equilibrium and cooling 

it slowly so that its particles arrange themselves into a defined lattice (ordered set). 

When the solid reaches thermal equilibrium, the probability that a temperature with 

value T, is in a state (condition of an object in the system at a particular time) with 

energy E, is given by the Boltzmann distribution 

IP [state = E] = Z tT) exp (- k:T) (3.1) 

where T is the temperature measured in Kelvin, Z (T) is a normalization factor (par­

tition function) depending on the temperature T and kB is the Boltzmann constant 

such that kB = 1.380650524 x 10-23 Jj K. The factor exp (- k:T) is referred to as the 

Boltzmann factor. 

The Boltzmann factor clearly shows that in the cooling phase, as the temperature 

T decreases, the Boltzmann distribution approaches the states with lowest energy. In 

particular, as T -+ 0, only the minimum energy states have a non-zero probability 

of occurence. To simulate the evolution to thermal equilibrium of a solid for a fixed 

value of the temperature T, a Monte Carlo method was introduced which generates 

sequences of states of the solid [27]. Suppose a small randomly generated perturbation 
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(slight deviation) is applied to the current state of the solid. Then the difference in 

energy between the current state and the perturbed state is llE. If llE < 0, then 

the process is continued using this new perturbed state. Otherwise, if llE 2:: 0, the 

probability of accepting the perturbed state is 

exp (- llE) 
ksT 

This acceptance rule for the new perturbed state is referred to as the Metropolis 

criterion [27]. After reaching thermal equilibrium, the probability distribution of the 

perturbed states approaches the Boltzmann distribution given by Equation 3.1. This 

Monte Carlo method is known as the Metropolis algorithm. When using the Metropolis 

algorithm to generate sequences of configurations of a combinatorial problem, the cost 

function C and the control parameter c are used instead of energy and temperature re­

spectively. Given a configuration i, another configuration j can be obtained by choosing 

at random an element from the neighbourhood of i [27]. The configuration j corresponds 

to the slightly perturbed state. Let the difference between the cost functions of con­

figuration i and configuration j be given by !:lCij such that /:lCij = C (j) - C ( i). If 

!:lCij ::; 0, then the probability for configuration j to be the next configuration in the 

sequence is 1. Otherwise, if /:lCij > 0, the probability for configuration j to be the next 

configuration in the sequence is given by the Metropolis criterion, which in this case is, 

( 
/:lC. •) exp --;2 (3.2) 
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Thus, the Boltzmann distribution is given by 

P [configuration= i] = Q ~c) exp (- C ~i)) (3.3) 

where Q ( c) is a normalization factor depending on the control parameter c. 

The algorithm lowers the value of the control parameter c until thermal equilibrium 

is reached and the algorithm is then terminated for some small value of c, for which 

it cannot be lowered further. The acceptance criterion is evaluated by comparing a 

random number from a uniform distribution on [O, 1) to Equation 3.2. 

A simplified pseudo-code for the algorithm is given below 

repeat 

perturb (configuration i -t configuration j), compute !J,.Cij; 

if !J,.Cij s 0 then accept else 

if exp (- b.~ij) > random [O, 1) then accept; 

if accept then update (configuration j); 

until equilibrium is approached sufficiently closely; 

Simulated Annealing works by means of searching and evaluating a set of feasible 

solutions, reducing the possibility of finding a solution that might turn out to be a local 

optimum. This means it avoids converging to a local optimum solution at early stages 

of the search [3]. 
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3.2 Mathematical model of the algorithm 

Simulated Annealing is an algorithm that continuously attempts to transform the cur­

rent configuration into one of its neighbours. This is best described by means of a 

Markov chain [27]. 

Definition 1. A Markov chain is a collection of random variables { Xt}, t = 0, 1, 2, ... 

having the property that given present state, the future state is conditionally independent 

of the past state, such that 

Let ai (k) denote the probability outcome i at the k-trial. Then ai (k) is given by 

ai (k) = L az (k - 1) .Pzi (k - 1, k), k = 1, 2, ... , 
l 

where the sum is taken over all possible outcomes. Let X (k) denote the outcome of 

the k-th trial, such that 

Pij (k - 1, k) = P [X (k) = jlX (k - 1) = i] 

and 

ai ( k) = P [X ( k) = i] (3.4) 

The changes of state of the system are called transitions, and the probabilities as-

sociated with various state-changes are called transition probabilities. In the case of 

Simulated Annealing, the Markov chain is described by a set of conditional probabili-
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ties Pij (k - 1, k) for each pair of outcomes (i,j). Then Pij (k - 1, k), which represents 

the transition probability, is the probability that the kth transition is a transition from 

configuration i to configuration j, and P (k - 1, k) is an IRI x IRI matrix called the 

transition matrix. The transition probabilites depend on the value of the control pa­

rameter c, such that, if c is constant, the corresponding Markov chain is homogeneous 

and its transition matrix P = P ( c) is defined as, 

p. ( ) = ZJ ZJ 

{ 

G·· (c) A·· (c) 
ZJ C IRI 

1 - 2-:l=l,l;fi Gil (c) Ail (c) 

when j "Ii 

when j = i 
(3.5) 

Gij (c) and Aj (c) are two conditional probabilities, where Gij (c), is the generation 

probability of generating configuration j from configuration i, and Ai.i (c), is the ac­

ceptance probability of accepting configuration j, once it has been generated from i. 

The corresponding matrices G ( c) and A ( c) are called the generation and acceptance 

matrix respectively. Then by Equation 3.5, P (c) is a stochastic matrix such that, Vi, 

2-:j Pij (c) = 1 [27]. 

Definition 2. A Stochastic matrix is a square matrix with non-negative entries 

whose rows sum to 1. 

Since the algorithm lowers the value of the control parameter c, two formulations 

of the algorithm arise. These are the homogeneous algorithm and the inhomogeneous 

algorithm. The homogeneous algorithm is described by a sequence of homogeneous 

Markov chains where each Markov chain is generated at a fixed value of c and c is 

decreased in between subsequent Markov chains. The inhomogeneous algorithm is 

described by a single inhomogeneous Markov chain where the value of c is decreased in 

between subsequent transitions [27]. 
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Definition 3. A Homogeneous Markov chain is a process where 

P [Xt+h = ylXt = x] = P [Xh = ylXo = x] \:/ t, h > 0 

and otherwise called Inhomogeneous Markov chain. 

The aim of the Simulated Annealing algorithm is to obtain a global minimum. So, after 

a large number of transitions K, the following probability must be satisfied, 

P [X ( K) E Rapt] = 1 

where Rapt is the set of globally minimal configurations and X (K) is the configuration 

obtained after k transitions. 

3.3 Asymptotic Convergence Results 

3.3.1 The Homogeneous Algorithm 

The convergence to global optima for the homogeneous algorithm is based on certain 

conditions about the stationary distribution. The stationary distribution is the limiting 

distribution in a Markov chain, such that it gives the probability distribution of the 

configurations after an infinite number of transitions. Suppose that the stationary 

distribution is given by a vector q, where the ith component, qi, is given by 

qi= lim P [X (k) = ilX (0) = j] 
k-+oo 

(3.6) 

for an arbitrary j. Suppose that X (k) = i and X (0) = j are independent. Then by 

independence, P [X (k) = ilX (0) = j] = P [X (k) = i]. Furthermore, by Equation 3.4 
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and Equation 3.6, qi is given by 

qi= lim P[X(k) =i] = lim a(O)'Pk 
k-->oo k-->oo 

(3.7) 

where a (0) is the initial probability distribution, such that it satisfies 

v i E R : ai( 0) ;:::: 0, L ai( 0) = 1 
iER 

The algorithm follows such that as c decreases, q ( c) converges to a uniform dis­

tribution on the set of globally minimal configurations. So conditions on the matrices 

A ( c) and G ( c) are derived such that existence of q ( c) is guaranteed. Suppose that 

where 7r is an IRl-vector defined by 

By Equation 3. 7 and Equation 3.8, 

limq(c) = n 
c-+O 

IRaptl-l if i E Rapt 

0 if it/:. Rapt 

lim ( lim P [X (k) E Rapt]) = 1 
c-+O k-->oo 

3.3.1.1 Existence of the Stationary Distribution 

(3.8) 

(3.9) 

Definition 4. A Markov chain is irredv,cible if and only if for all pairs of configu-

rations (i, j), there is a positive probability of reaching j from i in a finite number of 

transitions, such that V i,j :3 n: 1 ~ n < oo /\ (Pn)ij > 0. 
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Definition 5. A Markov chain is aperiodic if and only if for all configurations i ER, 

the greatest common divisor of all integers n 2:: 1, such that (Pn )ii > 0, is equal to 1. 

The existence of the stationary distribution is assured by the following theorem 

which gives the necessary conditions on the vector q. 

Theorem 1. The stationary distribution q of a finite homogeneous Markov chain exists 

if the Markov chain is irreducible and aperiodic. Furthermore, the vector q is uniquely 

determined by, 

v i : qi = I: qj Pji 

j 

where the matrix P is defined by Equation 3. 5. 

(3.10) 

(3.11) 

Assuming that\/ i, j, c > 0 : Aij (c) > 0, it is sufficient for irreducibility to assume 

that the Markov chain induced by G ( c) is irreducible itself, so that 

\/ i, j E R 3 p 2:: 1 3 l0 , li, ... , lp E R : (lo = i /\ lp = j) : 

Gzkzk+i (c) > 0, k = 0, 1, ... ,p - 1 (3.12) 

Moreover, an irreducible Markov chain is aperiodic if 

(3.13) 

Thus for aperiodicity, it is sufficient to assume that 

(3.14) 
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By Equation 3 .14 and by the fact that V i, j : Aij :; 1, then 

IRI JRJ 

L Aiel (c) Giel (c) L Aiel (c) Giel (c) + Aieje (c) Gieje (c) 
l=l,lfic 

IRJ 

< L Giel (c) + Gicie (c) 

l=l,l#ie 

JRI 

< L Giel (c) 
l=l 

1 

Thus aperiodicity holds, since 

JRJ 

Pieie = 1 - L Aiel (c) Giel (c) > 0 
l=l,l#ie 

and Equation 3.13 is satisfied. 

So, the homogeneous Markov chain with conditional probabilities that satisfy Equa­

tion 3.5, has a stationary distribution if the acceptance matrix A (c) and generation 

matrix G (c) satisfy Equation 3.12 and Equation 3.14, given that the acceptance prob­

abilities are 

Aij (c) = min { 1, exp (- ~~ij)} (3.15) 
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3.3.1.2 Convergence of the Stationary Distribution 

Suppose that for an arbitrary configuration i E R, the corresponding component of the 

stationary distribution is 

where 'ljJ (1, c) is a two-argument function satisfying two conditions. In particular, 

Vi ER, c> 0: 'l/;(C(i),c) > 0 

and the global balance condition such that V j E R : 

1n1 1n1 
L 'ljJ (C (i), c) Gij (c) Aij (c) = 'ljJ (C (j), c) L Gji (c) Aji (c) (3.16) 

i=l,i#j i=l,i#j 

In fact, q ( c) is the unique stationary distribution because the qi ( c) 's satisfy the neces­

sary conditions. Convergence of q ( c) is guaranteed by the following conditions 

0 if1>0 

lim 'ljJ (r, c) = 1 
c->O 

if/= 0 

00 if1<0 

V c > 0: 'ljJ (0, c) = 1 

Equation 3.12, Equation 3.14 and Equation 3.16, give the conditions required for 

the acceptance matrix A ( c) and generation matrix G ( c) such that an asymptotic con­

vergence to a global minimum is achieved. The conditions mentioned for convergence 
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of the stationary distribution are sufficient to define the stationary distribution of the 

Markov chain, however they are not necessary as the conditions given by Equation 3.10 

and Equation 3.11. Moreover, the explicit form for the stationary distribution is not 

straightforward. So more explicit conditions for the qi ( c) 's at the cost of a more restric­

tive set of conditions on the matrices A ( c) and G ( c) should be considered by making a 

different choice for the two-argument function 1jJ (!', c). In particular, 1jJ ( C ( i) - C apt, c) 

is taken as Aioi ( c), for an arbitrary configuration i 0 E Rapti and let G ( c) be independent 

of c. 

Theorem 2. If the two-argument function 1/J (C (i) - Copt, c) is taken as Aioi (c) for an 

arbitrary configuration i 0 E Rapt and if G ( c) is not depending on c, then the stationary 

distribution q ( c) is given by 

w . ( ) Aioi ( c) 
v i E R : qi c = """' A. . ( ) 

L..tjER ioJ C 

provided the matrices A ( c) and G satisfy the following conditions 

V i, j E R : Gii = Gii 

Vi, j, k E R: C (i) :::::; C (j) :::::; C (k) =? Aik (c) = Aii (c) Aik (c) 

V i,j ER: C (i) :2: C (j) =? Aii (c) = 1 

Vi, j E R, c > 0: C (i) < C (j) =? 0 < Aii (c) < 1 
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(3.18) 

(3.19) 



Proof 

L % (c) Pji (c) 
j 

1 1 L NAioj (c) GjiAji (c) + L NAioj (c) GjiAji (c) 
j=f-i,C(j)$.C( i) j=f-i,C(j)>C( i) 

+ qi(c) Pii (c) 

j=f-i,C(j)$.C(i) j=f-i,C(j)>C(i) 

where N = 2=jE'R. Aioj ( c) and 

qi (c) (1 - L GijAij (c) - L GijAij (c)) 
j=f-i,C(j)$.C(i) j=f-i,C(j)>C(i) 

1 L Gij - L NAioi (c) GijAij (c) 
j=f-i,C(j)$.C(i) j=f-i,C(j)>C(i) 

'L Gij- L 
j=f-i,C(j)$.C(i) j=f-i,C(j)>C(i) 

Combining these two equations gives 

v i E n : 'L qj ( c) Pji ( c) = qi( c) 
j 

Thus Equation 3.17 satisfies the necessary conditions D 

Equation 3.8 is satisfied if the following condition holds 

V i,j ER: C (i) < C (j) =? limAij (c) = 0 
c-+0 

since this condition and Equation 3.19 ensure convergence of the stationary distribution. 
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So for the homogeneous algorithm, under certain conditions on the matrices A ( c) 

and G ( c) given by Theorem 2, the Simulated Annealing algorithm converges to a 

global minimum with probability 1, if for each value c1 of the control parameter, where 

l = 0, 1, 2, ... , the corresponding Markov chain is of infinite length and the c1 eventually 

converge to 0 for l -t oo [27]. Hence 

lim ( lim P [X (k) = iJ) = limqi(c) = { IRoptl-l 
c->O k->oo c->O 0 

3.3.2 The Inhomogeneous Algorithm 

if i E Rapt 

if i t/:. Rapt 

(3.20) 

The inhomogeneous algorithm occurs when the limits in the left-hand side of Equa­

tion 3.20 are taken along a path in the ( c, k) plane, such that the value of the control 

parameter is changed after each transition and therefore for the inhomogeneous algo­

rithm the control parameter is given by c =ck. The inhomogeneous Markov chain with 

transition matrix P (k - 1, k), fork= 0, 1, 2, ... , is given by 

{ 

G· ·(ck) A·· (ck) p. (k - 1 k) = iJ iJ 
2J ' IRI 

1 - LZ=l,Z#i Giz (ck) Ail (ck) 

Vj=f-i 
(3.21) 

J = 7, 

Assume that the sequence {ck}, for k = 0, 1, 2, ... , satisfies the conditions 

lim Ck= 0 
k->oo 

(3.22) 

Ck 2: Ck+l, fork= 0, 1, ... , (3.23) 

From Equation 3.23 it is clear that the sequence {ck} is a decreasing sequence and 

it is possible for ck to be constant for some number of transitions, corresponding to a 
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homogeneous Markov chain of finite length. 

3.3.2.1 Sufficient Conditions for Convergence 

Definition 6. An inhomogeneous Markov chain is weakly ergodic if 

V m ~ 1, i, j, l E R 

lim (Piz (m, k) - Pjz (m, k)) = 0 
k-too 

where the transition matrix P ( m, k) is defined by 

Pil (m, k) = P [X (k) = llX (m) = i] 

Weak ergodicity shows that as k -+ oo the dependence of X (k) with respect to 

X (0) vanishes. Theorem 3 gives conditions for weak ergodicity of the inhomogeneous 

Markov chain. 

Theorem 3. An inhomogeneous Markov chain is weakly ergodic if and only if there is 

a strictly increasing sequence of positive numbers {k1}, where l = 0, 1, 2, ... , such that 

00 

L (1- T1 (P (kz, k1+1))) = oo (3.24) 
l=O 

where T1 (P) is the coefficient of ergodicity of an n x n-matrix P and is defined by 

n 

T1 (P) = 1 - ~i_n L min (Piz, Pjz) 
i,J l=l 

Definition 7. "'4n inhomogeneous .lvlarkov chain is strongly ergodic if tliere exists a 
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vector 7f which satisfies 
IRI 
I: 1Ti = 1 v i: 1Ti ~ o 
i=l 

such that V m 2: 1, i,j E R: 

lim Pij (m, k) = 7Tj 
k->OCJ 

(3.25) 

Strong ergodicity implies convergence in distribution of the X (k), such that if Equa­

tion 3.25 holds, then 

lim P [X (k) = j] = 7Tj 
k->oo 

Theorem 4 gives conditions for strong ergodicity of the inhomogeneous Markov chain. 

Theorem 4. An inhomogeneous Markov chain is strongly ergodic if it is weakly ergodic 

and if V k there exists a vector 7f ( k) such that 7f ( k) is an eigenvector with eigenvalue 

1 of P (k - 1, k), E~~~ 17fi (k)I = 1 and 

00 IRI 

L::L:: 17fdk) - 7Ti(k + 1)1 < oo (3.26) 
k=O i=l 

Moreover, if 7f = limk->oo 7f (k), then 7r satisfies Equation 3.25. 

Under the assumptions of existence of the stationary distribution for the homoge­

neous algorithm on the matrices A (c) and G (c), there exists an eigenvector q (ck) of 

P (k - 1, k), for each k ~ 0. Under the assumptions of convergence of the stationary 

distribution for the homogeneous algorithm, limk_,00 ck = 0. Strong ergodicity with 

7f (k) = q (ck) can be proved if the Markov chain is weakly ergodic and if q (ck), for 

32 



k = 0, 1, 2, ... , satisfies Equation 3.26. Then 

lim P [X (k) E Rapt] = 1 
k-+oo 

By inserting q (ck) in the original formulation of the Simulated Annealing algorithm, 

the ith component of the stationary distribution is given by 

( 
C(i)-Copt) exp -

q; (ck) = 17<1 ( ~: )-C ) ~. exp - J opt 
LJJ=l Ck 

It can be shown that under certain conditions on the acceptance matrix, the rate 

of convergence of the sequence {ck} cannot be faster than 10~ k, for some constant r, 
giving a bound on the value of ck for each k [27]. In fact, a sufficient condition on the 

sequence {ck} where k = 0, 1, 2, ... , using Theorem 3, can be derived such that if the 

bound on ck is given by 

IRI flCmax 
:3 ko 2: 2 V k 2: ko : ck 2: ---­

log k 

where llCmax = max{C(i) Ii ER} -min{C(i) l'i ER}. Then, Equation 3.24 is sat­

isfied for some sequence {ck} where k = 0, 1, 2, ... , and hence weak ergodicity is ob­

tained. Other sharper bounds were also proved to satisfy weak ergodicity. So the 

sufficient condition ensures that the algorithm converges to the set of globally minimal 

configurations. 

If c (t) is given by c (t) = I~t' for some constant r, then it can be shown that the 

expected time to leave a cup V (set of configurations that can be reached from a local 

minimum in a finite number of transitions) is finite if r > d(V), where d(V) is the 
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depth of the cup V (see Definition 9). For r < d(V), there is a positive probability that 

the cup will never be left. In fact, the condition r 2: D, where D is the largest depth 

of any cup, is both necessary and sufficient for convergence to global minima [27]. 

3.3.2.2 Necessary and Sufficient Conditions for Convergence 

Definition 8. A configuration j is called reachable at height L from a configuration 

i, if there is a sequence of configurations i = l0 , li, ... , lp = j, such that 

Gzkzk+1 (c) > 0 fork= 0, 1, ... ,p - 1 

and 

C (Zk) :::; L fork= 0, 1, ... ,p 

Definition 9. A cup is a subset V of the set of configurations such that for some 

number E 

V i E V : V = {j E 'R..jj is reachable from i at height E} 

For a cup V, let V = min{C (i) Ii E V} and V = min{C (j) lj tJ. V /\ 3 i E V: Gij > O}. 

The depth d(V) is given by d(V) = V - V. So, a local minimum can be seen as a 

configuration i such that no configuration j with C (j) < C ( i) is reachable at height 

C (i) from i. The depth of a local minimum i is taken to be the smallest number d (i) 

such that there is a configuration j with C (j) < C (i) reachable at height C (i) + d (i) 

from i. If i is a global minimum, then d (i) = +oo [27]. 

Theorem 5. Suppose that the one-step transition matrix is given by Equation 3.21, 

where A (ck) is given by Equation 3.15, and that the generation matrix is independent 

of c, such that the Markov chain associated with G given by Inequality 3.12 is irreducible, 
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and for any real number L and any two configurations i and j, j is reachable at height 

L from i. Assume furthermore, that Equation 3. 22 and Equation 3. 23 hold. If D is 

the maximum of depths d ( i) of all configurations i that are local but not global minima, 

then 

lim P [X (k) E Rapt]= 1 
k-+oo 

if and only if 

f exp (-~) = oo 
k=l k 

(3.27) 

If Ck is of the form Ck = Io~k' then Equation 3.27 holds if and only if r 2:: D. The 

constant D is given by 

D = max ( min Dji) 
jrf.Ropt iERopt 

Under certain conditions related to the matrix II, whose entries are defined by 

v i,j En: rrij = lim Pij (k - 1, k) 
k-+oo 

a necessary and sufficient condition for the annealing algorithm to converge with prob­

ability 1 to a global minimum is given by 

r 
3ko>lVk>ko:ck>--- - - logk 
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Chapter 4 

Churn Modelling 

Churn is the term used to represent the action that a subscriber abandons the service 

from his current service provider. Churn modelling is of great interest for companies 

who offer telecommunication services, since they can model which subscribers are at 

high risk to churn and when will these subscribers churn. Then, they can plan strategies 

to either retain their subscribers or try to acquire new subscribers. There are various 

techniques which can be used to model churn, however the most efficient technique 

and the one that can give an idea of when a subscriber might churn, is to represent 

subscribers with a survival model. 

Survival analysis is concerned with studying the time between entry and a subse­

quent churn event [8]. If T ~ 0 is the random variable denoting the time at which 

an event occurs, the density function is given by f (t) and the distribution function is 

given by F ( t), such that 

l't 

F (t) = P [T S:. t] =la f (u) du 
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Then the survival function S (t), is given by 

S (t) = P [T > t] = 1- F (t) = 1= f (u) du 

where S (t) is a monotone decreasing function from 1 to 0 such that S (0) = 1 and 

S ( oo) = 0. This represents the probability that an observed subscriber will survive up 

to time t. 

Since survival analysis is mostly used for censored data, the following list gives 

the different types of censoring in terms of the density function, f (t), the distribution 

function, F ( t), and the survival function S ( t). 

• Uncensored: P [T ='.Ii] = f ('.Ii) 

• Right censoring: P [T >Ti]= 1- F (Ti)= S (Ti) 

• Left censoring: P [T < Ti] = F (Ti) = 1 - S ('.Ii) 

• Interval censoring: P [Ti,l < T < Ti,r] = S (Ti,z) - S (Ti,r) 

where T is the start of the observation period, Ti is the time at which churn occurs, 

and Ti,l < T < Ti,r is an interval between the start and end of the observation period. 

Reference to Figure 2.1 helps to understand this better. 

The hazard function (or the instantaneous failure rate) >. ( t), gives the rate at which 

a subscriber fails to survive up to time t. For the hazard function, the interval of time 

is taken to be smaller and smaller until the interval becomes infinitely small, .6..t. The 
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hazard function is defined as 

,\ (t) 1
. P [t :S: T :S: t + .6.tlT > t] 
Im 

Llt-+0 .6.t 

1
. P [t -:;_ T -:;_ t + .6.t n T > t] 
Im 

Llt-+O .6.tP [T > t] 

1
. .6.F 1 
Im-----

Llt-+0 .6.t ( 1 - F ( t)) 
dF 1 

dt (1- F (t)) 
f (t) 

1 - F (t) 
f (t) 
s (t) 

There are various churn models that are used in real life applications. The following 

sections will give a short description of some of these models, with particular interest 

on the shifted-beta geometric model. 

4.1 Cox Model 

In survival models, the hazard function for a given individual describes the instanta­

neous risk of experiencing an event of interest within an infinitesimal interval of time, 

given that the individual has not yet experienced that event [8]. In this case, the hazard 

function describes the risk that a subscriber will churn in the near future, given that the 

subscriber is still active. The Cox model is frequently used to model the relationship 

of covariates (predictors) to a survival or other censored outcome [8]. 

Let Xij denote the /h covariate of the ith subject, for i = 1, ... , n and j = 1, ... , p. 

Then X is an n x p matrix whose row Xi denotes the covariate vector of subject i. The 
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Cox hazard function for fixed-time covariates Xi, is given by 

Ai (t) =Ao (t) exp (XI/3) 

where Ao (t) is the baseline hazard and f3 is a p-vector of regression coefficients. Ao (t) 

is defined as a nonnegative function over time for that individual with zero on all 

covariates. 

The survival function of the Cox model is given by 

S (t) =exp [-exp (XI/3) it Ao (u) du] 

where the integral part of the survival function is called the baseline cumulative hazard 

function. 

The Cox model is referred to as the proportional hazard model. This proportional 

hazard assumption is in fact one of the restrictions in using the Cox model with time­

fixed covariates. This is because the hazard ratio between two covariate values is 

constant over time, 
Ao (t) exp (XI/3) 
Ao (t) exp (Xj/3) 

exp (Xi/3) 
exp (Xj/3) 

since the baseline hazard function cancels out in the ratio of the two hazards. This 

means that the covariates must have the same effect on the hazard at any point in 

time. 

The estimation of the parameter /3 is based on the partial likelihood function and 

this is done without estimating the baseline hazard function since the baseline hazard is 

typically considered to be a nuisance parameter which is not of immediate interest but 

which must be accounted for in the analysis of those parameters which are of interest. 
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The likelihood formula can be written as a product of several likelihoods, one for each 

event time. The likelihood at time ti denotes the likelihood of having an event at time 

ti, given survival up to time ti [l]. The partial likelihood is given by 

L ((3) =IT exp (X{(J) di 

i=l [ "L,jER(ti) exp ( Xjf3) J 
(4.1) 

where Dis the total number of events, di is the number of events at time k, and R (k) 

is the set of individuals at risk, called the risk set, at time k. 

When building a Cox model, it is important to identify the variables that are most 

associated with the churn event. For a given subscriber i, a hazard function indicates 

the probability Ai (t) of cancellation at a given time tin the future. A hazard curve can 

be converted to a survival curve or to a survival function which plots the probability 

Si (t) of non-cancellation at any time t, given that customer was active at time t - 1 

such that 

Si(t) = Si(t - 1) x [1 - Ai (t)] 

with Si (0) = 1 [8]. 

4.2 Extended Cox Model 

A problem which arises in the Cox model is that it is not suitable as a predictive model 

for prepaid customers who churn. This is because the covariates are fixed over time. So, 

a variation of the Cox model is the Extended Cox model which includes the ability to 
l J 1 1 J J • • _ • J 1 1 J • 1 J T J 1 • accommoaa-c;e censorea aaia, inne-varymg covanaies ana mmi1p1e evenis. in ims case, 

the proportionality assumption does not have to hold since the covariates are dependent 
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on time t. The Extended Cox model is given by 

[ 

Pl P2 l 
>.i (t) =Ao (t) exp ~ XIfJ + ~ x;{J (t) 

where the covariates are split in p1 time-independent covariates and p2 time-dependent 

covariates. 

In order to include time-varying covariates in the Cox model, a counting process 

formulation is required. A counting process is a stochastic process starting at 0 and 

whose sample paths are right continuous step functions with height 1. The counting 

process formulation makes it possible to include multiple event times and multiple at­

risk intervals [l]. 

4.3 Aalen Model 

Another alternative to the Cox model is the additive risk model of Aalen. Let T = 

[O, T], for 0 < T < oo, be a fixed time interval and consider an n-variate counting 

process N (t) = (Ni (t), i = 1, ... , n), together with a matrix of covariates Yij (t), for 

j = 1, ... ,p given that p:::; n, observed for each component Ni (t). The covariate Yij (t) 

is set equal to 0 if the individual i is not at risk [10]. By assuming an intensity process 

'Yi (t) of Ni (t), the relationship between the covariates Yij (t) and the counting process 

N (t), is given by 
p 

"(i(t) = L Yij (t) CTj (t) t E T 
j=l 

where aj (t) are deterministic baseline intensities that are specified under some regu-

larity conditions. 

An estimator for the integrated baseline intensity B ( t) J; a ( s) ds is given by a 
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generalized N elson-Aalen estimator 

where y- ( t) is a generalized inverse of Y ( t) such that y- ( t) Y ( t) = I. 

Usually the estimation of a (t) is more useful than estimating B (t). So let b > 0 and 

K a kernel, then an estimator for a is given by 

1 r (t -s) A &(t) = b}r K -b- dB(s) t E [b,T-b] 

This model is usually used in life insurance to estimate the cumulative number of 

expected events. 

4.4 Stratified Cox Model 

One of the restrictions of using a Cox model with fixed time is its proportional hazards 

(PH) assumption. Let t1 , ... , td bed unique ordered event (churn) times, and let Xi (s) 

be the p x 1 covariate vector for the ith individual at time s. Note that for time-fixed 

covariates, Xi (s) = Xi. The weighted mean of the Xi (s) over those still at risk to 

churn at time s is given by 

_ L: Yi (s) exp (xds) fi) xi (s) 
X (s) = --------

L Yi ( s) exp ( Xi ( s) ;3) 

where 1'i ( s) is the predictable variation process indicating whether observation i is 

at risk at time s, so that Yi (s) = 1 if observation i is still at risk at time s and is 

zero otherwise. The estimate f3 comes from fitting a Cox PH model. In particular, a 
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Schoenfeld residual is a p x 1 vector that is defined at the kth churn event time as 

where Ni ( s) is a counting process that counts the number of events for observation i 

at time s. Thus sk sums the quantities Xi (tk) - X (tk) over observations that have 

experienced the event by time tk. 

An alternative to a PH model is to stratify the model across levels of one or more 

covariates, leading to a Stratified Cox model. A Stratified Cox model is useful when a 

factor does not affect the hazard multiplicatively. The strata divide the subjects into 

disjoint groups, each of which has a distinct arbitrary baseline hazard function, but 

have common values for the coefficients /3. The hazard function for an individual i who 

belongs to stratum k is then given by 

The stratified Cox model allows a deviation from proportional hazards and provides 

an alternative to the assumption of proportional hazards. The hazard functions for 

two different strata do not have to be proportional to one another, however, within a 

stratum, proportional hazards are assumed to hold. The partial likelihood for Stratified 

Cox models with K strata is a product of K terms, each of the form of Equation 4.1, 

but where i ranges over only the subjects in stratum k, fork= 1, ... , K. Stratification 

entails fitting separate baseline hazard functions across strata. A baseline hazard func­

tion represents the hazard rate over time for an individual with all modelled covariates 

set to zero. With a Stratified Cox model, a proportional hazards structure does not 

necessarily hold for the combined data, but it is assumed to hold within each stratum. 
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However, the coefficients on the included covariates are common across strata so that 

the relative effect of each predictor is the same across strata, unless there is a signifi­

cant strata-by-covariate interaction, which means that the effect of the covariate differs 

within strata [8]. 

A Bayesian version for the Stratified Cox model is 

Ai (t) = >..oi (t) exp (,B'X) 

where >..oi (t) are the stratum-specific baseline hazards. 

4.5 Shifted-Beta Geometric Model 

An alternative to common curve fitting regression models is introduced by Fader and 

Hardie in [5] which is a probability model for the churn process. This basic model known 

as the shifted-beta geometric model which can be implemented in a simple Microsoft 

Excel spreadsheet and this model provides very accurate forecasts of customer retention. 

For this model it is important to explain in slightly more detail the definition of 

retention rate and churn rate. The retention rate for time t, given by rt, is defined as 

the proportion of customers active at the end of time t - 1 who are still active at the 

end of period t. On the other hand, the churn rate for a given period is defined as the 

proportion of customers active at the end of time t - 1 who are not active by time t. 

In the beginning of Chapter 4, the survival function was given in terms of the 

distribution function. However, the probability that a customer is still active at time t 
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can also be given in terms of the retention rate by 

t 

s (t) = T1 x ... x Tt =IT Ti 

such that 
s (t) 

Tt = S (t - 1) 

i=l 

(4.2) 

In statistics, the geometric distribution is either of two discrete probability distri­

butions: 

• The probability distribution of the number X of Bernoulli trials needed to get 

one success, supported on the set 1, 2, 3, ... 

• The probability distribution of the number Y = X - 1 of failures before the first 

success, supported on the set 0, 1, 2, 3, ... 

Often, the name shifted geometric distribution is adopted for the former one. 

The shifted-beta geometric model for the duration of customer lifetimes is based on 

two assumptions. Suppose that an individual remains a customer of the company with 

constant retention probability 1 - e. This is equivalent to assuming that the duration 

of the customer's relationship with the company, denoted by the random variable T, 

is characterized by the shifted-geometric distribution with probability mass function 

P (T =tie) and survival function S (tie), given by 

P(T =tie) 

S (tjB) 

e (1 - e)t-l , t = 1, 2, 3, ... 

/... ,.., t . .. ........ ...... 
~ 1 - ff r , t = 1, ~, 0, ... 

The second assumption is about the heterogeneity in e which follows a beta distribution 
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with probability density function 

Bcx-l (1 - Bl-l 
f (Bia, /3) = B (a, /3) 

where B (a, /3) is the beta function defined by 

B (a, /3) = fo 1 

B°'-1 (1 - Bl-1 dB, a,/3 > 0 

The beta function can be expressed in terms of gamma functions, such that 

B( /3) = r(a)I'(/3) 
a, r(a+/3) 

(4.3) 

Figure 4.1 shows that if both parameters, a and /3, of the beta distribution are less 

than 1, then the churn probability B is U-shaped, as shown by the red curve. If both 

parameters are large, such that a, /3 > 1, then the shape of the beta distribution is 

unimodal, that is, for some value m the curve of the beta distribution is monotonically 

increasing for x:::; m and monotonically decreasing for x 2': m, as shown by the purple 

and black curve. If one parameter is large while the other is small, the beta distribution 

shape is either J-shaped or reverse-J-shaped, as shown by the green and blue curves. 

These various shapes can model the nature of heterogeneity in churn probabilities across 

the customer base. 

Since the customer's value of B is unobserved, the equations for the first assumption 

cannot be used. So the expectation of P (T = tlB) and S (tlB) over the beta distribu­

tion are used instead to arrive at the corresponding expressions for a randomly chosen 

subscriber. If B is known, the probability of churning at time t would simply be the 

geometric probability B (1 - B)t-l _ But since B is unobserved, P (T = t) for a randomly 
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Figure 4.1: General shapes of the beta distribution as a function of a and f3 

chosen subscriber is the expected value of the shifted-geometric probability of churning 

at time t , conditionally on e = e' where the expectation is with respect to the beta 

distirbution for 8, E [P (T = tl8 = B)]. So each P (T = t l8 = B) is weighted by the 

probability of the value of e occuring, f ( e). 
Since 8 is a continuous random variable, this is computed as 

P (T = t ia, /3) = fo 1 

P (T = t18 = B) f (B ia, /3) dB 

1
1 ea- 1 (1 e)f3-1 
e (1 - e)t-l - de 

o B(a,/3) 
1 r1 ea (1 - e)f3+t-2 de 

B(a,/3) }0 

47 



where P (T = t\8 = B) is the probability distribution function of the geometric dis­

tribution and f (B\a, /3) is the probability density function of the beta distribution. 

J; B°' (1 - el+t-2 dB is the integral expression for the beta function with parameters 

a + 1 and J3 + t - 1. Therefore, 

B(a+l,/3+t-1) 
P (T = t\a, /3) = B (a, /3) , t = 1, 2, ... 

Similarly, 
B(a,/3+t) 

S(t\a,/3)= B(a,/3) , t=l,2, ... (4.4) 

This model is called the shifted-beta geometric (sBG) model with parameters a, /3 

having an sBG distribution. 

This model can be used without having to deal with the beta function. The sBG 

probabilites are computed using a forward-recursion formula from P (T = 1), where, 

P (T = lja, /3) 
B(a+l,/3) 

B(a,/3) 
r (a+ 1) r (/3) 

1
r (a) r (/3) 

r(a+/3+1) r(a+/3) 
r(a+l) /r(a+/3+1) 

r (a) r (a+ /3) 

By using the property of recursion for the gamma function, 

Then, 

r (a+ 1) 
r (a) =a and r(a+/3+1) - /3 

r (a+ /3) - a+ 

a 
P (T = lja, /3) = --/3 

a+ 
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For the case when t = 2, 3, ... , consider the identity 

P (T = t) 
P(T=t)= P(T=t-l)P(T=t-l) 

Given the expression P (T = t) / P (T = t - 1), the value of P (T = 2) can be computed 

using the value P (T = 1) =a/ (a+ /3). Then, given the value of P (T = 2), the value 

of P (T = 3) can be computed, and so on. So, 

P (T = t) 
P (T = t -1) 

B (a+ 1, j3 + t - 1) /B (a+ 1, j3 + t - 2) 
B (a, j]) B (a, j]) 

B(a+l,/]+t-l) 
B(a+l,/]+t-2) 

By expressing the beta functions in term of gamma functions, 

P(T=t) r(/]+t-1) r(a+/3+t) 
P(T=t-l) = r(/]+t-2)/r(a+/]+t-1) 

and by the recursive property, 

P (T = t) j3 + t - 2 

P(T=t-l) a+/]+t-l 

By combining Equation 4.5 and Equation 4.6, 

P (T = t) = a+J3 
{ 

a 

P+t-2 p (T = t - 1) 
a+J3+t-l 
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t = 2,3, ... 

(4.6) 

(4.7) 



By substituting Equation 4.4 into Equation 4.2, 

B(a,{J+t) /B(a,{J+t-l) 
B (a, {J) B (a, {J) 

D(u,/J+l) 
B(a,{J+t-l) 

Expressing the beta functions in term of gamma functions, 

r (,B + t) r (a + {J + t) 
rt = r (fJ + t - 1) I r (a + ,e + t - 1) 

By the recursive property of the gamma function, the retention rate associated with 

the sBG model is given by, 
{J+t-l 

Tt=-----
a+{J+t-l 

So it is possible to compute S (t) without having to deal with the beta functions. 

The retention rate under the sBG model is an increasing function of time due to 

heterogeneity. That is, the high churn subscribers drop out early in the observation 

period, with the remaining subscribers having lower churn probabilities. 
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Chapter 5 

Model Implementation 

5.1 Introduction 

The number of mobile service subscriptions has been increasing over the past couple 

of years. By looking at the total number of mobile telephone subscriptions for the 

past year (2009), it is evident that this is true. Table 5.1 shows the total number of 

mobile telephone subscriptions and this number divided into the number of post-paid 

subscriptions and the number of pre-paid subscriptions for the year 2009 obtained from 

an article by the National Statistics Office [18]. 

I Months II Total I Post-paid I Pre-paid I 
Jan - Mar 388,284 68,754 319,530 
Apr - June 405,465 74,696 330,769 
July - Sept 418,341 59,867 358,474 
Sept - Dec 422,083 78,384 343,694 

T~.hlP. 11.1: Nnmher of mobile telenhone subscrintions in 2009 ---·--- - --· - ---·--- - - - - - - .1. .l. 
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5.2 Data Set 

The data set used for this dissertation was provided by Vodafone (Malta) Ltd. The 

dataset consisted of the average subscriber base for two tariffs, It's Good to Talk (IGTT) 

and Friends tariff, for a 20-week period. The number of subscribers for each tariff is 

divided into seven segments where for each segment, the initial number of subscribers 

is 1,000 and the probability that a subscriber is in one of the seven segments is given, 

as shown in Table 5.2. This dataset shows the number of subscribers who churned, 

however it does not indicate whether the subscribers churn at the customer level or 

else at the contract level. Customer level churning is when the subscriber switches 

to a different service provider, whereas contract level churning is when the subscriber 

changes the tariff scheme but still remains with the same service provider [9]. 

I Segment II Probability I 
Segment 0 0.08 
Segment 1 0.17 
Segment 2 0.24 
Segment 3 0.16 
Segment 4 0.13 
Segment 5 0.19 
Segment 6 0.03 

Table 5.2: Probabilities for each segment 

The plots of all segments for both tariffs are shown in Figure 5.1. However by 

aggregating the data (multiplying the subscriber base for each segment by the segment 

probabilities and adding the answers together), each tariff corresponds to one of the 

curves in Figure 5.2. This is done because the segments in both tariffs are very similar 

to each other. 
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5.3 Implementation 
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Several strategies were implemented for this data including, dividing the subscribers into 

two segments with different fixed segment probabilities and with optimizable probabil­

ities, and dividing the subscribers into three segments with fixed segment probabilities 

and with optimizable probabilities. For these churn models the dataset is assumed to 

follow a geometric distribution. In these cases, the first eleven weeks of the dataset 

were used for optimizing the parameters of the model and then the predicted values for 

the remaining eight weeks were computed and compared to the actual data. Finally, 

the data for both tariffs was modelled using the sBG distribution. In this case, the first 

fourteen weeks were used for optimizing the parameters of the model and then the pre-

54 



dieted values for the remaining five weeks were computed and compared to the actual 

data. The purpose for having fourteen weeks to compute the optimization of the sBG 

model is because eleven weeks are not sufficient to obtain an accurate prediction, so the 

three extra weeks that were used helped to provide a much more accurate prediction. 

For the other models, eleven weeks were sufficient, since if fourteen weeks were used, the 

improvement in the predictions was very minimal. These strategies were implemented 

into Microsoft Excel and Matlab to compute the maximum likelihood estimations using 

various model parameters for the dataset. 

Given different initial values for optimization, Microsoft Excel usually generates dif­

ferent optima since the solver implemented in Microsoft Excel does not use a global 

optimization algorithm. The Microsoft Excel Solver tool uses the Generalized Re­

duced Gradient (GRG2) nonlinear optimization code. Linear and integer problems use 

the simplex method with bounds on the variables and the branch-and-bound method. 

Hence the initial values in Microsoft Excel had to be chosen by trial-and-error until the 

optimal values were obtained. On the other hand, by using the simulated annealing 

algorithm in Matlab given by [26], the global optima could be found straightaway in 

most cases. Before providing the results for the mentioned churn models, a brief re­

view of notion for the maximum likelihood estimation is given. Note that in Microsoft 

Excel, the log-likelihood function is being maximized, while the negative log-likelihood 

function in Matlab is being minimized. So, the maximized log-likelihood function in 

Microsoft Excel will give a negative result, while the maximized log-likelihood function 

in Matlab will give a positive result. 
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5.3.1 Maximum Likelihood Estimation 

Suppose the dataset consists of a group of N subscribers for p weeks, such that there 

are no subscribers who churn during the initial observing week (week 0). Then n 1 

subscribers churn in the first week, ... , np subscribers churn in the pth week. Then 

N - :Z.:::f=1 nt subscribers are still active at the end of the pth week. The probability that 

a randomly chosen subscriber has a lifetime of one week is given by P (T = 119), ... , 

the probability that a randomly chosen subscriber has a lifetime of p weeks is given by 

P (T = pl9). By assuming that a subscriber churns independently of the behaviour of 

another subscriber, the probability that one randomly chosen subscriber has a lifetime 

of one week while another subscriber has a lifetime of two weeks is the product of 

the respective geometric probabilities, such that P (T = 119) P (T = 219). Thus, it 

follows that given specific values of the model parameters 9, the joint probability of 

n 1 subscribers churning in the first week, ... , np in the pth week, and N - :Z.:::f=1 nt 

subscribers still being active at the end of the pth week is given by 

However, the values of 9 are unknown, although it is assumed that 9 follows a 

geometric distribution. Maximum likelihood estimation is used to find which values of 

the model parameters maximize the probability of the given dataset. The likelihood 

function is given by 

ancl hy 11sing a n11merical optimization method, the val11es of (} which maximize the 

function are evaluated. The values which maximize the likelihood function are called 
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the maximum likelihood estimates of the model parameters. Usually the value of the 

likelihood function is very small, and thus the natural logarithm of the likelihood func­

tion is used instead. This is called the log-likelihood function and is given by 

The same applies for the sBG distribution, with model parameters a and /3, such that 

the joint probability is given by 

The likelihood function is given by 

L (a, /3idata) = P (T = lia, /3f1 x · · · x P (T = pla, /3fv S (pla, /3)N-L,f=1 nt 

and the log-likelihood function is given by 
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5.3.2 It's Good to Talk Tariff 

5.3.2.1 Two segments with fixed probabilities 0.4 & 0.6 

The first churn model implemented for the IGTT da.ta. was that of dividing the data 

into two segments with fixed probabilities, where the probability for the first segment is 

prob1 = 0.4 and the probability for the second segment is prob2 = 0.6. This means that 

a subscriber has 0.4 probability of being in the first segment and 0.6 probability of being 

in the second segment. An initial starting point for 8 must be provided to calculate 

P (T = tl8), such that the initial point is within the bounds 0.0001 ::; 8::; 0.9999. The 

values for P (T = tl8) were computed using the initial values and using the forward­

recursion method given by Equation 4. 7. 

The dataset consists of n = 1, OOO customers and the number of customers churning 

at the tth week is nt = Nt-l - Nt. The values of S (tl8) were computed such that 

S (1) = 1 - P (T = 1), for t = 1, and S (t) = S (t - 1) - P (T = t), for t > 1. The 

first eleven weeks (p = 11) were used to compute the log-likelihood function, so at 

the tth week, the log-likelihood function is given by LL (Bit) = E~~1 nt ln [P (T = tl8)]. 

The maximum likelihood estimates of the model where found by maximizing the log­

likelihood function. The initial values for 8 were selected by trial-and-error in Microsoft 

Excel until the optimal values were obtained, where 81 = 0.0241, 82 = 0.0001, and 

LL = -531.1940. Table 5.3 shows the Microsoft Excel computation. This means that 

both segments have a very small churn probability. 

Similarly to Microsoft Excel, an initial value for e had to be given to the simulated 

annealing algorithm in Matlab. The outputs from Matlab gave the same global optimum 

function value with a slight discrepancy. To assess the performance of the simulated 

annealing algorithm, 100 different initial points covering evenly the unit square were 
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entered as the initial values. The matrix A represents these 100 different initial values 

where Aij = 1 if the initial point ij results in the global optimum and Aij = 0 if 

the initial point ij does not give the global optimum. The matrix Z represents the 

optimal value for all of the 100 initial points, 'best' represents the global optimum 

value of the maximized log-likelihood function and 'bestmin' represents the parameter 

values 0, corresponding to the global optimum. For this model, best = 530.5658 and 

bestmin = [0.0242 0.0000]. This means that the global optimum is 530.5658 and the 

corresponding model parameter values are B1 = 0.0242 and B2 = 0 meaning that if the 

data is divided into two segments, churning is expected from the first segment since 

the churn probability of the second segment is 0. In this case A has seventy-five I's, 

meaning that 75 initial points out of 100 gave the global optimal solution. The matrix 

Z gives the log-likelihood value of all 100 initial points. In fact, by comparing A to Z 

it is clear which values are not in the range of the global optimal solution and these 

sum up to twenty-five. 

1 1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 

1 1 1 1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 0 0 

1 0 1 0 1 0 1 1 0 1 
A= 

1 1 1 0 0 0 0 1 0 0 
A= 

' 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 

1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 

1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 0 .1. 

1 1 1 1 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 

1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 
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To test whether the simulated annealing algorithm truely finds more global optimal 

solutions, the same test is carried out using the algorithm fmincon from Matlab. In this 

case, the matrix A shows that 38 out of 100 initial points corresponding in obtaining 

a global optimal solution. The matrix Z shows the log-likelihood values obtained from 

the optimal values represented in A. Since A has less 1 entries than A, it is clear that 

the simulated annealing algorithm improves the number of initial values which obtain 

the global minimum value. The matrix Z indicates that the standard optimization 

algorithm fmincon reaches other local optima, in particular, LL = 857.5971 and LL = 

616.8264 amongst others. 

The accuracy of the model was tested by predicting the values for the remain­

ing eight weeks, using the optimal parameter estimates obtained from Microsoft Ex­

cel and Matlab. The probabilities of the remaining weeks were calculated so that 

the predicted number of subscribers were computed such that Mx (t) = Mx (t - 1) -

Mx (t - 1) P [T = t - 1], where Mx (t) are the predictions from Microsoft Excel, and 

MM (t) = MM (t - 1) - MM (t - 1) P [T = t - 1], where MM (t) are the predictions 

from Matlab. These values are given in Table 5.4 and Figure 5.4 is the plot of the exact 

number of customers per week and their predictions. This figure shows that for this 

model, the predictions are quite reasonable. Figure 5.3 shows that the global optimal 

value is at the bottom right corner. 
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Two segments of subscribers with probabilities 0.4 & 0.6 
Segments: 1 2 

Thetas: 0.0241 0.0001 
Probabilities: 0.4 0.6 

LL: -530.5889 
Weekt Nt P[T=t] Ilt S[T=t] LL term 

0 1000 0 
1 990 0.0097 10 0.9903 -46.3726 
2 984 0.0095 6 0.9809 -27.9688 
3 978 0.0092 6 0.9716 -28.1140 
4 949 0.0090 29 0.9626 -136.5858 
5 944 0.0088 5 0.9538 -23.6702 
6 937 0.0086 7 0.9453 -33.3076 
7 933 0.0084 4 0.9369 -19.1297 
8 914 0.0082 19 0.9287 -91.3253 
9 911 0.0080 3 0.9207 -14.4923 
10 907 0.0078 4 0.9129 -19.4198 
11 907 0.0076 0 0.9053 0.0000 
12 0.0074 -90.2027 
13 0.0072 
14 0.0071 
15 0.0069 
16 0.0067 
17 0.0066 
18 0.0064 
19 0.0063 

Table 5.3: Excel: Two segments of subscribers with probabilities 0.4 & 0.6 
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530.5720 530.6010 531.1850 530.5814 530.5837 530.6443 530.6187 531.2059 530.5889 531.2022 

530.5877 530.5908 530.5851 530.5711 530.5777 531.6780 531.6480 531.2028 530.5842 530.5680 

530.5883 530.5907 530.6260 530.6613 530.6026 530.6025 530.5703 530.6266 530.6078 530.5710 

530.5787 530.5774 530.5897 530.6209 530.5836 530.5769 531.2008 531.1891 530.5894 531.1917 

530.5746 531.2141 530.6239 531.2272 530.5757 531.6956 530.5743 530.5723 53::..5083 530.5928 
Z= 

O'l 531.1846 530.5659 530.5975 530.5759 530.5829 530.5888 530.6403 531.3860 530.5795 530.5706 t:--.:i 

530.5722 530.7535 530.5830 530.5765 531.2906 531.1941 530.5913 530.5835 530.5785 530.5938 

530.5695 530.5760 530.5754 530.5863 530.6404 531.2481 530.6158 530.5658 530.5894 530.5864 

530.5713 530.5660 530.6557 530.5682 530.5865 530.5737 531.1960 530.6177 531.1873 530.5909 

530.6569 531.1864 531.1950 531.2667 531.1989 530.6328 530.5817 530.6221 530.5778 531.1961 



530.5889 531.1940 857.5971 531.1940 857.5971 531.1940 531.1940 550.8603 857.5971 531.1940 

530.5889 530.5889 857.5971 531.1940 531.1940 530.5889 531.1940 531.1940 559.9512 530.5889 

530.5889 530.5889 531.1940 531.1940 531.1940 616.8264 531.1940 857.5971 53·).5889 530.5889 

530.5889 530.5889 530.5889 847.4652 530.5889 626.3889 531.1940 530.5889 857.5971 531.1940 

Z= 530.5889 530.5889 530.5889 531.1940 857.5971 559.2445 533.9439 530.5889 857.5971 601.1401 

O'l 530.5889 530.5889 530.5889 531.1940 530.5889 531.1940 530.5889 557.5935 531.1940 857.5971 c.,,;i 

530.5889 530.5889 531.8035 530.5889 531.1940 530.5889 857.5971 531.1940 531.1940 857.5971 

530.5889 531.1940 530.5889 530.5889 531.1940 531.1940 857.5971 530.5894 531.1940 531.1940 

530.5889 531.1940 530.5889 530.5889 531.1940 531.1940 530.5889 530.5889 857.5971 660.2535 

530.5889 530.5889 531.1940 531.1940 531.1940 531.1940 857.5971 531.1940 531.1940 531.1940 



E (t) Mx (t) MM (t) 
1000 1000 1000 
990 990.3157 990.3200 
984 980.9545 980.9657 
978 971.9035 971.9240 
949 963.1504 963.1824 
944 954.6834 954.7291 
937 946.4914 946.5527 
933 938.5638 938.6426 
914 930.8904 930.9883 
911 923.4615 923.5803 
907 916.2678 916.4090 
907 909.3007 909.4656 
900 902.5515 902.7415 
886 896.0124 896.2287 
882 889.6755 889.9193 
877 883.5335 883.8060 
873 877.5795 877.8816 
861 871.8066 872.1393 
849 866.2084 866.5727 
843 860.7788 861.1754 

Table 5.4: Exact and Model number of subscribers 
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Figure 5.4: Model prediction for two segments with probabilities 0.4 & 0.6 
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5.3.2.2 Two segments with fixed probabilities 0.1 & 0.9 

The next churn model was to divide the data into two segments with fixed probabilities, 

where the probability for the first segment is prob1 = 0.1 and the probability for the 

second segment is prob2 = 0.9. An initial point was given in the range 0.0001 ::; () ::; 

0.9999. The optimal values obtained from Microsoft Excel are 81 = 0.1124, 82 = 0.0019, 

meaning that it is more probable for a subscriber in the first segment to churn, and the 

maximum log-likelihood function is LL = -528.5553. Table 5.5 shows the Microsoft 

Excel computation. 

The same procedure was carried out by Matlab using the simulated annealing al­

gorithm. The global optimum for the log-likelihood function was found to be best = 

528.5553. This optimum was achieved when bestmin = [0.1124 0.0019], which represent 

the values of (). In this case the model parameters are equal to those obtained from 

Microsoft Excel. All of the 100 initial points gave the global optimum solution. Opti­

mization using a standard optimization algorithm indicates that only 20 out of the 100 

random initial points obtain the global optimal value. Hence the simulated annealing 

performs better. 

By computing the number of subscribers per week using the optimal values for () 

it was possible to predict the remaining eight weeks of the data. When the predic­

tions were calculated, a plot of the exact number of subscribers, predictions from the 

Microsoft Excel optimal values and predictions from the Matlab optimal values was 

constructed to compare the predictions. The prediction values are shown in Table 5.6 

and the plot of the predictions is shown in Figure 5.6. This figure shows that the predic­

tion for two segments with fixed probabilities 0.1 and 0.9 is not very accurate, however 

the predictions obtairn~o from Microsoft Exr-el and from Matlab are very similar to each 

other. Figure 5.5 shows the global optimal value at the top right corner of the figure. 
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'l'wo segments of subscribers with probabilities 0.1 & 0.9 
Segments: 1 2 

Thetas: 0.1124 0.0019 
Probabilities: 0.1 0.9 

LL: -528.5553 
Weekt Nt P[T=t] Ilt S[T=t] LL term 

0 1000 0 
1 990 0.0130 10 0.9870 -43.4399 
2 984 0.0117 6 0.9753 -26.6795 
3 978 0.0106 6 0.9647 -27.2847 
4 949 0.0096 29 0.9551 -134.7464 
5 944 0.0087 5 0.9464 -23.7168 
6 937 0.0079 7 0.9385 -33.8667 
7 933 0.0072 4 0.9313 -19.7220 
8 914 0.0066 19 0.9247 -95.3875 
9 911 0.0061 3 0.9186 -15.3229 
10 907 0.0056 4 0.9130 -20.7683 
11 907 0.0051 0 0.9079 0.0000 
12 0.0047 -87.6206 
13 0.0044 
14 0.0041 
15 0.0038 
16 0.0036 
17 0.0034 
18 0.0032 
19 0.0030 

Table 5.5: Excel: Two segments of subscribers with probabilities 0.1 & 0.9 

67 



E (t) Mx(t) MM(t) 
1000 1000 1000 
990 987.0153 987.0500 
984 975.4491 975.5179 
978 965.1150 965.2177 
949 955.8539 955.9900 
944 947.5291 947.6982 
937 940.0227 940.2245 
933 933.2330 933.4672 
914 927.0719 927.3382 
911 921.4627 921.7609 
907 916.3390 916.6687 
907 911.6426 912.0035 
900 907.3228 907.7147 
886 903.3353 903.7579 
882 899.6411 900.0943 
877 896.2062 896.6897 
873 893.0007 893.5142 
861 889.9983 890.5415 
849 887.1757 887.7485 
843 884.5126 885.1149 

Table 5.6: Exact and Model number of subscribers 
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Figure 5.5: Contour figure showing the optimal value 
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Figure 5.6: Model prediction for two segments with probabilities 0.1 & 0.9 
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5.3.2.3 Two segments with optimizable probabilities 

The third churn model was to divide the data into two segments where the probabilities 

are optimizable, so that the probabilty of each segment is unknown. An initial point was 

provided for(} such that it is within the bounds 0.0001 :S (} :S 0.9999 and another initial 

point for prob was given such that the bounds are 0 :S prob :S 1 and prob1 +prob2 = 1. 

The optimal results from Microsoft Excel show that 81 = 0.0910, 82 = 0.0001, prob1 = 

0.1419, prob2 = 0.8581. This means that a higher churn probability is expected for 

a subscriber in the first segment, however it is more probable that a subscriber is in 

the second segment. The optimal log-likelihood function is LL = -528.2415. Table 5.7 

shows the Microsoft Excel computation. 

The global optimum in Matlab for the log-likelihood function is given by best = 

528.2268. This optimum is achieved when bestmin = [0.0000 0.0920 0.8581 0.1419], 

where (} = [0.0000 0.0920] and prob = [0.8581 0.1419], which are the same as those 

obtained in Microsoft Excel. For this model, the matrix A could not be computed since 

this model optimizes four parameters. Instead, a sum was computed giving the number 

of initial values which obtain the global optimal value of the log-likelihood function. 

This sum gave a value of 96 meaning that 96 out of 100 initial values result in the global 

optimal value. 

Predictions for the number of subscribers for the remaining weeks were computed 

and are shown in Table 5.8. Figure 5. 7 shows the plot of the predictions and the exact 

number of subscribers. This figure shows that this model is not a very accurate model, 

since the last few predictions diverge from the actual number of subscribers. 
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Two segments with optimizable probabilities 
Segments: 1 2 

Thetas: 0.0910 0.0001 
Probabilities: 0.1419 0.8581 1 

LL: -528.2415 
Weekt Nt P[T = t] Ilt S[T=t] LL term 

0 1000 0 
1 990 0.0130 10 0.9870 -43.4297 
2 984 0.0118 6 0.9752 -26.6262 
3 978 0.0108 6 0.9644 -27.1941 
4 949 0.0098 29 0.9546 -134.1814 
5 944 0.0089 5 0.9457 -23.6073 
6 937 0.0081 7 0.9376 -33.7112 
7 933 0.0074 4 0.9303 -19.6408 
8 914 0.0067 19 0.9236 -95.0843 
9 911 0.0061 3 0.9175 -15.2956 
10 907 0.0056 4 0.9119 -20.7701 
11 907 0.0051 0 0.9068 0.0000 
12 0.0046 -88.7008 
13 0.0042 
14 0.0038 
15 0.0035 
16 0.0032 
17 0.0029 
18 0.0026 
19 0.0024 

Table 5.7: Excel: Two segments with optimizable probabilities 
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E (t) Mx (t) MM (t) 
1000 1000 1000 
990 987.0021 986.9452 
984 975.3326 975.2462 
978 964.8426 964.7494 
949 955.4020 955.3209 
944 946.8968 946.8435 
937 939.2269 939.2143 
933 932.3039 932.3429 
914 926.0499 926.1492 
911 920.3958 920.5627 
907 915.2803 915.5208 
907 910.6489 910.9678 
900 906.4531 906.8543 
886 902.6496 903.1360 
882 899.1996 899.7737 
877 896.0684 896.7321 
873 893.2250 893.9796 
861 890.6416 891.4880 
849 888.2931 889.2320 
843 886.1569 887.1887 

Table 5.8: Exact and Model number of subscribers 
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5.3.2.4 Three segments with fixed probabilities 0.1, 0.3 & 0.6 

Suppose that the data is divided into three segments with fixed probabilities, such that 

prob1 = 0.1, prob2 = 0.3 and prob3 = 0.6. An initial starting point for (} was given 

hving three components in the region 0.0001 :s; (} :s; 0.9999. The initial point was 

entered by trial-and-error until the optimal solution was obtained. The results show 

that 81 = 0.1121, 82 = 0.0001, 83 = 0.0029. So it is more probable to churn from the 

first segment, while it is less probable to churn from the second segment. The log­

likelihood function corresponding to these optimal values is LL = -528.5500, as shown 

in Table 5.9. 

By using the simulated annealing algorithm in Matlab, the global optimum for the 

log-likelihood function was found to be best = 528.5311. This optimum was achieved 

when bestmin = [0.1117 0.0060 0.0000] such that 81 = 0.1117, 82 = 0.0060 and 83 = 0. 

Matlab's optimal solution shows also that it is more likely to churn from the first 

segment. Again, the matrices A and Z could not be computed since this model is in 

three dimensions. However, a sum of the initial points which resulted into the global 

optimum was calculated. This sum added up to 998, meaning that 998 out of 1000 

random initial points reach the global optimum value. 

Predictions for the remaining weeks were computed by using both optimal values 

found by Microsoft Excel and by Matlab. The results are shown in Table 5.10 and the 

corresponding plot is shown in Figure 5.8. Again, it can be seen that the predictions 

give a slight discrepancy from the exact values. 
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Three segments of subscribers with probabilities 0.1, 0.3 & O.G 
Segments: 1 2 3 

Thetas: 0.1121 0.0001 0.0029 
Probabilities: 0.1 0.3 0.6 1 

LL: -528.5500 
Weekt Nt P[T=t] Ilt S[T=t] LL term 

0 1000 0 
1 990 0.0130 10 0.9870 -43.4435 
2 984 0.0117 6 0.9753 -26.6796 
3 978 0.0106 6 0.9647 -27.2828 
4 949 0.0096 29 0.9551 -134.7284 
5 944 0.0087 5 0.9464 -23.7123 
6 937 0.0079 7 0.9385 -33.8587 
7 933 0.0072 4 0.9312 -19.7166 
8 914 0.0066 19 0.9246 -95.3586 
9 911 0.0061 3 0.9185 -15.3180 
10 907 0.0056 4 0.9130 -20.7615 
11 907 0.0051 0 0.9078 0.0000 
12 0.0047 -87.6901 
13 0.0044 
14 0.0041 
15 0.0038 
16 0.0036 
17 0.0034 
18 0.0032 
19 0.0030 

Table 5.9: Excel: Three segments of subscribers with probabilities 0.1, 0.3 & 0.6 
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E (t) Mx (t) MM(t) 
1000 1000 1000 
990 987.0200 987.0300 
984 975.4538 975.4704 
987 965.1164 965.1378 
949 955.8496 955.8751 
944 947.5173 947.5474 
937 940.0024 940.0384 
933 933.2037 933.2474 
914 927.0334 927.0873 
911 921.4152 921.4823 
907 916.2830 916.3664 
907 911.5788 911.6820 
900 907.2520 907.3789 
886 903.2585 903.4128 
882 899.5595 899.7452 
877 896.1211 896.3423 
873 892.9132 893.1741 
861 889.9097 890.2145 
849 887.0875 887.4403 
843 884.4262 884.8313 

Table 5.10: Exact and Model number of subscribers 

76 



1000 
I ~ .---'--

--Exact 
--Excel 

980" 
.--Matlab 

960 

940 
!ii 
·" ·5 
"' -~ 

920 
'5 
ii; 
·" 

--1 § 
--1 :2'.: 

900 

880 

860 
"-.. 
" 

8400 
2 4 6 8 10 12 14 16 18 20 

Week 

Figure 5.8: Model prediction for three segments with probabilities 0.1, 0.3 & 0.6 



5.3.2.5 Three segments with optirnizable probabilities 

This churn model divides the data into three segments, however this time the probability 

of being in a segment is not fixed, but the segment probabilities are optimizable. For 

this model two initial points must be given, one for the probabilties of each segment, 

prob, and one for the model parameters 8. These initial values must be within the 

bounds 0::; prob::; 1, prob1 +prob2 +prob3 = 1, and 0.0001::; ()::; 0.9999. Table 5.11 

shows the results obtained from Microsoft Excel, where () = [0.0001 0.0925 0.9999] 

and prob = [0.8597 0.1403 0.0000]. The segment probabilities show that it is more 

likely for a subscriber to be in the first segment with a very small churn probability. 

Also, the third segment has probability 0, however, if a subscriber is in this segment, 

the subscriber has a very high chance of churning. The corresponding log-likelihood 

function is LL = -528.2402. 

The same procedure was carried out using the simulated annealing algorithm in Mat­

lab. The initial points were set within the bounds of prob and() as in Microsoft Excel. 

The global optimum for the log-likelihood function was achieved at best = 528.2391. 

This results from the model parameters bestmin = [0.0881 0.0958 0.0001 0.0404 0.0995 

0.8602], where() = [0.0881 0.0958 0.0001] and prob = [0.0404 0.0995 0.8602]. On the 

contrary of the optimal values obtained from Microsoft Excel, these values show that 

it is more probable of being in the third segment, but the probability of churning from 

this segment is very small. Once again, a sum corresponding to the number of initial 

values which result in obtaining the global optimal value, and in this case all initial 

points reach the optimal solution such that the sum is equal to 1000. 

The predictions were once again calculated and Table 5.12 shows the predictions 

of both optimal values obtained from Microsoft Excel and Matlab. The corresponding 

figure is shown in Figure 5.9 suggesting that this churn model is not very accurate. 
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Three segments with optimizable probabilities 
Segments: 1 2 3 

Thetas: 0.0001 0.0925 0.9999 
Probabilities: 0.8597 0.1403 0.0000 1 

LL: -528.2402 
Weekt Nt P[T=t] llt S[T=t] LL term 

0 1000 0 
1 990 0.0131 10 0.9869 -43.3807 
2 984 0.0119 6 0.9751 -26.6067 
3 978 0.0108 6 0.9643 -27.1845 
4 949 0.0098 29 0.9545 -134.1825 
5 944 0.0089 5 0.9456 -23.6157 
6 937 0.0081 7 0.9376 -33.7344 
7 933 0.0073 4 0.9302 -19.6606 
8 914 0.0067 19 0.9236 -95.2093 
9 911 0.0061 3 0.9175 -15.3202 
10 907 0.0055 4 0.9120 -20.8094 
11 907 0.0050 0 0.9070 0.0000 
12 0.0045 -88.5362 
13 0.0041 
14 0.0038 
15 0.0034 
16 0.0031 
17 0.0028 
18 0.0026 
19 0.0023 

Table 5.11: Excel: Three segments with optimizable probabilities 
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E (t) Mx (t) MM (t) 
1000 1000 1000 
990 986.9363 986.8226 
984 975.2280 975.0295 
978 964.7210 964.4612 
949 955.2810 954.9790 
944 946.7904 946.4618 
937 939.1462 938.8035 
933 932.2576 931.9109 
914 926.0447 925.7020 
911 920.4367 920.1045 
907 915.3709 915.0542 
907 910.7918 910.4942 
900 906.6498 906.3743 
886 902.9008 902.6495 
882 899.5055 899.2797 
877 896.4288 896.2293 
873 893.6390 893.4664 
861 891.1082 890.9624 
849 888.8108 888.6917 
843 886.7243 886.6313 

Table 5.12: Exact and Model number of subscribers 
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Figure 5.9: Model prediction for three segments with optimizable probabilities 



5.3.2.6 Shifted-Beta Geometric Model 

The shifted-beta geometric (sBG) model was the last churn model fitted to the data. 

For this model the first fourteen weeks, p = 14, of the data were used to find the optimal 

model parameters. In this case the data is not divided into segments and so there are no 

segment probabilities. An initial point was given for a and f3 which are the parameters 

of this model. The optimal value for the log-likelihood function was obtained when 

a = 0.2405 and f3 = 20. 7964, where the corresponding log-likelihood function is given 

by LL = -672.1467. The results by Microsoft Excel are shown in Table 5.13. 

By applying the simulated annealing algorithm in Matlab, the optimal values for a 

and f3 were calculated such that the optimal model parameters obtained were a= 0.2319 

and f3 = 19.8898 and the corresponding log-likelihood function is given by best = 

672.1486. In this case all 100 random initial values resulted in reaching the global 

optimal solution. 

For this model, the predictions for the optimal value obtained from Microsoft Excel 

and the predictions for the optimal value obtained from Matlab were plotted with the 

exact number of subscribers per week. Table 5.14 shows the results of the predictions 

and Figure 5.10 shows the plot of these predictions. From the figure it can be seen that 

the predictions describe the data quite well. In fact, this churn model gives the best 

predictions. 
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IGTT sBG Model 
Alpha 0.2405 
Beta 20.7964 
LL: -672.1467 

Weekt Nt P[T = t) Ilt S[T=t] LL term 
0 1000 0 
1 990 0.0114 10 0.9886 -44.7116 
2 984 0.0108 6 0.9778 -27.1746 
3 978 0.0102 6 0.9676 -27.5067 
4 949 0.0097 29 0.9579 -134.4859 
5 944 0.0092 5 0.9487 -23.4413 
6 937 0.0088 7 0.9399 -33.1596 
7 933 0.0084 4 0.9316 -19.1362 
8 914 0.0080 19 0.9236 -91.7568 
9 911 0.0077 3 0.9159 -14.6189 
10 907 0.0073 4 0.9086 -19.6606 
11 907 0.0070 0 0.9015 0.0000 
12 900 0.0068 7 0.8948 -34.9680 
13 886 0.0065 14 0.8883 -70.4718 
14 882 0.0063 4 0.8820 -20.2833 
15 0.0061 -110.7712 
16 0.0058 
17 0.0057 
18 0.0055 
19 0.0053 

Table 5.13: Excel: sBG Model 
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E (t) Mx(t) MM (t) 
1000 1000 1000 
990 988.5660 988.4751 
984 977.8990 977.7475 
978 967.9154 967.7272 
949 958.5436 958.3380 
944 949.7225 949.5148 
937 941.3990 941.2015 
933 933.5269 933.3495 
914 926.0661 925.9168 
911 918.9811 918.8663 
907 912.2407 912.1654 
907 905.8172 905.7854 
900 899.6859 899.7009 
886 893.8248 893.8889 
882 888.2140 888.3293 
877 882.8359 883.0038 
873 877.6744 877.8958 
861 872.7149 872.9906 
849 867.9443 868.2747 
843 863.3506 863.7358 

Table 5.14: Exact and Model number of subscribers 
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5.3.3 Friends Tariff 

5.3.3.1 Two segments with fixed probabilities 0.4 & 0.6 

The churn models desnihed in the previons s11 hsertions were ae;ain implemented for 

the Friends tariff. The first churn model for this tariff was to split the data into 

two segments where the first segment has probability prob1 = 0.4 and the second 

segment has probability prob2 = 0.6. The initial values was selected by trial-and­

error in Microsoft Excel until the optimal values were obtained, such that 81 = 0.0212, 

82 = 0.0001, showing that the second segment has a very small churn probability. 

The maximum log-likelihood function corresponding to these optimal values is LL = 

-489.0698. Table 5.15 shows the Microsoft Excel computation. 

By computing the same model using the simulated annealing algorithm in Matlab, 

the global optimum for the log-likelihood function is given by best = 489.0611 where 

the model parameters are bestmin = [0.0213 0.0000], such that 81 = 0.0213 and 82 = 0. 

These values also confirm that the churn probability is highest for the first segment. 

The values of the matrix A are all 1, meaning that all 100 initial points gave the global 

optimum value. From the values of the matrix A, 7 4 out of 100 initial points attain 

the global optimal solution, which is not a bad result however the simulated annealing 

algorithm performed better. 

The optimal values found in Microsoft Excel and Matlab were used to predict the 

remaining eight weeks. Table 5.16 shows the actual values of the number of subscribers 

per week and the predicted values obtained from the Microsoft Excel optimal values 

and from the Matlab optimal values. Figure 5.12 shows the plot of the corresponding 

optimal values. This figure shows that the predictions are quite reasonable. Figure 5.11 

shows the global optimal value at the bottom center of the figure. 
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Two segments of subscribers with probabilities 0.4 & 0.6 
Segments: 1 2 

Thetas: 0.0212 0.0001 
Probabilities: 0.4 0.6 

LL: -489.0698 
Weekt Nt P[T=t] Ilt S[T = t] LL term 

0 1000 0 
1 990 0.0085 10 0.9915 -47.6337 
2 986 0.0084 4 0.9831 -19.1385 
3 982 0.0082 4 0.9749 -19.2236 
4 961 0.0080 21 0.9669 -101.3704 
5 956 0.0078 5 0.9591 -24.2421 
6 951 0.0077 5 0.9514 -24.3484 
7 948 0.0075 3 0.9439 -14.6728 
8 924 0.0074 24 0.9365 -117.8922 
9 920 0.0072 4 0.9293 -19.7337 
10 916 0.0071 4 0.9223 -19.8186 
11 916 0.0069 0 0.9154 0.0000 
12 0.0068 -80.9957 
13 0.0066 
14 0.0065 
15 0.0063 
16 0.0062 
17 0.0061 
18 0.0059 
19 0.0058 

Table 5.15: Excel: Two segments of subscribers with probabilities 0.4 & 0.6 
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E (t) Mx (t) MM(t) 
1000 1000 1000 
990 991.4632 991.4800 
986 983.1774 983.2125 
982 975.1337 975.1886 
961 967.3236 967.3997 
956 959.7391 959.8376 
951 952.3723 952.4944 
948 945.2157 945.3626 
924 938.2623 938.4349 
920 931.5051 931.7045 
916 924.9375 925.1647 
916 918.5533 918.8092 
911 912.3464 912.6317 
896 906.3108 906.6265 
893 900.4412 900.7878 
890 894.7319 895.1103 
887 889.1780 889.5888 
870 883.7744 884.2182 
858 878.5164 878.9937 
854 873.3992 873.9107 

Table 5.16: Exact and Model number of subscribers 
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Figure 5.11: Contour figure showing the optimal value 
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Figure 5.12: Model prediction for two segments with probabilities 0.4 & 0.6 
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5.3.3.2 Two segments with fixed probabilities 0.1 & 0.9 

The next churn model was that of dividing the data into two segments with fixed 

probabilities where the first segment has probability prob1 = 0.1 and the second segment 

has probabililty prob2 = 0.9. An initial point was provided for 8, such that 0.0001 ~ 

() ~ 0.9999. The optimal values obtained from Microsoft Excel are 81 = 0.0732, 82 = 

0.0028, so the first segment has a higher churn probability, and the maximized log­

likelihood function corresponding to these values is LL = -488. 7240. The computation 

in Microsoft Excel is shown in Table 5.17. 

Similarly, using the simulated annealing algorithm in Matlab, the optimal results 

show that the global optimum for the log-likelihood function is achieved at best = 

488. 7240 when the model parameters are bestmin = [0.0733 0.0028]. These are the 

same values obtained from Microsoft Excel. The matrix A has 100 elements and in this 

case they are all l 's. This shows that all 100 initial points gave the optimal solution. 

The matrix A was again calculated, and only 21 out of 100 initial points obtained 

the global optimum. Once again, this shows that the simulated annealing algorithm 

demonstrates an improvement when compared to a standard optimization algorithm, 

where some initial points end up in a local optimal solution. 

The predictions for the remaining eight weeks were calculated and the results are 

shown in Table 5.18. This table shows the exact number of subscribers per week and 

the predictions using the optimal values that were obtained from the computation of 

Microsoft Excel and from Matlab. Figure 5.14 is the plot of both predictions and the 

actual data. However, from this figure it can be seen that the predictions are not very 

accurate. 

Figure 5.13 shows the global optimal solution at the top right corner. 
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Two segments of subscribers with probabllities 0.1 & 0.9 
Segments: 1 2 

Thetas: 0.0732 0.0028 
Probabilities: 0.1 0.9 

LL: -488.7240 
Weekt Nt P[T = t) llt S[T=t) LL term 

0 1000 0 
1 990 0.0098 10 0.9902 -46.2300 
2 986 0.0093 4 0.9809 -18.7196 
3 982 0.0088 4 0.9721 -18.9429 
4 961 0.0083 21 0.9638 -100.5997 
5 956 0.0079 5 0.9559 -24.2204 
6 951 0.0075 5 0.9485 -24.4827 
7 948 0.0071 3 0.9414 -14.8434 
8 924 0.0068 24 0.9346 -119.9490 
9 920 0.0064 4 0.9282 -20.1868 
10 916 0.0061 4 0.9221 -20.3770 
11 916 0.0059 0 0.9162 0.0000 
12 0.0056 -80.1726 
13 0.0054 
14 0.0051 
15 0.0049 
16 0.0047 
17 0.0046 
18 0.0044 
19 0.0042 

Table 5.17: Excel: Two segments of subscribers with probabilities 0.1 & 0.9 
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E (t) Mx (t) MM (t) 
1000 1000 1000 
990 990.1768 990.1500 
986 980.9879 980.9360 
982 972.3786 972.3031 
961 964.2995 964.2016 
956 956.7057 956.5866 
951 949.5568 949.4175 
948 942.8160 942.6573 
924 936.4499 936.2726 
920 930.4279 930.2329 
916 924.7226 924.5103 
916 919.3086 919.0797 
911 914.1630 913.9180 
896 909.2647 909.0040 
893 904.5946 904.3186 
890 900.1349 899.8441 
887 895.8698 895.5644 
870 891.7843 891.4647 
858 887.8650 887.5314 
854 884.0996 883.7522 

Table 5.18: Exact and Model number of subscribers 
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Figure 5.13: Contour figure showing the optimal value 
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Figure 5.14: Model prediction for two segments with probabilities 0.1 & 0.9 
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5.3.3.3 Two segments with optimizable probabilities 

The third churn model was to divide the data into two segments where the probabilities 

are optimizable, so that initially the probabilty of each segment is unknown. An initial 

point was provided for e such that it is within the bounds 0.0001 :::; e :::; 0.9999 and 

another initial point for prob was given such that the bounds are 0 :::; prob :::; 1 and 

prob1 + prob2 = 1. The optimal results from Microsoft Excel show that B1 = 0.0023, 

e2 = 0.0697, prob1 = 0.8903, prob2 = 0.1097. This means that it is more probable 

for a subscriber to be in the first segment with a lower churn probability than the 

second segment. The optimal log-likelihood function corresponding to these values is 

LL = -488.7149. Table 5.19 shows the Microsoft Excel computation. 

The global optimum in Matlab for the log-likelihood function is given by best = 

488.9162. This optimum is achieved when bestmin = [0.0053 0.0955 0.9544 0.0456], 

where e = [0.0053 0.0955] and prob = [0.9544 0.0456]. This confirms that it is more 

probable for a subscriber to be in the first segment with a lower churn probability than 

the second segment. The number of initial values which obtain the global optimal value 

of the log-likelihood function is 75, meaning that 75 out of 100 random initial values 

result in the global optimal value. 

Predictions for the number of subscribers for the remaining weeks are computed 

and are shown in Table 5.20. Figure 5.15 shows the plots of the predictions and the 

exact number of subscribers. This figure shows that this model is quite reasonable, 

and moreover, the predictions from Matlab are more accurate than the predictions in 

Microsoft Excel. 
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Two segments with optimizabie probabilities 
Segments: 1 2 

Thetas: 0.0023 0.0697 
Probabilities: 0.8903 0.1097 1 

LL: -488.7149 
Weekt Nt P[T=t] Ilt S[T=t] LL term 

0 1000 0 
1 990 0.0097 10 0.9903 -46.3609 
2 986 0.0092 4 0.9811 -18.7723 
3 982 0.0087 4 0.9725 -18.9970 
4 961 0.0082 21 0.9643 -100.8947 
5 956 0.0078 5 0.9565 -24.2943 
6 951 0.0074 5 0.9492 -24.5614 
7 948 0.0070 3 0.9422 -14.8941 
8 924 0.0066 24 0.9356 -120.3875 
9 920 0.0063 4 0.9293 -20.2662 
10 916 0.0060 4 0.9233 -20.4635 
11 916 0.0057 0 0.9175 0.0000 
12 0.0055 -78.8230 
13 0.0052 
14 0.0050 
15 0.0048 
16 0.0046 
17 0.0044 
18 0.0042 
19 0.0041 

Table 5.19: Excel: Two segments with optimizable probabilities 
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E (t) Mx(t) MM(t) 
1000 1000 1000 
990 990.3044 990.5869 
986 981.2349 981.7009 
982 972.7390 973.2901 
961 964.7697 965.3083 
956 957.2837 957.7145 
951 950.2422 950.4722 
948 943.6096 943.5488 
924 937.3535 936.9151 
920 931.4442 930.5453 
916 925.8549 924.4161 
916 920.5608 918.5067 
911 915.5394 912.7984 
896 910.7698 907.2745 
893 906.2332 901.9200 
890 901.9120 896.7214 
887 897.7904 891.6665 
870 893.8535 886.7445 
858 890.0879 881.9455 
854 886.4811 877.2607 

Table 5.20: Exact and Model number of subscribers 
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Figure 5.15: Model prediction for two segments with optimizable probabilities 

20 



5.3.3.4 Three segments with fixed probabilities 0.1, 0.3 & 0.6 

Suppose that the data is divided into three segments with fixed probabilities, such that 

prob1 = 0.1, prob2 = 0.3 and prob3 = 0.6. An initial starting point for () was given 

where() has three components in the region 0.0001 ::::; (}::::; 0.9999. The initial point was 

entered by trial-and-error until the optimal solution was obtained. The results show 

that e1 = 0.0727, e2 = 0.0001, e3 = 0.0042. Thus it is more probable for a subscriber 

in the second segment to churn. The log-likelihood function corresponding to these 

optimal values is LL = -488. 7182 as shown in Table 5.21. 

By using the simulated annealing algorithm in Matlab, the global optimum for 

the log-likelihood function was found to be best = 488. 7263. This optimum was 

achieved when bestmin = [0.0707 0.0018 0.0035] such that el = 0.0707, e2 = 0.0018 

and e3 = 0.0035. These values also show that the second segment has the highest churn 

probability. In this case, the matrices A and Z could not be computed since this model 

is in three dimensions. However, a sum of the initial points which resulted into the 

global optimum was calculated. This sum added up to 988, meaning that 988 out of 

1000 initial points reach the global optimum value. 

Predictions for the remaining weeks were computed by using both optimal values 

found by Microsoft Excel and Matlab. The results are shown in Table 5.22 and the 

corresponding plot is shown in Figure 5.16. This figure shows that this churn model 

does not provide very accurate results. 
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Three segments of subscribers with probabilities 0.1, 0.3 & 0.6 
Segments: 1 2 3 

Thetas: 0.0727 0.0001 0.0042 
Probabilities: 0.1 0.3 0.6 1 

LL: -488.7182 
Weekt Nt P[T=t] Ilt S[T=t] LL term 

0 1000 0 
1 990 0.0098 10 0.9902 -46.2369 
2 986 0.0093 4 0.9809 -18.7209 
3 982 0.0088 4 0.9721 -18.9429 
4 961 0.0083 21 0.9638 -100.5941 
5 956 0.0079 5 0.9559 -24.2180 
6 951 0.0075 5 0.9485 -24.4794 
7 948 0.0071 3 0.9414 -14.8411 
8 924 0.0068 24 0.9346 -119.9292 
9 920 0.0064 4 0.9282 -20.1835 
10 916 0.0061 4 0.9220 -20.3740 
11 916 0.0059 0 0.9162 0.0000 
12 0.0056 -80.1981 
13 0.0054 
14 0.0051 
15 0.0049 
16 0.0047 
17 0.0046 
18 0.0044 
19 0.0042 

Table 5.21: Excel: Three segments of subscribers with probabilities 0.1, 0.3 & 0.6 
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E (t) Mx (t) MM (t) 
1000 1000 1000 
990 990.1835 990.2900 
986 980.9975 981.1775 
982 972.3883 972.6128 
961 964.3069 964.5507 
956 956.7094 956.9504 
951 949.5558 949.7745 
948 942.8099 942.9892 
924 936.4385 936.5637 
920 930.4117 930.4698 
916 924.7022 924.6818 
916 919.2850 919.1761 
911 914.1374 913.9314 
896 909.2384 908.9278 
893 904.5692 904.1473 
890 900.1123 899.5735 
887 895.8517 895.1910 
870 891.7728 890.9859 
858 887.8621 886.9454 
854 884.1075 883.0576 

Table 5.22: Exact and Model number of subscribers 
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Figure 5.16: Model prediction for three segments with probabilities 0.1, 0.3 & 0.6 



5.3.3.5 Three segments with optimizable probabilities 

This churn model divides the data into three segments however this time the probability 

of being in a segment is not fixed but it can be optimized. For this model two initial 

points must be given, one for the probabilties of each segment prob, and one for the 

model parameters fJ. These initial values must be within the bounds 0 ::; prob ::; 1, 

prob1 + prob2 + prob3 = 1, and 0.0001 ::; fJ ::; 0.9999. Table 5.23 shows the results 

obtained from Microsoft Excel. In particular, the probability of being in the third 

segment is 0, and it is more probable for a subscriber to be in the first segment. On 

the other hand, the first segment has a very small churn probability, while the third 

segment has a high churn probability. 

The same procedure was carried out using the simulated annealing algorithm in 

Matlab. The initial points were set within the bounds of prob and fJ. The global opti­

mum for the log-likelihood function was achieved at best= 488.6808. This results from 

the model parameters bestmin = [0.0881 0.0958 0.0001 0.0404 0.0995 0.8602], where 

fJ = [0.0005 0.0188 0.0720] and prob = [O. 7614 0.1442 0.0944]. These show that it is 

most probable for a subscriber to be in the first segment with the least churn probabil­

ity. The number of initial values which result in obtaining the global optimal value is 

968, meaning that 968 out of 1000 initial points result in the global optimum value. 

The predictions were once again calculated and Table 5.24 shows the predictions 

of both optimal values obtained from Microsoft Excel and Matlab. The corresponding 

figure is shown in Figure 5.17. This figure also suggests that this churn model is not very 

accurate to predict the number of subscribers in the future. However, the predictions 

obtained from Matlab give a more accurate result than those obtained from Microsoft 

Excel. 
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Three segments of subscribers with optimizable probabilies 
Segments: 1 2 3 

Thetas: 0.0001 0.0540 0.8942 
Probabilities: 0.8182 0.1818 0.0000 1 

LL: -488.5951 
Weekt Nt P[T=t] llt S[T=t] LL term 

0 1000 0 
1 990 0.0099 10 0.9901 -46.1499 
2 986 0.0094 4 0.9807 -18.6802 
3 982 0.0089 4 0.9719 -18.9003 
4 961 0.0084 21 0.9635 -100.3817 
5 956 0.0079 5 0.9555 -24.1753 
6 951 0.0075 5 0.9480 -24.4500 
7 948 0.0071 3 0.9409 -14.8347 
8 924 0.0067 24 0.9341 -119.9947 
9 920 0.0064 4 0.9278 -20.2185 
10 916 0.0060 4 0.9217 -20.4377 
11 916 0.0057 0 0.9160 0.0000 
12 0.0054 -80.3721 
13 0.0051 
14 0.0049 
15 0.0046 
16 0.0044 
17 0.0041 
18 0.0039 
19 0.0037 

Table 5.23: Excel: Three segments with optimizable probabilies 
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E (t) Mx (t) MM (t) 
1000 1000 1000 
990 990.0977 990.1115 
986 980.8187 980.8560 
982 972.1188 972.1817 
961 963.9576 964.0418 
956 956.2978 956.3936 
951 949.1050 949.1985 
948 942.3478 942.4214 
924 935.9969 936.0304 
920 930.0255 929.9961 
916 924.4085 924.2919 
916 919.1229 918.8935 
911 914.1474 913.7785 
896 909.4620 908.9266 
893 905.0485 904.3189 
890 900.8896 899.9382 
887 896.9695 895.7689 
870 893.2733 891.7963 
858 889.7873 888.0070 
854 886.4985 884.3888 

Table 5.24: Exact and Model number of subscribers 
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5.3.3.6 Shifted-Beta Geometric Model 

The shifted-beta geometric (sBG) model was the last churn model fitted to the data. 

For this model the first fourteen weeks of the data were used to find the optimal model 

parameters. In this case the data is not divided into segments and so there are no 

segment probabilities. An initial point was given for a and J3 which are the parameters 

of this model. The optimal value for the log-likelihood function was obtained when 

a = 0.4530 and J3 = 49.5971, where the corresponding log-likelihood function is given 

by LL = -621.9530. The results by Microsoft Excel are shown in Table 5.25. 

By applying the simulated annealing algorithm in Matlab, the optimal values for a 

and J3 were calculated. The optimal model parameters obtained were a = 0.3653 and 

J3 = 38.9580 and the corresponding log-likelihood function is given by best= 621.9698. 

All 100 initial values obtained the global optimal solution, where the difference in the 

values of the log-likelihood function are negligible. 

For this model, the predictions for the optimal values obtained from Microsoft Excel 

and the predictions for the optimal values obtained from Matlab were plotted with the 

exact number of subscribers per week. Table 5.26 shows the results of the predictions 

and Figure 5.18 shows the plot of these predictions. From this figure it can be seen 

that the predictions explain the data very well and in fact, this churn model gives the 

best predictions. 
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Friends sBG Model 
Alpha 0.4530 
Beta 49.5971 
LL: -621.9530 

Weekt Nt P[T=t] Ilt S[T=t] LL term 
0 1000 0 
1 990 0.0091 10 0.9909 -47.0489 
2 986 0.0088 4 0.9822 -18.9351 
3 982 0.0085 4 0.9736 -19.0483 
4 961 0.0083 21 0.9653 -100.5869 
5 956 0.0081 5 0.9572 -24.0855 
6 951 0.0079 5 0.9493 -24.2193 
7 948 0.0077 3 0.9417 -14.6104 
8 924 0.0075 24 0.9342 -117.5020 
9 920 0.0073 4 0.9269 -19.6851 
10 916 0.0071 4 0.9198 -19.7847 
11 916 0.0069 0 0.9128 0.0000 
12 911 0.0068 5 0.9061 -24.9738 
13 896 0.0066 15 0.8995 -75.2768 
14 893 0.0065 3 0.8930 -15.1253 
15 0.0063 -101.0709 
16 0.0062 
17 0.0060 
18 0.0059 
19 0.0058 

Table 5.25: Excel: sBG Model 
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E (t) Mx (t) MM (t) 
1000 1000 1000 
990 990.9491 990.7103 
986 982.2355 981.8186 
982 973.8395 973.2978 
961 965.7433 965.1234 
956 957.9303 957.2732 
951 950.3850 949.7266 
948 943.0932 942.4651 
924 936.0416 935.4714 
920 929.2180 928.7300 
916 922.6108 922.2262 
916 916.2092 915.9467 
911 910.0035 909.8792 
896 903.9840 904.0122 
893 898.1422 898.3352 
890 892.4698 892.8383 
887 886.9591 887.5123 
870 881.6030 882.3487 
858 876.3945 877.3396 
854 871.3274 872.4776 

Table 5.26: Exact and Model number of subscribers 
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Chapter 6 

Conclusions 

6.1 Presentation of major results 

The difference between the algorithm provided in Microsoft Excel and the simulated 

annealing applied in Matlab was very evident during the implementation phase of this 

dissertation. The initial values entered in Microsoft Excel had to be entered by trial­

and-error until the optimal values were achieved, whereas for the simulated annealing 

algorithm, for the majority of initial value gives the optimal values. There were only a 

very few cases in which the global optimization algorithm did not provide the optimal 

values as can be seen from the matrix A and the sum of the initial points which 

resulted in the optimal solutions. So it is true that the global optimization algorithm 

performs better than other constrained nonlinear optimization algorithms. For the cases 

when the data was divided into two segments with fixed probabilities, optimization was 

also computed with a standard optimization algorithm. The standard optimization 

algorithm fmincon showed that the algorithm does not always result in the global 

optimum, but in most cases it reaches a local optimum, and so, the simulated annealing 
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algorithm performed better than the standard optimization algorithm. 

The following is a summary of the values obtained from the churn models, in par­

ticular to show which is the most accurate model. This can be done by taking the 

average of the absolute difference between the predicted values and the actual value8 of 

the subscriber base. The smaller the average is, implies that the churn model is more 

accurate. 

The first churn model applied to the data was that of dividing the subscriber base 

into two segments with fixed probabilities 0.4 and 0.6. For the IGTT tariff, the average 

difference between the predicted values and actual values resulting from the Microsoft 

Excel optimal values is of 8 subscribers, while the average difference from Matlab's op­

timal values is of 9 subscribers. On the other hand, for the Friends tariff, the difference 

resulting from both Microsoft Excel and Matlab is of 7 subscribers. 

For the second churn model, the data was divided into two segments with fixed 

probabilities 0.1 and 0.9. For the IGTT tariff, the average difference from Microsoft 

Excel is of 13 subscribers, and the difference from Matlab is of 14 subscribers. For the 

Friends tariff, both averages from Microsoft Excel and Matlab give a difference of 9 

subscribers. 

The next churn model was such that it optimizes both the segment probabilities 

and the churn probabilities. The average difference between the predicted values and 

the actual values for the IGTT tariff resulted in 13 subscribers both from the Microsoft 

Excel and Matlab optimal values. For the Friends tariff, a difference of 10 subscribers 

resulted from the Microsoft Excel optimal values, and a difference of 8 subscribers 

resulted from the Matlab optimal values. 

The fourth model divided the data into three segments with fixed segment proba­

bilities 0.1, 0.3 and 0.6. For the IGTT tariff, both difference from Microsoft Excel and 
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Matlab are of 13 subscribers. Whereas for the Friends tariff both Microsoft Excel and 

Matlab resulted with a difference of 9 subscribers. 

For three segments where both the segment probabilities and churn probabilities are 

optimized, an average difference of 13 subscribers was obtained from both Microsoft 

Excel and Matlab for the IGTT tariff. A difference of 10 subscribers was also obtained 

from Microsoft Excel for the Friends tariff, whereas a difference of 9 subscribers was 

obtained from Matlab. 

The last churn model applied to both tariffs was that of the shifted-beta geometric 

( sBG) model. An average difference of 7 subscribers resulted between the actual data 

and the predictions from Microsoft Excel and Matlab for the IGTT data, while an 

average difference of 6 subscribers resulted from the predictions of Microsoft Excel and 

Matlab for the Friends tariff. 

This shows that the most accurate churn model is the shifted-beta-geometric (sBG) 

model, since it has the smallest difference between the actual data and the predictions. 

6. 2 Under lining of limitations 

Even though a global optimization algorithm was applied to the data in the Matlab 

computations, it still does not guarantee that the algorithm results in the global optimal 

solution for all initial values. The values of the matrix A show that not all 100 random 

initial points always attain the global solution. Also, since the data provided only 

showed the number of subscribers for 20 weeks, a longer observation period will surely 

help to obtain a more accurate prediction. 

112 



6.3 Implications for future research 

In this dissertation only two tariffs were used for the implementation part. Future 

implementations can focus on more tariffs and may also include post-paid/ contract 

bound subscribers. Since no indication is given on whether the subscribers churn at 

the customer level or else at the contract level, future studies might consider taking 

into account churning at a contract level and check whether there are any similarities 

between the new tariffs that the churned subscribers are attracted to. Also, other churn 

models may be implemented in future research. 
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Appendix A 

Data Set 

IGTT Tariff 
Segment 0 1 2 3 4 5 6 7 8 9 

0 1000 1000 998 997 940 935 933 931 881 880 
1 1000 974 962 949 946 938 928 922 908 905 
2 1000 995 990 988 947 945 942 941 915 913 
3 1000 997 990 985 931 926 916 907 881 877 
4 1000 995 993 989 948 944 939 935 924 920 
5 1000 986 981 975 973 968 965 962 960 956 
6 1000 992 967 948 944 928 899 894 870 865 

Segment 10 11 12 13 14 15 16 17 18 19 
0 879 879 878 878 877 876 875 875 792 792 
1 899 899 884 881 873 861 859 842 830 819 
2 912 912 909 882 881 878 875 864 860 858 
3 873 873 862 836 828 827 824 822 814 805 
4 916 916 912 910 907 904 899 865 861 858 
5 950 950 945 931 926 921 916 907 903 897 
6 859 859 845 845 841 834 824 818 816 799 
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Friends Tariff 
Segment 0 1 2 3 4 5 6 7 8 9 

0 1000 1000 1000 999 897 897 897 897 860 859 
1 1000 972 960 952 949 937 925 917 896 886 
2 1000 999 997 996 963 961 960 959 933 932 
3 1000 997 992 990 968 962 957 954 921 917 
4 1000 997 996 994 991 989 987 985 968 966 
5 1000 981 975 970 967 963 958 955 948 943 
6 1000 990 988 977 973 961 948 941 862 851 

Segment 10 11 12 13 14 15 16 17 18 19 
0 859 859 859 858 858 858 857 857 758 758 
1 880 880 870 864 858 852 844 836 827 820 
2 930 930 929 899 898 897 896 881 877 876 
3 911 911 904 884 882 879 875 844 839 833 
4 962 962 958 941 939 936 933 920 918 915 
5 938 938 933 929 928 924 920 907 902 899 
6 844 844 828 803 799 789 778 714 699 691 
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Appendix B 

Matlab 

% IGTT: 2 segments of subscribers with probabilities 0.4 & 0.6 

periods 0:11; 

prob = [0.4 0.6]; 

customers = [1000 990 984 978 949 944 937 933 914 911 907 907] ; 

lost(1) = O; 

for i=2:length(customers) 

lost(i) = customers(i-1) - customers(i); 

end 

opt = struct ( ... 

'CoolSched' ,©(T) (.9*T), ... 

'Generator' ,©(x) generator1(x,10), ... 

'InitTemp' ,10, ... 

'MaxConsRej' ,1000, .. . 

'MaxSuccess' ,20, .. . 

'MaxTries' ,300, .. . 
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'StopTemp' ,le-8, .. . 

'StopVal' ,-Inf, .. . 

'Verbosity' ,1); 

f = ©(x) -LLn(x,prob,periods,customers,lost); 

% IGTT: 2 segments of subscribers with probabilities 0.1 & 0.9 

periods= 0:11; 

prob = [0.1 0.9]; 

customers = [1000 990 984 978 949 944 937 933 914 911 907 907] ; 

lost(i) = O; 

for i=2:length(customers) 

lost(i) = customers(i-1) - customers(i); 

end 

opt struct ( ... 

'CoolSched' ,©(T) (.9*T), ... 

'Generator' ,©(x) generatorl(x,10), ... 

'InitTemp' ,10, ... 

'MaxConsRej' ,1000, .. . 

'MaxSuccess' ,20, .. . 

'MaxTries' ,300, .. . 

'StopTemp',le-8, .. . 

'StopVal' ,-Inf, .. . 

'Verbosity', 1); 

f ©(x) -LLn(x,prob,periods,customers,lost); 
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% IGTT: 3 segments of subscribers with probabilities 0.1 0.3 & 0.6 

periods = 0:11; 

prob = [0.1 0.3 0.6]; 

customers = [1000 990 984 978 949 944 937 933 914 911 907 907]; 

lost(1) = O; 

for i=2:length(customers) 

lost(i) = customers(i-1) - customers(i); 

end 

opt struct ( ... 

'CoolSched' ,©(T) (.9*T), ... 

'Generator' ,©(x) generator1(x,10), ... 

'InitTemp' ,10, ... 

'MaxConsRej' ,1000, .. . 

'MaxSuccess' ,20, .. . 

'MaxTries' ,300, .. . 

'StopTemp' ,1e-8, .. . 

'StopVal' ,-Inf, .. . 

'Verbosity' ,1); 

f = ©(x) -LLn(x,prob,periods,customers,lost); 

% IGTT: 2 & 3 segments of subscribers with optimizable probabilities 

periods = 0:11; 

customers = [1000 990 984 978 949 944 937 933 914 911 907 907] ; 

lost(1) = O; 

for i=2:length(customers) 

118 



lost(i) = customers(i-1) - customers(i); 

end 

opt struct( ... 

'CoolSched' ,©(T) (.9*T), ... 

'Generator' ,©(x) generator3(x,10), ... 

'InitTemp' ,10, ... 

'MaxConsRej' ,1000, .. . 

'MaxSuccess' ,20, .. . 

'MaxTries' ,300, .. . 

'StopTemp' ,1e-8, .. . 

'StopVal' ,-Inf, .. . 

'Verbosity' ,1); 

f ©(x) objective2(x,periods,customers,lost); 

% IGTT: sBG model 

customers = [1000 990 984 978 949 944 937 933 914 911 907 907 900 886 882] ; 

week= O:length(customers); 

lost(1) = O; 

for i=2:length(customers) 

lost(i) = customers(i-1) - customers(i); 

end 

opt struct( ... 

'CoolSched' ,©(T) (.9*T), ... 

'Generator' ,©(x) generatorsbg(x,10), ... 

'InitTemp' ,10, ... 
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'MaxConsRej' ,1000, .. . 

'MaxSuccess' ,20, .. . 

'MaxTries' ,300, .. . 

'StopTemp' ,le-8, .. . 

'StopVal' ,-Inf, .. . 

'Verbosity' ,1); 

f ©(x) -LLsbg(x,week,customers,lost); 

% Friends: 2 segments of subscribers with probabilities 0.4 & 0.6 

periods= 0:11; 

prob = [0.4 0.6]; 

customers = [1000 990 986 982 961 956 951 948 924 920 916 916] ; 

lost(1) = O; 

for i=2:length(customers) 

lost(i) = customers(i-1) - customers(i); 

end 

opt= struct( ... 

'CoolSched' ,©(T) (.9*T), ... 

'Generator',©(x) generator1(x,10), ... 

'InitTemp' ,10, ... 

'MaxConsRej' ,1000, .. . 

'MaxSuccess' ,20, .. . 

'MaxTries' ,300, ... 

'StopTemp' ,1e-8, .. . 

'StopVal' ,-Inf, .. . 
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'Verbosity' ,1); 

f ©(x) -LLn(x,prob,periods,customers,lost); 

% Friends: 2 segments of subscribers with probabilities 0.1 & 0.9 

periods= 0:11; 

prob = [0.1 0.9]; 

customers = [1000 990 986 982 961 956 951 948 924 920 916 916] ; 

lost(1) = O; 

for i=2:length(customers) 

lost(i) = customers(i-1) - customers(i); 

end 

opt struct( ... 

'CoolSched' ,©(T) (.9*T), ... 

'Generator' ,©(x) generatorl(x,10), ... 

'InitTemp' ,10, ... 

'MaxConsRej' ,1000, .. . 

'MaxSuccess' ,20, .. . 

'MaxTries' ,300, .. . 

'StopTemp' ,1e-8, .. . 

'StopVal' ,-Inf, .. . 

'Verbosity' ,1); 

f ©(x) -LLn(x,prob,periods,customers,lost); 

% Friends: 3 segments of subscribers with probabilities 0.1 0.3 & 0.6 
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periods= 0:11; 

prob = [0.1 0.3 0.6]; 

customers = [1000 990 986 982 961 956 951 948 924 920 916 916] ; 

lost(1) = O; 

for i=2:length(customers) 

lost(i) = customers(i-1) - customers(i); 

end 

opt struct ( ... 

'CoolSched' ,©(T) (.9*T), ... 

'Generator',©(x) generator1(x,10), ... 

'InitTemp' ,10, ... 

'MaxConsRej',1000, .. . 

'MaxSuccess',20, .. . 

'MaxTries' ,300, .. . 

'StopTemp' ,1e-8, .. . 

'StopVal',-Inf, .. . 

'Verbosity', 1); 

f ©(x) -LLn(x,prob,periods,customers,lost); 

% Friends: 2 & 3 segments of subscribers with optimizable probabilities 

periods= 0:11; 

customers = [1000 990 986 982 961 956 951 948 924 920 916 916] ; 

lost(1) = O; 

for i=2:length(customers) 

lost(i) = customers(i-1) - customers(i); 
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end 

opt struct( ... 

'CoolSched' ,©(T) (.9*T), ... 

'Generator' ,©(x) generator3(x,10), ... 

'InitTemp' ,10, ... 

'MaxConsRej' ,1000, .. . 

'MaxSuccess' ,20, .. . 

'MaxTries' ,300, .. . 

'StopTemp' ,1e-8, .. . 

'StopVal',-Inf, .. . 

'Verbosity' ,1); 

f = ©(x) objective2(x,periods,customers,lost); 

% Friends: sBG model 

customers = [1000 990 986 982 961 956 951 948 924 920 916 916] ; 

week= O:length(customers); 

lost(1) = O; 

for i=2:length(customers) 

lost(i) = customers(i-1) - customers(i); 

end 

opt = struct( ... 

'CoolSched' ,©(T) (.9*T), ... 

'Generator' ,©(x) generatorsbg(x,10), ... 

'InitTemp' ,10, ... 

'MaxConsRej' ,1000, ... 
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'MaxSuccess' ,20, .. . 

'MaxTries' ,300, .. . 

'StopTemp' ,1e-8, .. . 

'StopVal' ,-Inf, .. . 

'Verbosity' ,1); 

f = ©(x) -LLsbg(x,week,customers,lost); 

% Generator1: Generator for n segments with fixed probabilities 

function y = generator1(x,scale) 

% 

% changes any x(i), no feasibility tests 

% use: opt.Generator= ©(x) generator1(x,10) 

% 

y x; 

pos = unidrnd(length(x)); 

z = y(pos) + randn/scale; 

while z>0.999999 I I z<0.000001 

% random position of the change 

% new value 

z = y(pos) + randn/scale; % repeat until in range 

end 

y(pos) = z; 

% Generator3: Generator for n segments with optimizable probabilities 

function y = generator3(x,scale) 
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% 

% generator for n segments, both thetas and probs optimized 

% length of x must be even 

% use: opt.Generator = ©(x) generator3(x,10) 

% 

n = length(x); 

m n/2; 

y x; 

pos = unidrnd(n); 

z = y(pos) + randn/scale; 

% random position of the change 

% new value 

while z>=0.999999 I I z<=0.000001 

z = y(pos) + randn/scale; % repeat until in range 

end 

y(pos) = z; 

if pos > m 

end 

c = 1/sum(y(m+1:n)); 

y(m+1:n) = c*y(m+1:n); 

% restoring feasibility of probs 

% Generatorsbg: Generator for sBG model 

function y = generatorsbg(x,scale) 

% 

% changes any x(i), no feasibility tests 

% use: opt.Generator = ©(x) generator1(x,10) 

% 
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y = x; 

pos = unidrnd(length(x)); 

z = y(pos) + randn/scale; 

while z<0.000001 

% random position of the change 

% new value 

z = y(pos) + randn/scale; % repeat until in range 

end 

y(pos) z· 
' 

% Objective2: Objective function with optimizable probabilities 

function y = objective2(x,periods,customers,lost) 

% 

% Objective function for both thetas and probabilities optimized 

% thetas: 1st half of x 

% probs : 2nd half of x (length of x must be even) 

% 
n = length(x); 

m = n/2; 

thetas= x(!:m); 

probs = x(m+!:n); 

y = -LLn(thetas,probs,periods,customers,lost); 

% LLn: Log-likelihood function for n segments 

function x = LLn(theta,prob,month,customers,lost) 
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% 

% Log-likelihood for m segments 

% 

n = length(month); 

m = length(prob); 

probTt(1) = O; 

for i = 2:n 

probTt(i) = O; 

for j = 1 :m 

probTt(i) = probTt(i) 

+ theta(j)*((1-theta(j))~(month(i)-1))*prob(j); 

end 

end; 

Probsum = sum(probTt); 

probTt (1) = [] ; 

S(1) = 1 - probTt(1); 

for i = 2:n 

S(i) = S(i-1) - probTt(i-1); 

end 

LLterm(1) = O; 

for i = 2:n 

LLterm(i) = lost(i)*log(probTt(i-1)); 

end; 

LLterm(1) = []; 

if Probsum == 1 
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LLTerm = [LLterm -Inf]; 

else 

LLTerm = [LLterm customers(n)*log(1-Probsum)]; 

end 

x = sum(LLTerm); 

% LLsbg: Log-likelihood function for sBG model 

function x = LLsbg(alphabeta,week,customers,lost) 

% 

% Log-likelihood for m segments 

% 

n = length(customers); 

probTt (1) = 0; 

probTt(2) = alphabeta(1)/(alphabeta(1) + alphabeta(2)); 

for i = 3:n 

probTt(i) = ((alphabeta(2) + (week(i) - 2))/(alphabeta(1) + 

alphabeta(2) + (week(i) - 1)))*probTt(i-1); 

end; 

Probsum = sum(probTt); 

probTt (1) [] ; 

LLterm(1) = 0; 

for i = 2:n 

LLterm(i) 

end; 

LLterm(i) []; 

lost(i)*log(probTt(i-1)); 
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LLTerm = [LLterm customers(n)*log(1-Probsum)]; 

x = sum(LLTerm); 

% IGTT: Test 2 segments of subscribers with probabilities 0.4 & 0.6 

data1; 

globopt = 531; 

best = Inf; 

for x = 0:9 

for y = 0:9 

thO = [0.1*X + 0.01 0.1*y + 0.01] 

[minimum,zz] = anneal(f ,thO,opt) 

Z(x+1,y+1) = zz; 

end 

A 

z 

end 

if (zz < globopt) 

A(x+1,y+1) = 1; 

else 

A(x+1,y+1) = O; 

end 

if zz<best 

best = zz; 

bestmin = minimum; 

end 
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globals 

best 

bestmin 

sum(sum(A)) 

% Friends: Test 2 segments of subscribers with probabilities 0.4 & 0.6 

data?; 

globopt = 490; 

best = Inf; 

for x = 0:9 

for y = 0:9 

thO = [0.1*X + 0.01 O . 1 *Y + O . O 1] 

[minimum,zz] anneal(f,thO,opt) 

Z(x+1,y+1) = zz; 

end 

A 

end 

if (zz < globopt) 

A(x+1,y+1) = 1; 

else 

A(x+1,y+1) = O; 

end 

if zz<best 

best = zz; 

bestmin = minimum; 

end 
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z 

globals 

best 

bestmin 

sum(sum(A)) 

% IGTT: Test 2 segments of subscribers with probabilities 0.1 & 0.9 

data2; 

globopt = 529; 

best = Inf; 

for x = 0:9 

for y = 0:9 

thO = [0.1*x + 0.01 0.1*y + 0.01] 

[minimum,zz] = anneal(f ,thO,opt) 

Z(x+1,y+1) = zz; 

end 

end 

if (zz < globopt) 

A(x+1,y+1) = 1; 

else 

A(x+1,y+1) O; 

end 

if zz<best 

best = zz; 

bestmin = minimum; 

end 
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A 

z 
globals 

best 

bestmin 

sum (sum (A) ) 

% Friends: Test 2 segments of subscribers with probabilities 0.1 & 0.9 

data8; 

globopt = 489; 

best = Inf; 

for x = 0:9 

for y = 0:9 

thO = [0.1*x + 0.01 0.1*y + 0.01] 

[minimum,zz] = anneal(f ,thO,opt) 

Z(x+1,y+1) = zz; 

end 

if (zz < globopt) 

A(x+1,y+1) = 1; 

else 

A(x+1,y+1) O; 

end 

if zz<best 

best = zz; 

bestmin = minimum; 

end 
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end 

A 

z 
globals 

best 

bestmin 

sum.(sum(A)) 

% IGTT: Test 2 segments of subscribers with optimizable probabilities 

data3; 

n = 2; 

best1 = 529; 

best = Inf; 

worst = -Inf; 

counter = O; 

A = O; 

while counter<101 

% optimization - n segments, both optimized 

% change this line to fix n 

thO = 0.00001 + rand(1,2*n)*0.9999; 

c = 1/sum.(th0(n+1:2*n)); 

th0(n+1:2*n) = c*thO(n+1:2*n); 

counter = counter + 1 

[minimum.,z] = anneal(f ,thO,opt) 

if z<best1 

A = A+1; 

best = z; 

bestmin = minimum; 
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elseif z>worst 

worst = z; 

worstmin minimum; 

en<l 

end 

best 

bestmin 

A 

% Friends: Test 2 segments of subscribers with optimizable probabilities 

data9; 

n = 2; 

best1 = 489; 

best = Inf; 

worst = -Inf; 

counter = O; 

A = O; 

while counter<101 

% optimization - n segments, both optimized 

% change this line to fix n 

thO = 0.00001 + rand(1,2*n)*0.9999; 

c = 1/sum(th0(n+1:2*n)); 

th0(n+1:2*n) = c*th0(n+1:2*n); 

counter = counter + 1 

[minimum,z] = anneal(f ,thO,opt) 

if z<best1 

A = A+1; 
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best = z; 

bestmin = minimum; 

elseif z>worst 

worst = z; 

worstmin 

end 

end 

best 

bestmin 

A 

minimum; 

% IGTT: 

data4; 

Test 3 segments of subscribers with probabilities 0.1 0.3 & 0.6 

% optimization - n segments, probs fixed 

n = 3; 

best = Inf; 

best1 529; 

worst -Inf; 

counter = O; 

A = O; 

% change this line to fix n 

while counter<1001 

thO = 0.00001 + rand(1,n)*0.9999; 

counter = counter + 1 

[minimum,z] = anneal(f ,thO,opt) 

if z<best1 

A = A + 1; 
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best = z; 

bestmin = minimum; 

elseif z>worst 

worst = z; 

worstmin 

end 

end 

best 

bestmin 

A 

minimum; 

% Friends: Test 3 segments of subscribers with probabilities 0.1 0.3 & 0.6 

data10; 

n = 3; 

best = Inf; 

best1 489; 

worst = -Inf; 

counter = O; 

A = O; 

while counter<1001 

% optimization - n segments, probs fixed 

% change this line to fix n 

thO = 0.00001 + rand(1,n)*0.9999; 

counter = counter + 1 

[minimum,z] = anneal(f ,thO,opt) 

if z<best1 

A = A + 1; 
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best = z; 

bestmin = minimum; 

elseif z>worst 

worst = z; 

worstmin = minimum; 

end 

end 

best 

bestmin 

A 

% IGTT: Test 3 segments of subscribers with optimizable probabilities 

data5; 

n = 3; 

best1 = 529; 

best = Inf; 

worst = -Inf; 

counter = O; 

A= O; 

% optimization - n segments, both optimized 

% change this line to fix n 

while counter<1001 

thO = 0.00001 + rand(1,2*n)*0.9999; 

c = 1/sum(th0(n+1:2*n)); 

th0(n+1:2*n) = C*th0(n+1:2*n); 

counter = counter + 1 

[minimum,z] = anneal(f ,thO,opt) 
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if z<best1 

A = A+1; 

best = z; 

besLmin - minimum, 

elseif z>worst 

worst = z; 

worstmin 

end 

end 

best 

bestmin 

A 

minimum; 

% Friends: Test 3 segments of subscribers with optimizable probabilities 

data11; % optimization - n segments, both optimized 

n = 3; % change this line to fix n 

best1 = 489; 

best = Inf; 

worst = -Inf; 

counter = O; 

A = O; 

while counter<1001 

thO = 0.00001 + rand(1,2*n)*0.9999; 

c = 1/sum(th0(n+1:2*n)); 

th0(n+1:2*n) = c*th0(n+1:2*n); 
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counter = counter + 1 

[minimum,z] = anneal(f,thO,opt) 

if z<best1 

A = A+1; 

best = z; 

bestmin = minimum; 

elseif z>worst 

worst = z; 

worstmin minimum; 

end 

end 

best 

bestmin 

A 

% IGTT: Test sBG model 

data6; 

globopt = 673; 

best = Inf; 

for x = 0:9 

for y = 0:9 

thO = [0.1*X + 0.01 0.1*y + 0.01] 

[minimum.,zz] anneal(f,thO,opt) 

Z(x+1,y+1) = zz; 

if (zz < globopt) 
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A(x+1,y+1) 1 · 
' 

else 

A(x+1,y+1) = O; 

end 

A 

z 

end 

globals 

best 

bestmin 

end 

if zz<best 

best = zz; 

bestmin = minimum; 

end 

sum(sum(A)) 

% Friends: Test sBG model 

data12; 

globopt = 622; 

best = Inf; 

for x = 0:9 

for y = 0:9 

thO = [0.1*x + 0.01 0.1*y + 0.01] 

[minimum,zz] = anneal(f,thO,opt) 

Z(x+1,y+1) = zz; 
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end 

A 

z 

end 

globals 

best 

bestmin 

if (zz < globopt) 

A(x+1,y+1) = 1; 

else 

A(x+1,y+1) - O; 

end 

if zz<best 

best = zz; 

bestmin = minimum; 

end 

sum(sum(A)) 

% Test for constrained nonlinear optimization algorithm 

globopt = 531; 

A = O; 

for x = 0:9 

for y = 0:9 

thO = [0.1*X + 

[minimum, zz] 

(\ (\. 
V.V.l 0.1*y + 0.01] 

fmincon(f, thO', [] , [], [] , [], [O. 0001 0. 0001] ', 

[0.9999 0.9999] ') 
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end 

A 

z 

end 

Z(x+1,y+1) = zz; 

if (zz < globopt) 

A(x+1,y+1) = 1; 

else 

A(x+1,y+1) O· 
' 

end 

globals = sum(sum(A)) 

%Simulated Annealing Algorithm 

function [minimum,fval] = anneal(loss, parent, options) 

def = struct ( ... 

'CoolSched' ,©(T) (.8*T), ... 

'Generator' ,©(x) (x+(randperm(length(x))==length(x))*randn/100), ... 

'InitTemp', 1, ... 

'MaxConsRej' ,1000, ... 

'MaxSuccess' ,20, ... 

'MaxTries' ,300, ... 

'Stop Temp' , 1e-8, ... 

'StopVal' ,-Inf, ... 

'Verbosity', 1); 
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if -nargin 

minimum def; 

return 

elseif nargin<2, 

error('MATLAB:anneal:noParent' ,'You need to input a first guess.'); 

elseif nargin<3, 

else 

end 

options=def; 

if -isstruct(options) 

error('MATLAB:anneal:badOptions' , ... 

'Input argument ''options'' is not a structure') 

end 

fs = {'CoolSched' ,'Generator' ,'InitTemp' ,'MaxConsRej' , ... 

'MaxSuccess' ,'MaxTries' ,'StopTemp' ,'StopVal' ,'Verbosity'}; 

for nm=1:length(fs) 

if -isfield(options,fs{nm}), options.(fs{nm}) def.(fs{nm}); end 

end 

newsol = options.Generator; 

Tinit = options.InitTemp; 

minT 

cool 

minF 

options.StopTemp; 

options.CoolSched; 

options.StopVal; 
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max_consec_rejections = options.MaxConsRej; 

max_try = options.MaxTries; 

max_success = options.MaxSuccess; 

report =options.Verbosity; 

k = 1; 

itry = O; 

success = O; 

finished = O; 

consec = O; 

T = Tinit; 

initenergy = loss(parent); 

oldenergy = initenergy; 

total = O; 

if report==2, fprintf(1,'\n T 

while -finished; 

itry = itry+1; 

current = parent; 

%7.5f, loss %10.5f\n' ,T,oldenergy); end 

if itry >= max_try I I success >= max_success; 

if T < minT I I consec >= max_consec_rejections; 

finished = 1; 

total = total + itry; 

break; 
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else 

T = cool(T); 

if report==2, 

fprinLf ( 1, ' T - %7. 5f, lo:::rn - %10. 5f\n' , T, old.energy) ; 

end 

end 

end 

total = total + itry; 

itry = 1; 

success = 1; 

newparam = newsol(current); 

newenergy = loss(newparam); 

if (newenergy < minF), 

parent = newparam; 

oldenergy = newenergy; 

break 

end 

if (oldenergy-newenergy > 1e-6) 

parent = newparam; 

oldenergy = newenergy; 

success = success+1; 

consec = O; 

145 



else 

end 

end 

if (rand< exp( (oldenergy-newenergy)/(k*T) )); 

parent = newparam; 

oluene1gy - newene1gy, 

success success+1; 

else 

consec consec+1; 

end 

minimum = parent; 

fval = oldenergy; 

if report; 

fprintf(1, '\n 

fprintf (1, , 

fprintf(1, , 

fprintf (1, , 

fprintf (1, , 

end 

Initial temperature: \t%g\n', Tinit); 

Final temperature: \t%g\n', T); 

Consecutive rejections: \t%i\n', consec); 

Number of function calls:\t%i\n', total); 

Total final loss: \ t%g\n', fval); 
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