
On Knowledge Management in Software Development Life
Cycles

Emerging Postgraduate Research Paper

Ernest Cachia
Dept. of Computer Science

University of Malta
ernest.cachia@um.edu.mt

Mark Micallef
Dept. of Computer Science

University of Malta
mark.micallef@um.edu.mt

ABSTRACT
Software engineering is a knowledge-intensive activity. For
software organisations, the main assets are not manufactur-
ing plants, buildings, and machines, but the knowledge held
by the employees. Studies [13][19] have shown that projects
do not tend to fail because of developers’ lack of technical
knowledge, but rather for reasons such as requirements fail-
ures, communication failures and estimation failures. These
failures can be traced back to inadequate knowledge man-
agement practices as a root cause. Software development
processes tend to address knowledge management issues by
prescribing documentation, a strategy which to knowledge
management practitioners is known as codification. Codifi-
cation is the process of converting a body of knowledge held
within a ‘knower’ (tacit knowledge) to a form which makes
the knowledge permanent and thus easier to transfer (ex-
plicit knowledge). As with most strategies/techniques, this
approach works in some cases but less so in others.

As software systems become increasingly complex and dead-
lines increasingly tight, this paper argues that the profession
will benefit if software development life cycles evolved to
explicitly handle knowledge management aspects. The ap-
proach taken here is to provide an overview of some core
knowledge management concepts whilst giving examples of
how they apply (or not) to the software engineering world.
The material presented here is related to ongoing Ph.D. re-
search within the department entitled “A knowledge driven
software development life cycle”.

Keywords
Software Engineering, Knowledge Management, Software De-
velopment Processes

1. INTRODUCTION
Ever since Grace Murray Hopper wrote the first computer

program on the Mark 1 computer in 1944 [22], software de-
velopment has embarked on an evolutionary journey marked
by a number of successes and characterised by numerous
and persistent failures. The term “software engineering” was
brought into common use when NATO organised a Software
Engineering conference in 1968. The conference title was de-
liberately chosen to be provocative, given that by that time,
the tendency for commercial and governmental systems to
be delivered late, over budget and lacking functionality was
already becoming apparent [7]. Two years later, Royce pub-

lished an article [20] proposing a development life cycle for
managing the development of large software systems, a re-
stricted version of which became popularly known as the
waterfall model.

Looking back over the past sixty-six years, software develop-
ment processes have gone through three overlapping phases
of evolution (see figure 1). In the first few decades, the
cost of computer hardware meant that most software de-
velopment happened as a result of government or military
contracts. During this period, waterfall-like processes were
used due to the nature of government contract rules and
also because people tended to engineer software like they
engineered hardware. By the mid-1980s, declining hardware
costs and 3GLs lead to more commercial software develop-
ment and the birth of new software development processes
such as the Spiral Model and V-Model. However, projects
were still failing (mainly due to fluctuating requirements)
and as a result, the mid 1990s saw the introduction and grad-
ual adaptation of various agile development methodologies.
The fundamental mentality change here was that software
engineers had accepted that requirements would be subject
to continuous change in response to fluctuating markets.

Figure 1: A distilled timeline of software develop-
ment life cycles

In this paper we propose that the area of software develop-
ment processes has started veering into a new phase of evo-
lution, one which is heavily influenced by modern software
engineering environments. In a market prone to disruptive
innovations [21], where geographical boundaries have been
torn down and consumers have a wealth of information at
their finger tips, software complexity is increasing and dead-
lines are becoming ever tighter. Also, it is now acknowledged
that projects tend to fail for reasons which are not related



to technical incompetence but rather due to factors such as
inadequate communication, requirements failures and esti-
mation/scheduling failures [13][19]. These problems are ex-
acerbated by a high rate of staff turnover within the ICT
industry since this leads to important knowledge being lost
by an organisation. While agile development processes have
started addressing some of these issues, we argue that soft-
ware development processes are entering an era where the
focus is less on the product being built and more on the
knowledge being created and applied within an organisation.

We also argue that software engineering needs to explic-
itly adopt concepts from the world of knowledge manage-
ment where similar problems have been encountered and
addressed in the past. It is proposed that the application
these concepts to the context of software engineering will
result in more effective software development processes and
as a result, more successful projects.

In following sections, we present an overview of knowledge
management interleaved with references to the world of soft-
ware engineering.

2. KNOWLEDGE MANAGEMENT
Knowledge management is defined as the identification,

growth and effective application of an organisation’s critical
knowledge [5]. The concept of knowledge and its exact def-
inition has been debated by philosophers since the time of
the ancient greeks, and to this day is still not totally demys-
tified [2]. Six perspectives of knowledge have been identified
in the literature:

1. Knowledge is personalised information [4][14][27]

2. Knowledge is a state of mind [23]

3. Knowledge is an object to be stored and manipulated
[3][15][31]

4. Knowledge is a process of applying expertise [1]

5. Knowledge is a condition of access to information [15]

6. Knowledge is a capability - the potential to influence
action [3] [29]

A detailed discussion of all knowledge perspectives is out
of the scope of this paper but it is worth noting that the
way one perceives knowledge within the organisation has a
direct impact on how that organisation approaches knowl-
edge management. For example, an organisation that per-
cieves knowledge as an object is likely to focus its knowledge
management activities on building and managing knowledge
stocks. On the other hand, an organisation which subscribes
to the view that knowledge is a process of applying exper-
tise is likely to focus on enabling adequate flow of knowledge
between ‘knowers’ and ‘learners’ in the company.

2.1 Knowledge Taxonomies
Knowledge taxonomies are important because the simple

act of knowing what different taxonomies exist helps one rea-
son more effectively about the knowledge held within one’s
organisation. The following classifications have been identi-
fied in the literature:

Tacit vs Explicit Knowledge - Widely cited, this clas-
sification divides knowledge based on whether it re-
sides purely within its ‘knower’ (tacit knowledge) or
whether it has been explicitly articulated, codified or
otherwise communicated (explicit knowledge). Szulan-
ski [25] points out that tacit, context-specific and am-
biguous knowledge is likely the most difficult to trans-
fer within the firm. Nonaka [16] also alludes to this
by stating that tacit knowledge is hard to communi-
cate and is deeply rooted in action, involvement and
commitment within a specific context. He also fur-
ther splits the concept of tacit knowledge into cognitive
tacit knowledge and technical tacit knowledge. Cog-
nitive tacit knowledge refers to an individual’s mental
models, beliefs, paradigms and viewpoints. Technical
tacit knowledge on the other hand, is concrete know-
how and skills within a specific context [1].

Individual vs Social Knowledge - Individual knowledge
is knowledge that is created and homed within an indi-
vidual. An example of this is the act of a person learn-
ing from her mistakes in the course of a project. When
a person realizes that a negative event was caused
by her own actions, she creates individual knowledge
aimed at helping her modify her behaviour in future
similar situations. On the other hand, group knowl-
edge is created and inherent in the collective actions
of a group. A typical example here might be a team’s
knowledge of the best way to communicate amongst
each other depending on circumstances such as work
load, time of day and the criticality of what needs to be
communicated. Such knowledge is usually developed
over time by the group as a whole and is driven by
group experiences and discussions between its mem-
bers.

Operational Classification - The operational classifica-
tion splits knowledge types depending on the circum-
stances in which particular knowledge is likely to be
used. In this classification, knowledge is split into
five categories: declarative (know-about), procedural
(know-how), causal (know-why), conditional (know-
when) and relational (know-with) [10][32].

Pragmatic Classification - Finally, a pragmatic approach
to knowledge classification attempts to identify knowl-
edge which is useful to a particular organisation [1].
This is more of an ad-hoc view classification which
will differ depending on the circumstance in which it
is applied. Examples of this classification might be the
classification of knowledge within a software develop-
ment company as consisting of development processes,
system architectures, acceptance criteria, project ex-
periences, and so on.

3. KNOWLEDGE WITHIN SOFTWARE DE-
VELOPMENT PROCESSES

For the most part, the numerous development life cycles
in existence today are a re-organisation of a number of core
activities: requirements specification, system design, coding,
testing and deployment. The focus is on the software prod-
uct and what is being done with respect to the product at
any point in time. However, one must keep in mind that the



development process is implemented by a number of human
participants whose knowledge and expertise are depended
upon by the organisation. In general, software engineers
need to possess two main types of knowledge in order to
be effective in their job. The first is technical knowledge.
This refers to their knowledge of appropriate programming
languages, technologies and so on. Secondly, engineers also
need to have domain knowledge relevant to whatever sys-
tem they are working on. If one is working on an insur-
ance application, then one needs to be familiar with insur-
ance procedures and regulations. Furthermore, the domain
knowledge might need to be refined to the organisational
context which the engineer is working in. When hiring soft-
ware engineers, it is relatively easy to find ones with the right
technical knowledge but less so to find people with domain
knowledge catered to one’s needs. Hence it is important to
look at software development organisations from a knowl-
edge management view, yet software development life cycles
tend not to do this.

Various knowledge management processes exist but most
can be distilled down to a generic process of four stages (see
figure 2). These are knowledge creation, knowledge storage
and retrieval, knowledge distribution and finally knowledge
application. The following sections will discuss each of these
in turn in the context of software development practices.

Figure 2: A generic knowledge management process

3.1 Knowledge Creation
Creation of organisational knowledge refers to the creation

or updating of stocks of knowledge within the organisation.
These stocks of knowledge are usually a mixture of tacit and
explicit knowledge (refer to section 2.1). Nonaka [16] pro-
poses a comprehensive model of organisational knowledge
creation which identifies four modes of knowledge creation -
socialisation, externalisation, internalisation, and combina-
tion (see figure 3).

Figure 3: Nonaka’s four modes of knowledge cre-
ation [16]

Socialisation involves the conversion of tacit knowledge to
new tacit knowledge based on social interactions [1] such as
internships. Very few software development processes sup-
port this form of knowledge creation. However, one good
example would be the concept of pair programming, part
of the extreme programming (XP) suite of practices. Pair
programming involves two developers working together on

the same machine. As they work and observe each other’s
practices they both learn from each other, thus creating new
knowledge.
Externalisation refers to the conversion of tacit knowledge
to explicit knowledge. This is usually done by creating doc-
uments, communicating via e-mail, communicating knowl-
edge verbally, and so on. Internalisation converts explicit
knowledge to tacit knowledge by absorbing externalised knowl-
edge from other sources. For most software development life
cycles, this is the only way knowledge creation is supported.
At the end of each phase, knowledge is externalised into a
document (e.g. a business analyst creates a requirements
document at the end of the specification phase) and at the
beginning of the next phase, the document is internalised
by someone else (e.g. an engineer reads the requirements at
the start of the design phase). This is effective in a world
where knowledge is static but unfortunately, the tendency is
for such documents to become irrelevant or unreliable very
shortly after being created.

Finally, the combination mode of knowledge creation refers
to the creation of new explicit by combining multiple explicit
knowledge components. For example, one might analyse
and merge different statistical results to form new conclu-
sions about a particular subject matter. In a software en-
gineering context this does not seem to have obvious direct
implications but one might apply combination when com-
bining different software engineering reports. For example,
one might combine test coverage analysis reports with live
bug reports to identify relationships between the two.

Researchers claim that providing the mechanisms for all
these modes of knowledge creation to occur is central to
successful organisational knowledge creation[16][17]. From
a software engineering stand point, we argue that we fo-
cus too much on externalisation and internalisation and not
enough on socialisation. If an organisation relies too much
on storing knowledge in documents, it risks loosing critical
knowledge unless the explicit knowledge is kept updated. In
today’s marketplace, keeping documentation updated tends
to take a back seat to development work.

3.2 Knowledge Storage and Retrieval
Alavi [1] points out that studies have shown that while

organisations create knowledge and learn, they also forget.
As the philosopher George Santayana’s famous adage goes,
“he who does not learn from the past is condemned to re-
peat it”. This brings to the forefront the concept of or-
ganisational memory [24][28], i.e. the means by which past
knowledge, experience, and events influence organisational
activities in the present time. Although the concept of main-
taining a good organisational memory is widely believed to
be beneficial [11][30], some researchers warn against its neg-
ative aspects. In particular, Leonard-Barton [12] presents
the possible positive and negative effects of organisational
memory on a firm’s performance through the concepts of
core capabilities and core rigidities. Core capabilities refer
to organizational know-how and competencies that lead to
a competitive advantage for a firm. However, these same
capabilities can turn into core rigidities in the face of ma-
jor change which may be required from time to time in a
competitive dynamic market [1]. That is to say that by over
relying on the way it has done things in the past, an organ-



isation risks missing opportunities to adapt to a changing
market and environment. One can easily relate this risk
to software organisations where new technologies and tech-
niques are constantly going in and out of style. If an organi-
sation is too rigid in what it does and how it does it, it risks
becoming obsolete.

From a software engineering standpoint, the maintenance
of organisational memory has traditionally taken the form
to various official documentation formats. However recent
years have seen the increased use of corporate intranets,
wikis and defect tracking tools. In the knowledge man-
agement camp, such approaches form part of the Organisa-
tional school of knowledge [6]. However, six other schools of
thought exist in this regard, all with valid arguments about
how to approach knowledge management. It would be worth
relating the approaches from all schools to software engineer-
ing in an attempt to find alternative ways for maintaining
organisational memory.

3.3 Knowledge Distribution
In an interesting keynote at the 2004 International Con-

ference on Software Engineering and Knowledge Engineering
entitled “Collecting the Dots” [18], Shari Pfleeger referred to
real world incidents whereby failures in knowledge distribu-
tion led to catastrophic results. Of particular relevance at
the time, she referred to the terrorist attacks of September
11th 2001 and how the intelligence to prevent this event had
been available to the US intelligence services in the months
leading up to the attack. However, the information was
scattered between different agencies and branches around
the globe and this led to a situation where no one was able
to see all relevant information at one go and realise what was
going on. Although this example may be extreme, similar
examples from software engineering have led to inefficiencies,
reinvention of the wheel, late projects and financial losses.
Huber [9] claims that organisations do not really know what
they know and have weak systems for locating and retriev-
ing their knowledge. This essentially means that knowledge
distribution has a key role to play in knowledge management
and organisational learning, and as such should be given ad-
equate attention.

Distribution of knowledge (also referred to as knowledge
transfer) is characterised by the source-target paradigm. That
is to say, in order for knowledge transfer to occur, three ele-
ments must be present: a source of knowledge, a receiver of
that knowledge, and one or more channels through which the
knowledge transfer occurs. Much research has been carried
out into factors which facilitate effective knowledge transfer.
Gupta and Govindarajan [8] propose that effective knowl-
edge transfer depends on 5 key elements. These are (1)
the perceived value of the source unit’s knowledge, (2) the
source unit’s willingness to share that knowledge, (3) the
existence and richness of transmission channels, (4) the re-
ceiving unit’s willingness to receive the knowledge, and (5)
the absorptive capacity of the receiving unit. All these have
parallels in software development. For example, an engineer
could have a bright new idea but is prevented from push-
ing forward with her team because management does not
think it will be of a high enough value to warrant ‘wasting’
time on it. Or in a different example, an engineer might
have a valuable idea but is reluctant to share it for fear of

loosing his competitive advantage. These are real problems
with are faced every day, yet development processes will not
address them unless a knowledge-based view of software de-
velopment is adapted.

Despite the risks involved when knowledge is not properly
transferred within an organisation, most development pro-
cesses do not explicitly tackle knowledge distribution. Some
agile processes attempt to improve the situation by promot-
ing open work spaces, moving people around on a regular
basis, and having daily stand up meetings. These measures
do help but they are simply addressing one success factor by
increasing the existence and richness of transmission chan-
nels. Further work needs to be done in terms of addressing
other success factors when if comes to knowledge transfer.
For example, researchers in knowledge management have ac-
knowledged that the existence of a strong co-operative and
collaborative culture is an important prerequisite for knowl-
edge transfer [26]. Unfortunately current reward structures
based on individual appraisals tend to lead to collaboration
and sharing what you know being perceived as detrimental
to personal career goals.

3.4 Knowledge Application
Arguably, the most important aspect of the knowledge

based view of software engineering organisations is the ap-
plication of the knowledge rather than the maintenance of
organisational knowledge itself. The latter tends to exist
in order to enable the former, thus creating organisational
capability. Knowledge application can be achieved through
three primary mechanisms: directives, organisational rou-
tines, and self-contained task teams. Directives are a top-
down mechanism whereby instructions are issued to employ-
ees based on some expert knowledge. In software engineering
for example, a directive might instruct developers to follow a
particular coding standard. Organisational routines refer to
followed processes / protocols within the organisation which
are designed to allow individuals to apply and integrate their
specialised knowledge. Lastly, self contained task teams can
be set in situations which task uncertainty and complexity
prevent specification of directives or organisational routines.
It is safe to say that all these approaches are utilised in soft-
ware development, albeit not entirely intentionally. How-
ever, we argue that the profession stands to benefit from
deliberate evaluation of how knowledge is applied in devel-
opment teams and whether alternative approaches can be
adapted based on research from the knowledge management
camp.

4. ONGOING WORK
In this paper, we have attempted to provoke the reader

into thinking about software development processes from a
knowledge management perspective. The concepts covered
here are amongst the most basic in knowledge management
literature and there is more to explore. As part of ongoing
research, we are currently working on detailed analysis of
parallels between knowledge management and software en-
gineering. Our goal is to develop and evaluate the effective-
ness of a knowledge-driven development life cycle in which
knowledge-management takes primary focus over actual de-
velopment itself. The driving idea is that if participants
focus on maintaining the right knowledge flows and organi-
sation memory, quality software would naturally follow.



5. REFERENCES
[1] Maryam Alavi and Dorothy E. Leidner. Review:

Knowledge management and knowledge management
systems: Conceptual foundations and research issues.
MIS Quarterly, 25(1):107–136, 2001.

[2] Ronald Brachman and Hector Levesque. Knowledge
Representation and Reasoning (The Morgan
Kaufmann Series in Artificial Intelligence). Morgan
Kaufmann, May 2004.

[3] S. Carlsson, O. ElSawy, Inger V. Eriksson, and
A. Raven. Gaining competitive advantage through
shared knowledge creation: In search of a new design
theory for strategic information systems. In
Proceedings of the Fourth European Conference on
Information Systems, 1996.

[4] Fred Dretske. Knowledge and the Flow of Information.
MIT Press, 1981.

[5] N. Duffy. Benchmarking knowledge strategy.
Leveraging Knowledge for Business Performance 1999:
Knowledge In Action, 1999.

[6] Michael Earl. Knowledge management strategies:
Toward a taxonomy. Journal of Management
Information Systems, 18(1):215–233, May 2001.

[7] John Edwards. Managing software engineers and their
knowledge. Managing Software Engineering
Knowledge, pages 5–27, 2003.

[8] Anil K. Gupta and Vijay Govindarajan. Knowledge
flows within multinational corporations. Strategic
Management Journal, 21(4):473–496, 2000.

[9] G. P. Huber. Organizational learning: The
contributing processes and the literatures.
Organization Science, 2(1):88–115, 1991.

[10] Nolan Norton Institute. “Putting the knowing
organization to value” white paper. Nolan Norton
Institute, 1998.

[11] A. M. Kantrow. The Constraints of Corporate
Tradition. Harper and Row, 1987.

[12] Dorothy Leonard-Barton and Dorothy Leonard.
Wellsprings of Knowledge: Building and Sustaining
the Sources of Innovation. Harvard Business School
Press, April 1998.

[13] K Linberg. Software developer perceptions about
software project failure: a case study. Journal of
Systems and Software, 49(2-3):177–192, December
1999.

[14] Fritz Machlup. Knowledge : its creation, distribution,
and economic significance. Princeton University Press,
Princeton, N.J. :, 1983.

[15] Robert J McQueen. Four views of knowledge and
knowledge management. In Proceedings of the Fourth
Americas Conference on Information Systems, pages
609–611, 1998.

[16] I. Nonaka. A dynamic theory of organizational
knowledge creation. Organization Science, 5(1):14–37,
1994.

[17] I. Nonaka and H. Takeuchi. The Knowledge-Creating
Company: How Japanese Companies Create the
Dynamics of Innovation. Oxford University Press,
USA, May 1995.

[18] S.L. Pfleeger. Collecting the dots. In Proceedings of
the 2004 International Conference on Software
Engineering and Knowledge Engineering. Knowledge

Systems Institute, 2004.

[19] Roger Pressman. Fear of trying: The plight of rookie
project managers. IEEE Softw., 15(1):50–51,54, 1998.

[20] W Royce. Managing the development of large software
systems. In 9th International Conference on Software
Engineering, pages 328–338, Monterey, California,
1987. IEEE Computer Society Press.

[21] Reza Samavi, Eric Yu, and Thodoros Topaloglou.
Applying strategic business modeling to understand
disruptive innovation. In Proceedings of the 10th
international conference on Electronic commerce,
ICEC ’08, pages 15:1–15:10, New York, NY, USA,
2008. ACM.

[22] Jean E. Sammet. Introduction of captain grace murray
hopper. History of programming languages I, pages
5–7, 1981.

[23] P. Schubert, D. Lincke, and Schmid B. A global
knowledge medium as a virtual community: The
netacademy concept. In Proceedings of the Fourth
Americas Conference on Information Systems, pages
618–220, 1998.

[24] E. W. Stein and V. Zwass. Actualizing organizational
memory with information systems. Information
Systems Research, 6(2):85–117, June 1995.

[25] Gabriel Szulanski. Exploring internal stickiness:
Impediments to the transfer of best practice within the
firm. Strategic Management Journal, 17:27–43, 1996.

[26] F. Tao and W. Meng. Evaluation model of mnes
knowledge flow management. Knowledge Enterprise:
Intelligent Strategies in Product Design,
Manufacturing, and Management, pages 71–78, 2006.

[27] D Vance. Information, knowledge and wisdom: The
epistemic hierarchy and computer-based information
system. In Proceedings of the Third Americas
Conference on Information Systems, 1997.

[28] J.P. Walsh and G.R. Ungson. Organizational memory.
The Academy of Management Review, 16(1):57–91,
1991.

[29] R.T. Watson. Data Management: Databases and
Organizations. John Wiley, 1999.

[30] A.L.. Wilkins and Brestow N.J. For successful
organization culture, honor your past. Academy of
Management Executive, 1:221–229, 1987.

[31] M. Zack. An architecture for managing explicated
knowledge. Sloan Management Review, 1998.

[32] M. Zack. What knowledge-problems can information
technology help to solve. In Proceedings of the Fourth
Americas Conference on Information Systems, pages
644–646, 1998.


