

Voyage Report

RV Tangaroa Voyage TAN1703

5 April – 1 May 2017

www.niwa.co.nz

Authors/Contributors:

- Joshu Mountjoy Aaron Micallef Marion Jegen Susi Woelz
- Daniel Cunarres Otero Nick Eton Peter Gerring Alan Hart Neeske Luebben Christof Mueller Will Quinn Katrin Schwalenberg Daniele Spatola Brad Weymer

For any information regarding this voyage report please contact:

Dr Joshu Mountjoy Marine Geologist

National Institute of Water & Atmospheric Research Ltd 301 Evans Bay Parade, Greta Point Wellington 6021 Private Bag 14901, Kilbirnie Wellington 6241 New Zealand

Phone +64-4-386 0300 Fax +64-4-386 0574 Joshu.Mountjoy@niwa.co.nz

Or

Dr Aaron Micallef Marine Geologist Marine Geology & Seafloor Surveying Group Department of Geosciences University of Malta, Msida MSD 2080 Malta

Phone: +356 99051124 aaron.micallef@um.edu.mt

Report date:	May 2017
NIWA Project:	VES17304

Contents

1	Back	kground Information	10
	1.1	MARCAN Project Overview	10
	1.2	Study area background	11
	1.3	TAN1703 Voyage Objectives	14
2	Voya	age Participants	15
3	Sum	nmary of activities	15
4	Outr	reach	15
5	Perm	nitting	19
6	Surv	vey Equipment	20
7	Distr	ribution of collected data	21
	7.1	Controlled Source Electromagnetics	22
	7.2	Multi-Channel Seismic Reflection	23
	7.3	TOPAS Sub-Bottom Profiler	24
	7.4	EM2040 bathymetry	25
	7.5	Sediment Coring	26
	7.6	CTD data	27
	7.7	Coast Cam	28
8	Equi	ipment Set Up, Acquisition and Processing Parameters	29
	8.1	Controlled Source Electromagnetics	29
		8.1.1 Physical concept of controlled source electromagnetics	
		8.1.2 CSEM Instrumentation	
		8.1.3 Instrument Details	32
Wind	ch and	d block	32
The	Pig		33
HYD	RA Re	eceivers	34
GEO	MAR	Transmitter	35
		8.1.4 Instrument issues encountered during TAN1703	
Payo	out Co	ounter of Tow Winch	36

Mechanic	al conne	ctions	36
Power su	pply to H	ydra Receivers	36
	8.1.5	CSEM Experiment	36
Transmitt	er Settin	gs	37
Receiver	Settings.		38
	8.1.6	CSEM preliminary processing	39
	8.1.7	Pig-mounted CTD	41
8.2	EM2040) Multibeam	42
	8.2.1	Motion sensors	43
	8.2.2	EM2040 Calibration	44
Pitch			45
Roll			46
Heading			46
nouung			
Calibratio	n Result	S	
	8.2.3	EM2040 bathymetry and backscatter processing	
	8.2.4	EM2040 Water column	48
8.3	EM302	Multibeam	48
	8.3.1	System setup	48
	8.3.2	EM302 bathymetry and backscatter processing	49
8.4	Sound v	velocity profiles for multibeam echosounders	50
8.5	TOPAS	Sub-Bottom profiler	50
8.6	2D Mult	ichannel Seismic Reflection (MCS) System	52
	8.6.1	Equipment and Acquisition Setup	52
	8.6.2	Seismic Surveys	53
	8.6.3	2D Multichannel Seismic Line-Keeping Navigation.	
	8.6.4	Marine Mammal Observations	
	8.6.5	2D Multichannel Seismic Processing Workflow and Parameters	.60
SEGD to S	SEGY		.60
Coordinat	e conve	rsion	60
Define str	eamer g	eometry	60
Bandpass	filtering	and spherical divergence corrections	60
CDP binni	ing and s	sorting	61
		correction and stacking	

Proc	essed	data viewing	62
	8.7	K-Sync Unit	.62
	8.8	Sediment Coring and Geochemistry	.62
		8.8.1 Piston Corer Setup and Operation	.62
		8.8.2 Corer Configuration for TAN1703	.63
		8.8.3 Sediment Core Sampling Procedure	.64
		8.8.4 On-board Laboratory Analyses	.65
Pore	wate	r sampling	.65
	8.9	CTD	.66
		8.9.1 CTD water sampling and on-board laboratory analyses	.67
Mato	r moa	asurements	60
vvale	i iiiea		.00
pH v	alue		.68
Tom	orati	Jre	68
rein	Jerall	AI G	.00
Diss	olved	Oxygen value	.69
Cond	luctiv	rity value	.69
Pure	wate	r	.69
	8.10	Coast Cam	.70
9	Preli	minary results	.72
	9.1	Controlled Source Electromagnetics	.72
	9.2	Multichannel Seismic Reflection Data	.73
	9.3	TOPAS Sub-Bottom Profiler	.74
	9.4	EM2040 water column data	.75
	9.5	CTD data	.76
		9.5.1 GEOMAR CTD	.76
	9.6	Coast Cam	.80
10	Ackn	nowledgements	.80
Арре	endix .	A TAN1703 Daily Activity Log	.81
Арре	endix	B Detailed maps of CTD tows	.84
Арре	endix	C Detailed maps of Camera tows	.90
Арре	endix	D Seismic Log Sheets	.95
Арре	endix	E Marine Mammal Observations1	02

Appendix F	Core sampling table	103
Appendix G	Nisken Bottle table	107
Appendix H	CTD sampling table	109
Appendix I	Core Sampling Table	111

Tables

Table 1: Schedule of documentation submitted to the Environmental Protection	20
Agency	
Table 2: Schedule of documentation submitted to and received from Biosecurity NZ, Ministry for Primary Industries for sample import and export.	20
Table 3: Deployment start dates, waypoints and deployment details. Times in UTC, start time related to R4 in water, end time related to R4 out of water.	
Profile locations given in Figure 11	37
Table 4: Overview of receiver IDs, gain factors, dipole lengths and transmitter-receiv	er
offsets (dipole center to dipole center) for the respective deployments	38
Table 5: Summary of EM2040 operating parameters for TAN1703.	43
Table 6: Summary of EM302 operating parameters for TAN1703.	49
Table 7: Date, time, position and depth of the five sound profiles obtained during	
TAN1703	50
Table 8: TOPAS operating parameters	51
Table 9: Parameter and geometry settings for TAN1703 seismic surveys.	56
Table 10: Division and preservation scheme for samples taken from cores	66
Table 11: CTD instruments and their calibration dates (where available)	67
Table 12: division and preservation scheme for CTD samples	70

Figures

	setting of the Canterbury plains and shelf including the TAN1703	
	y area. Onshore the black dashed line shows the approximate	
	nt of the river catchments that feed the Canterbury aquifers. The	
	tions of the profiles in Figures 2 and 3 are indicated. The location o	of
offsh	nore IODP drill holes from Expedition 317 are indicated by blue	
circle	es and crosses.	12
of the	c delineation of the Canterbury Plains aquifers at the southern end e plains based on screen depths from active groundwater wells. ile location in Figure 1.	l 13
end	c delineation of the Canterbury Plains aquifers towards the norther of the South Canterbury Plains based on screen depths from active indwater wells. Profile location in Figure 1.	
slope	c cross section from the Southern Alps out to beyond the continent e showing the indicative location and penetration depth of IODP	
•	······································	14
U	logs from IODP site U1353. The pore water salinity profile is at rightation in Figure 1.	ht. 14
Figure 6: General s	statistics of the Facebook page from 30 th March to 26 th April	17

Figure 7: Number of people that saw the post, from the beginning of April to 26 th April	17
Figure 8: Posts that were published on the Facebook page from 1/04 to 17/04, showir	ng 18
Figure 9: Posts that were published on the Facebook page from 18/04 to 26/04,	19
Figure 10: Total distribution of all data collected	21
Figure 11: Distribution of CSEM transects. Detail of CSEM acquisition and processing are provided in Section 7.1) 22
Figure 12: Distribution of Multichannel Seismic Reflection Data. Detail of MCS acquisition and processing are provided in Section 7.2	23
Figure 13: Distribution of TOPAS Data. Detail of TOPAS acquisition and processing a provided in Section 7.3	are 24
Figure 14: Distribution of Multibeam Bathymetry and Water Column Data (based on shiptrack rather than actual swath coverage). Detail of EM2040 acquisition and processing are provided in Section 7.4	25
Figure 15: Distribution of sediment cores. Detail of core acquisition and processing ar provided in Section 7.5	е 26
Figure 16: Distribution of CTD casts and tows in the study area. More detail about the specific geometry of CTD tows are provided in Appendix XX. Detail of CTD acquisition and processing are provided in Section 7.6	; 27
Figure 17: Distribution of CoastCam deployments in the study area. More detail about the specific geometry of CoastCam deployments are provided in Appendix XX. Detail of CoastCam acquisition are provided in Section 7.7	t 28
	30
Figure 19: Snapshots of the propagation of an electrical dipole field, generated at the seafloor (black line) at 0.001, 0.01 and 1 sec after current switch on in transmitter dipole. The sea-layer and seafloor are assumed to be	31
Figure 20: Electric seafloor dipole-dipole response for a switch on transmitter current wave form at 100 m transmitter-receiver offset. Response is shown for different conductivity contrasts between the seafloor (2) and a	
	31
	32
ö	33
0	33
	34
	34
	35
0	35
5 5	38
Figure 29: Data example at WP10 and WP11 on CSEM-2 illustrating the difference between data collected while towing and data collected on station. Left panel shows receiver 1 (offset = 149 m) and right panel shows receiver 4 (offset = 646 m). The data shown is a stack of 15 duty cycles recorde during a minute while the transmitter is on. Only a slight deterioration o data quality is visible in this particular data comparison, however, noise	r ed of

levels might increase in other parts of the profile depending on winch angle, wave motion, cable pay-out, seafloor condition and towing 39 speed. Figure 30: CSEM data stacks at different weigh points for transmitter switch-on transients on profile 2 (top panels) and profile 4 (lower panels). The left two panels show RX1 data at 149 m distance from transmitter, and right two panels show RX4 data at 648 m distance. 40 Figure 31: Responses for models with two different two water depths (blue colors: water depth=80 m, red colors: water depth = 50 m). The seafloor model consists of a conductive 1 Ω m back ground onto which a 100 m thick resistor with a resistivity of 1000 Ω m is imposed. Solid, dashed and dotted line show the response where top of the resistor is at 10m, 20m and 40m below seafloor. The cyan and magenta lines show the response for a resistor with a resistance of $10\Omega m$ at 10 m depth. 41 Figure 32: Sensor setup of the EM2040 MBES 44 Figure 33: PosMV Lever Arms & Mounting Angles 45 Figure 34: Roll test showing a roll offset of 0.26° applied 46 Figure 35: Heading test showing an offset of -0.55° applied 46 47 Figure 36: Angular Offsets after calibration Figure 37: Streamer and Source setup and geometry used for the seismic surveys. 52 Figure 38: Complete seismic acquisition setup with wet and dry components. 53 Figure 39: Screenshot of acquisition window. Sub-windows showing, clockwise starting from top left: incoming serial strings and file/shot number, seismic gather of a single channel, 48 channels of a single shot with noise/signal defining polygons in red and green, respectively, noise window as a bar graph of RMS amplitude of each channel, and cycle time and gun energy in blue and red, respectively. 54 Figure 40: Screenshot of bird control. Birds are attached at the beginning of each section, set to the desired depth and monitored regularly. 55 Figure 41: Run-line navigation system setup and information flow lines 57 Figure 42: User interface for HYDROpro used for MCS navigation 58 Figure 43: Tangaroa Reference points and Offsets used in HYDROpro 59 Figure 44: Example shot gathers before and after bandpass filtering to remove swell noise. Filter frequencies of the band pass filter: 50, 100, 500, 700 Hz 61 Figure 45: Brute stack example section excerpt featuring bright spots about 50 ms below seafloor typically interpreted to be gas intrusions. A lot of the deeper features (TWT > 150) are likely multiples and peg-lack multiples in this example. 62 Figure 46: NIWA Piston Corer configuration and deployment procedures 64 Figure 47: NIWA CoastCam 71 Figure 48: Inversion conductivity model (left panel) obtained by fitting data for receiver 1 to 4 at weigh point 15 on Line 2 in the vicinity of the IODP borehole 15353. Right panel shows the observed data from CSEM-2 (black) compared to the responses to the inversion model (red). 72 Figure 49: IODP wire line logging data in hole U1353C and salinity and chloride values in holes U1353A (black) and U1353B (red). 73 Figure 50: Example multichannel seismic profile from Line-4. bright (high amplitude) regions just below the seafloor likely indicate shallow gas. 73 Figure 51; TOPAS line across southern shelf illustrating post glacial sediment drape. Location of IODP drill hole shown by vertical dash line We were able to

collect one sucessful core in this drape despite several attempts. Beneath the drape erosional and depositional stratigraphy relating to fluvial history of the shelf is clearly evident.	the 74
Figure 52: TOPAS line across northern shelf illustrating eroded surface with no post glacial drape. No coring was possible in these sedments	t 74
Figure 53: Water column flare (sub-vertical feature in centre of profile). Feature is characteristic of gas flares observed in other regions of New Zealand East Coast.	's 75
Figure 54: Water column features imaged in a region where CTD observations show region of low salinity	v a 75
Figure 55: Towed CTD plot from the NIWA CTD and Nisken rosette. Measurements are taken approximately 5m above the seabed. Note marked change salinity readings towards end of line that does not correlate with a temperature change. The water column image in Figure 54 is from th region.	in
Figure 56: Towed CTD conductivity as a function of depth and position for Line 2 to Line9. Note different colour scale for each Line.	77
Figure 57: Graphs of observed relationship between conductivity, temperature and depth for towed CTD along all profile lines.	78
Figure 58: Upper panel: Observed temperature values against observed conductivi for all Lines. Red line denotes a visually defined linear relationship of temperature versus conductivity, which is obeyed by most points. Low panel: Difference in conductivity predicted based on observed temperature and observed temperature. Green line identifies thresho values of -1.25	wer
Figure 59: Profile lines and ctd anomalies (>-1.25 mS/cm) shown as black dots. The large pink circle denotes the position of U1353.	e 79
Figure 60: Coastcam photos showing generally muddy seabed with scattered fauna and trace marks indicating faunal perambulation	80

1 Background Information

1.1 MARCAN Project Overview

Meteoric recharge and topographically-driven flow are the most important sources of groundwater recharge in terrestrial settings. In passive continental margins, topographicallydriven meteoric (TDM) groundwater is only one of a range of drivers of offshore groundwater flow. Other drivers include seawater recirculation, sediment loading, geothermal convection, and diagenesis. Sea level has been much lower than today for 80% of the Quaternary, resulting in the emergence of extensive sections of continental shelf, a reduction of pressure exerted by the sea water column, as well as steepening of the hydraulic gradient and an increase in hydraulic head. The potential of TDM recharge to establish extensive water tables, create massive groundwater fluxes, and generate pore overpressures and discharges across the continental shelf and upper continental slope must have been significantly higher during the majority of the last 2.6 Ma than it is today. Considering that geothermal convection is strongest beneath the continental slope and tends to be dominated by TDM flow during sea level lowstands, whereas sediment loading is most important during rapid deglaciations in high sedimentation zones, TDM recharge is a likely very important driver of offshore groundwater systems in continental shelves and upper slopes globally.

Offshore groundwater systems driven by TDM recharge comprise two key elements that have received increased attention in the last decade. The first consists of offshore fresh and brackish groundwater reservoirs, which occur extensively around the world, have a global estimated volume of 5×10^5 km³, and can provide potential archives of paleo-environments and valuable sources of good quality drinking water. The second is submarine groundwater discharge, which delivers volumes 3-4 times greater than rivers globally and directly influences biological processes and geochemical balances.

The characteristics and dynamics of modern TDM offshore groundwater systems remain poorly constrained, and there are many first order questions, related to aquifer geometry, distribution, characteristics and flow dynamics, waiting to be addressed. This mainly arises from a paucity of appropriate offshore data and rare geophysical and geochemical characterisation of offshore groundwater. As a consequence, exploration of offshore groundwater has had to rely on predictive mathematical models. These, however, have generally been based on limited well data, low resolution seismic data and poorly defined aquifer properties. They pay little attention to the land–sea connection and seafloor morphologic evolution during glacial cycles, despite these being proposed as key controls of some of the best-studied offshore groundwater at several scales, but such a relationship has not been investigated in detail, and contrasting results have been reported.

Offshore groundwater reservoirs are seldom in equilibrium with sea level. Current and past continental margin morphology and processes can only be understood in terms of a framework where sea levels are lower and TDM groundwater systems extend further offshore. Better understanding of the response of TDM offshore groundwater systems to the integral glacial cycle, and of how TDM flows can be geomorphically significant, is crucial. Understanding the architecture, history, and dynamics of TDM offshore groundwater systems has thus emerged as a new scientific frontier of critical value to seafloor geomorphology.

The MARCAN project is a 5-year project funded by the European Research Council. MARCAN addresses the hypothesis that topographically-driven meteoric groundwater plays a key role in the geomorphic development of passive continental margins.

The objectives of MARCAN are to:

- 1. Define the characteristics and dynamics of topographically-driven meteoric groundwater systems in passive continental margins.
- 2. Test the hypothesis that topographically-driven meteoric groundwater is an important geomorphic agent in passive continental margin

Two study areas provide a context for MARCAN. Study area 1 is the siliclastic sedimentary Canterbury margin, eastern South Island of New Zealand (Figure 1). Study area 2 comprises the north-eastern Maltese Islands, an example of a carbonate bedrock margin. These study areas have been selected because they are representative of the most prevalent passive continental margin types globally, and because they are comprehensively covered by available good quality seafloor and terrestrial topographic, stratigraphic, structural and groundwater data.

1.2 Study area background

The Canterbury Plains host an exceptional and well utilised groundwater system. Aquifers are fed by very large catchments extending up to the main divide (Figure 1). Screen depths (denoting the depth where groundwater abstraction is occurring) from groundwater wells compiled into coast-normal profiles illustrate the structure of the unconfined (surface) and confined groundwater aquifers (Figure 2 and 3). Critically, both the profiles show significant abstraction occurring right up to the coast and well below sea level.

IODP drilling on the outer continental shelf has identified a low salinity signal in porewater that is interpreted as an offshore aquifer (Figure 4 and 5). A large amount of information is available for these sites including extensive geophysical logs and geochemical analysis. The decrease in salinity from the surface down to 40 m bsf (below sea floor) then increasing again from 60 m bsf downwards indicates the freshwater bearing unit (Figure 5). TAN1703 uses this information as a focal point to investigate the potential offshore aquifers on the Canterbury Shelf.

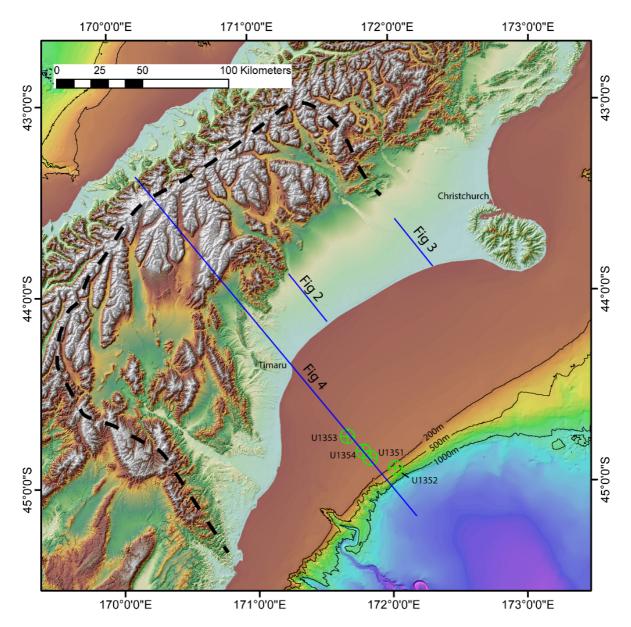


Figure 1: Regional setting of the Canterbury plains and shelf including the TAN1703 study area. Onshore the black dashed line shows the approximate extent of the river catchments that feed the Canterbury aquifers. The locations of the profiles in Figures 2 and 3 are indicated. The location of offshore IODP drill holes from Expedition 317 are indicated by blue circles and crosses.

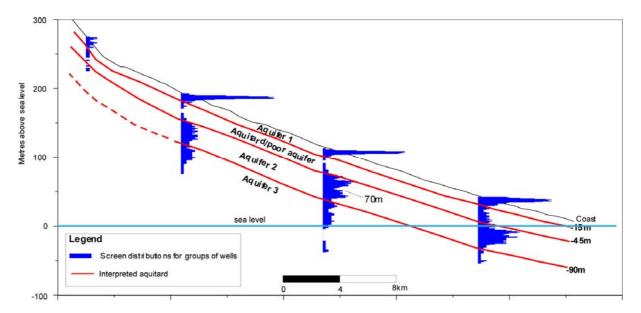


Figure 2: Schematic delineation of the Canterbury Plains aquifers at the southern end of the plains based on screen depths from active groundwater wells. Profile location in Figure 1.

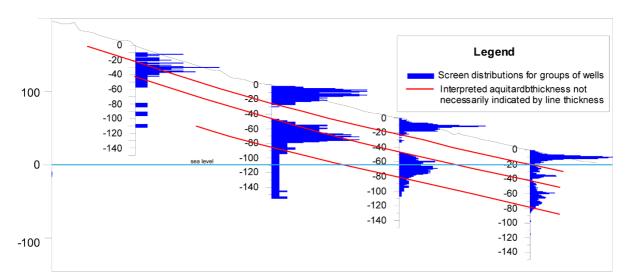


Figure 3: Schematic delineation of the Canterbury Plains aquifers towards the northern end of the South Canterbury Plains based on screen depths from active groundwater wells. Profile location in Figure 1.

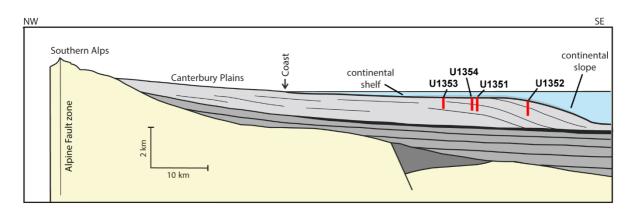


Figure 4: Schematic cross section from the Southern Alps out to beyond the continental slope showing the indicative location and penetration depth of IODP Exp-317 drill holes. Cross section location Figure 1.

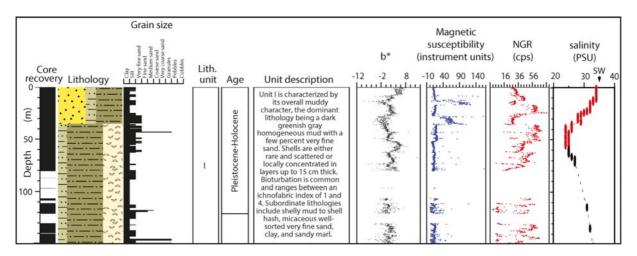


Figure 5: compiled logs from IODP site U1353. The pore water salinity profile is at right. Location in Figure 1.

1.3 TAN1703 Voyage Objectives

The objectives of TAN1703 are to:

- 1. Characterise the geometry and distribution of the offshore groundwater reservoir in the Canterbury shelf using controlled-source electromagnetic surveying;
- 2. Generate a model of the shelf stratigraphy and structure using seismic reflection profiling;
- 3. Identify sites of groundwater seepage using multibeam echosounder water column data, CTD casts, seafloor imagery, pore water geochemistry (from sediment cores) and water column geochemistry (from Niskin bottle samples)
- 4. Determine the sedimentological, geotechnical and hydraulic properties of seabed sediment from sediment coring.

2 Voyage Participants

Name	Affiliation	Role(s)
Dr Joshu Mountjoy	NIWA	Voyage Leader
Dr Aaron Micallef	University of Malta	MARCAN Project Leader
Dr Marion Jeger	GEOMAR	CSEM Lead
Martin Wollatz Vogt	GEOMAR	CSEM
Dr Brad Weymer	GEOMAR	CSEM
Dr Katrin Schwalenberg	BGR	CSEM Lead
Dr Susi Woelz	NIWA	Multichannel Seismic Lead
Peter Gerring	NIWA	Coring and CTD Lead
William Quinn	NIWA	Electronics, IT
Alan Hart	NIWA	Multibeam
Nick Eton	NIWA	Electronics
Daniel Cunarro Otero	University of Malta	Watchkeeping, Outreach
Dr Daniele Spatola	University of Malta	Watchkeeping, Outreach
Neeske Luebben	MARUM	Core Processing
Dr Christof Mueller	GNS Science	Multichannel Seismic

3 Summary of activities

The following is a brief summary of the survey activities.

- 5-6 April Vessel mobilisation
- 7-8 April Depart wharf 1130 hrs transit to site
- 9-20 April Alternating CSEM with CTD casts and coring.
- 20 April Port call at Timaru to exchange scientists
- 21-24 April Multichannel seismic survey
- 24-29 April Alternating CSEM with CTD casts and coring.
- 30 April Transit to Wellington
- 1 May Vessel demobilisation

A detailed day by day activity log is provided in Appendix A.

4 Outreach

One of the aims of the MARCAN project is to share the research activities that we carried out onboard the R/V Tangaroa to as many people as possible. During the cruise, photos and video (including GoPro footage and video recorded with different cameras) were acquired. The main

research techniques used onboard (e.g. CSEM, MSC, piston corer, CTD, water sampling, MBES) as well as the deployments and recoveries of the instruments were recorded. The outreach program during the MARCAN cruise consisted mainly of daily Facebook posts that were posted on the Marine Geology and Seafloor Surveying page of the University of Malta. The posts were also shared on the personal page of some of the participants at the MARCAN project to increase the reach.

Due to a limited Internet connectivity on board, it was only possible to upload some photos and text for each post.

The posts can be classified in three categories:

<u>Scientific posts</u>: all the main instruments used during the cruise and the scientific principles behind them were covered. The scientific background of the project as well as the study area were explained. The main research groups that are involved in the MARCAN project (i.e., University of Malta, NIWA and GEOMAR) have been tagged, and the main funding agencies (ERC and NIWA) have been acknowledged.

<u>Interviews</u>: we carried out short interviews with the main scientific leaders of the MARCAN cruise, covering not only scientific questions related to the instrumentation or the MARCAN project, but also more 'personal' questions with the aim of encouraging students to follow similar career pathways.

<u>Non-scientific posts</u>: related to the daily life and special occasions on board the R/V Tangaroa, such as Easter, dolphin and whale observations, food, sunsets, etc.

Facebook Insights. The Facebook posts published during the MARCAN cruise have reached more than 5600 people (Figure 6). Individually, every post reach an average of 400 persons, which is approximately the number of followers of the Facebook page. However when some of the posts were shared or some people were tagged, the number of views increased considerably (Figure 7, Figure 8, Figure 9).

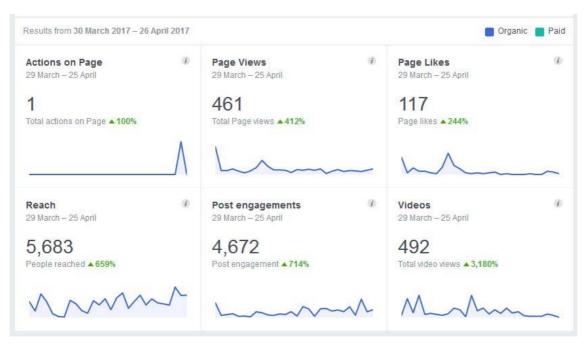


Figure 6: General statistics of the Facebook page from 30th March to 26th April

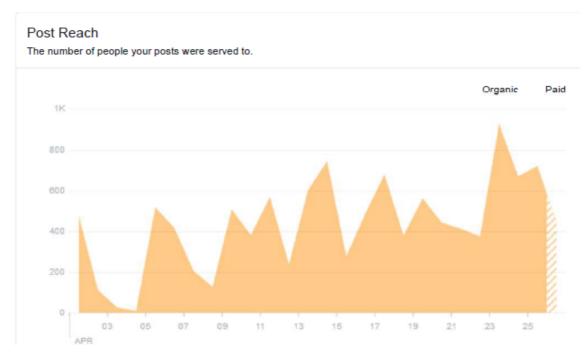


Figure 7: Number of people that saw the post, from the beginning of April to 26th April

17/04/2017 08:18	Today a marine Easter bunny ca me to the RV Tangaroa and hid	6	0	788	156 29	Boost post
15/04/2017 07:59	A cyclone with winds of more tha n 120 km/s have hit the North IsI	6	0	615	71 — 23 —	Boost post
14/04/2017 06:12	How would you check whether fr eshwater is present in the seafl	6	0	537	76 19	Boost post
13/04/2017 22:43	Although the seafloor is the main target of our expedition, investi	6	0	526	214 30	Boost post
12/04/2017 00:32	Marine CSEM (controlled-source electromagnetic) is a cutting-ed	6	0	603	63 — 19 —	Boost post
10/04/2017 22:56	A short video about the first days of the MARCAN cruise, onboard	84	0	498	52 26	Boost post
10/04/2017 00:05	On Friday morning we finally dep arted from Wellington! Although i	6	0	692	74 37	Boost post
06/04/2017 22:04	The MARCAN research cruise is funded by the European Resear	6	0	251	29 1 5 1	Boost post
06/04/2017 01:00	The MARCAN cruise will be carri ed out on board the RV Tangaro	6	0	713	123 40	Boost post
01/04/2017 05:12	The second survey of the MARC AN project involves a 4 week lon	8	0	1.5K	83	Boost post

Figure 8: Posts that were published on the Facebook page from 1/04 to 17/04, showing the number of people reached and the 'engagement'

		Read	h: Organic/Pa	aid 💌 🔳 P	ost Clicks 📕 Reactions, co	omments & shares
Published *	Post	Type	Targeting	Reach	Engagement	Promote
26/04/2017 ^{06:57}	Another amazing day onboard R V Tangaroa. Today we received a		0	369	58 21	Boost post
25/04/2017 22:59	You may have wondered why c ome all the way to New Zealand		0	361	50 13	Boost post
2 4/04/2017 17:40	Today we would like to share wit		0	431	83	Boost post
24/04/2017 01:02	We would like to introduce to you a new member of the crew. His		0	567	229 24	Boost post
23/04/2017 22:50	Today we have started to use an other technique for studying the		0	759	150 34	Boost post
23/ <mark>04/2017</mark> 00:19	When we get seafloor samples using the piston corer, we are int	ē	0	400	19 16	Boost post
22/04/2017 00:43	Today we went back to shore for a few hours. Sadly we had to say		0	346	147 14	Boost post
20/04/2017 19:13	Today we are starting a series of short interviews to the main scie	ē	0	230	73 9 1	Boost post
20/04/2017 08:00	Today we received an unexpecte d but very pleasant visit while de	ē	0	789	91 9 1 5 1 9 1	Boost post
19/04/2017 20:20	We spent last night acquiring vid eo footage and photographs of t	ē	0	243	63 1 2 1	Boost post
18/04/2017 11:30	An oceanographic cruise is not j ust about science. Onboard we		0	361	37 12	Boost post
18/04/2017 07:25	Good morning from on board th e R/V Tangaroahave a great w	6	Ø	400	36	Boost post

Figure 9: Posts that were published on the Facebook page from 18/04 to 26/04, showing the number of people reached and the 'engagement'

Besides the Facebook posts the, following activities are planned as part of the outreach programme:

- Publication of a small report/article of the cruise in EOS Transactions.
- Edit a short documentary using the video footage from the cameras and GoPro and photos, and upload it on different platforms (e.g. Facebook, Youtube, website of the MARCAN project, etc.).
- Record interviews with the main leaders of the cruise to be included in this documentary.

5 Permitting

All permitting for sampling activities and for the import and export of samples was carried out by NIWA. The required documents were submitted to the Environmental Protection Agency (EPA) at the specified intervals as per *Regulation 11(a), Exclusive Economic Zone and*

Continental Shelf (Environmental Effects–Permitted Activities) Regulations 2013. Specific dates of submission are shown in Table 1. The specified commencement date prior to the voyage was 06-04-2017. The actual activity period (during which sampling was undertaken) was 09-04-2017 to 28-04-2017.

Relevant documentation	Date submitted
Form 1: Pre-activity notice	04-01-2017
Form 2: Report of pre-activity notification of relevant iwi	14-03-2017
Form 3: Initial environmental assessment and sensitive environments contingency plan	14-03-2017
Notice of commencement of a permitted activity	09-04-17
Permitted activity logbook 1	15-04-17
Permitted activity logbook 2	22-04-17
Permitted activity logbook 3	29-04-17
Notice of completion of a permitted activity	29-04-17
Form 4: Post-activity report	29-04-17

All samples were catalogued on the vessel to comply with New Zealand biosecurity import regulations. The appropriate document and the date it was obtained are given in Table 2.

Table 2: Schedule of documentation submitted to and received from Biosecurity NZ, Ministry for Primary Industries for sample import and export.

Relevant documentation	Date submitted/received
Biosecurity Authority Clearance Certificate (BACC) C2015/201700	28/04/2017
(BACC # B2015/169768)	

6 Survey Equipment

The following equipment was used on this voyage for data collection:

- DGPS navigation.
- GEOMAR/BGR CSEM system.
- *Reavell* air compressor.
- 2D Geometrics multichannel seismic reflection system.
- Piston Corer.
- Sound velocity probe.
- Seabird CTD and 24 rosette Niskin water column sampling array
- NIWA CoastCam
- Kongsberg Simrad EM2040 Multibeam Echosounder+ POS/MV motion sensor.
- Kongsberg Simrad EM302 Multibeam Echosounder+ POS/MV motion sensor.
- Kongsberg TOPAS PS-18 sub-bottom profiler.

7 Distribution of collected data

The overall distribution of data collected during this voyage are presented for the working area in Figure 10. The detailed distribution of different data types are presented in subsequent subsections.

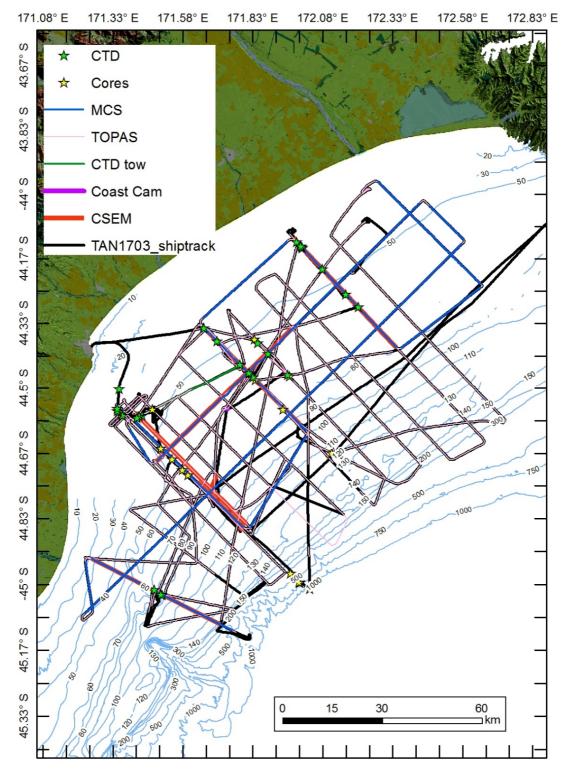
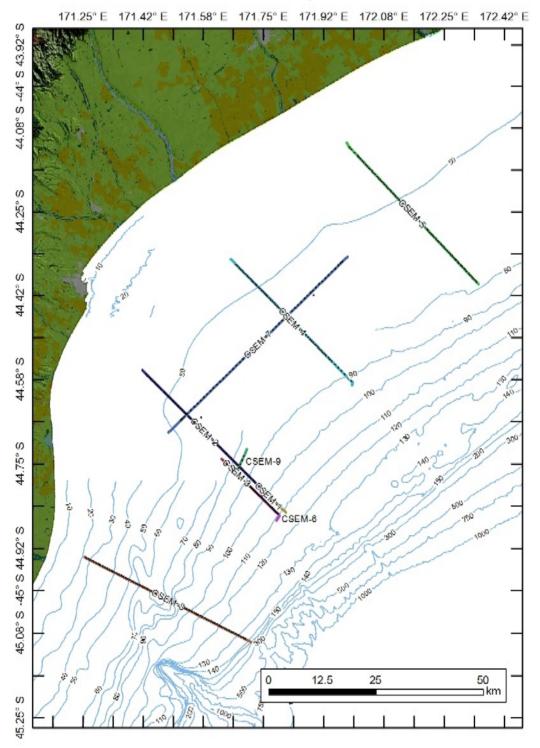
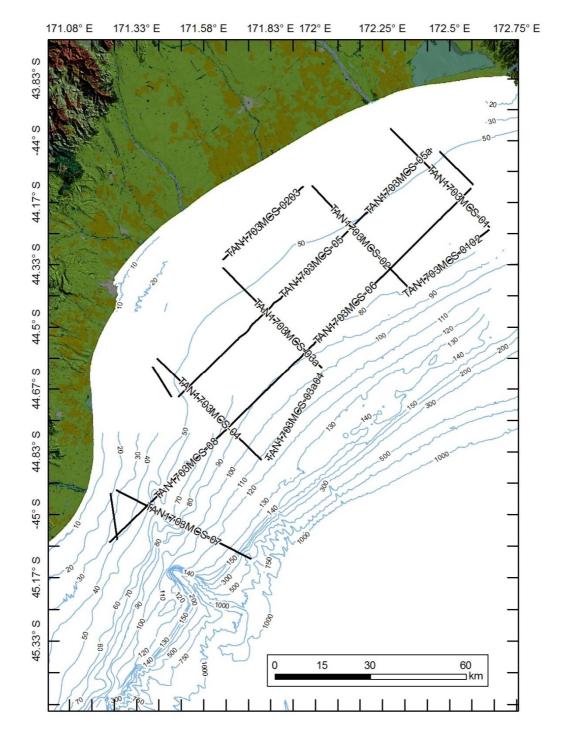




Figure 10: Total distribution of all data collected

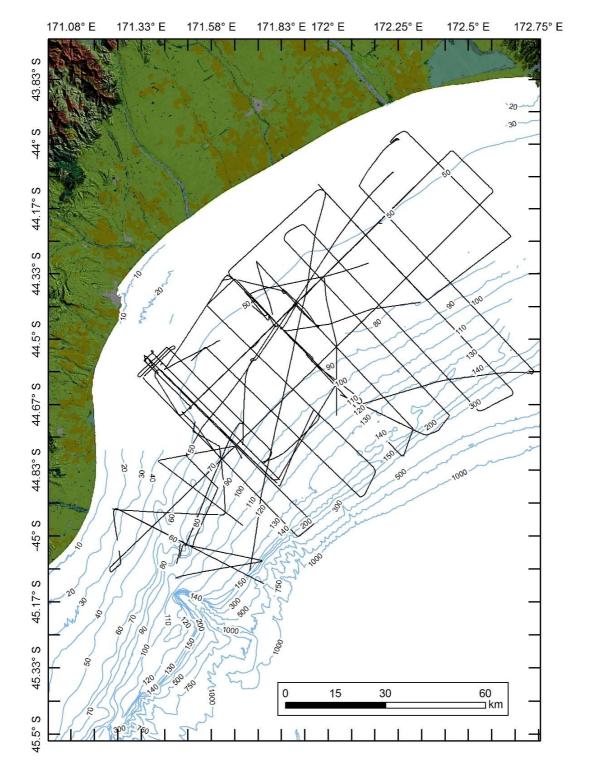

7.1 Controlled Source Electromagnetics

Figure 11: Distribution of CSEM transects. Detail of CSEM acquisition and processing are provided in Section 7.1

7.2 Multi-Channel Seismic Reflection

Figure 12: Distribution of Multichannel Seismic Reflection Data. Detail of MCS acquisition and processing are provided in Section 7.2

7.3 TOPAS Sub-Bottom Profiler

Figure 13: Distribution of TOPAS Data. Detail of TOPAS acquisition and processing are provided in Section 7.3

7.4 EM2040 bathymetry

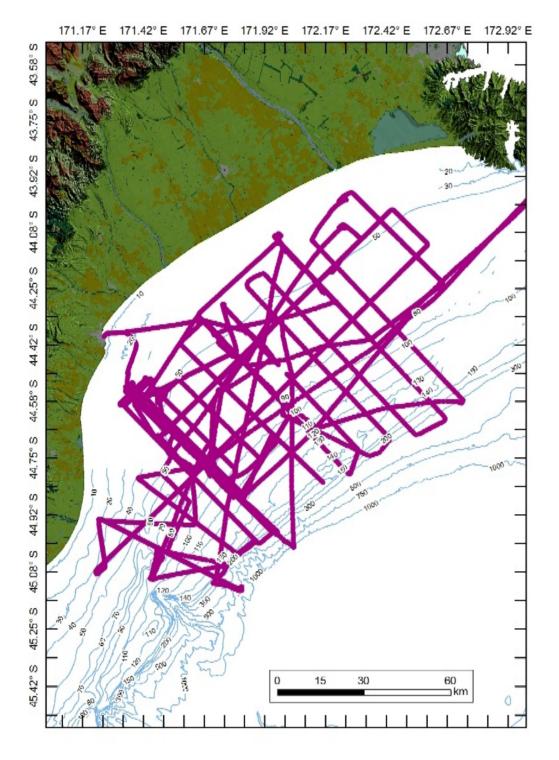
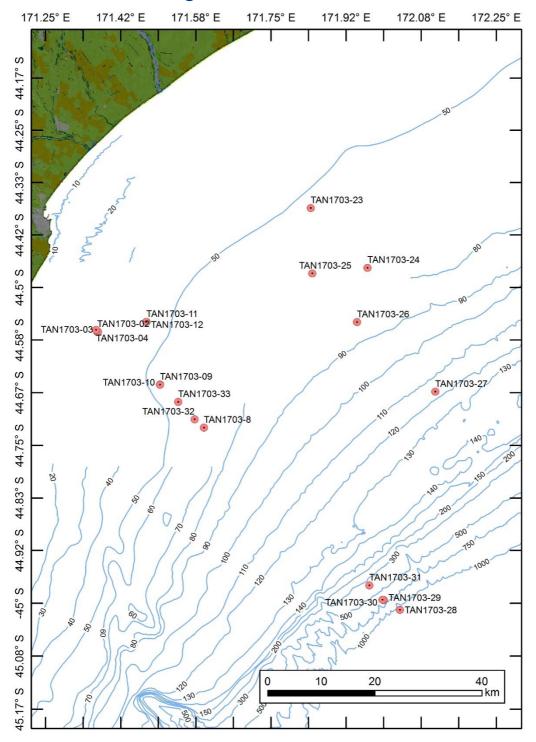
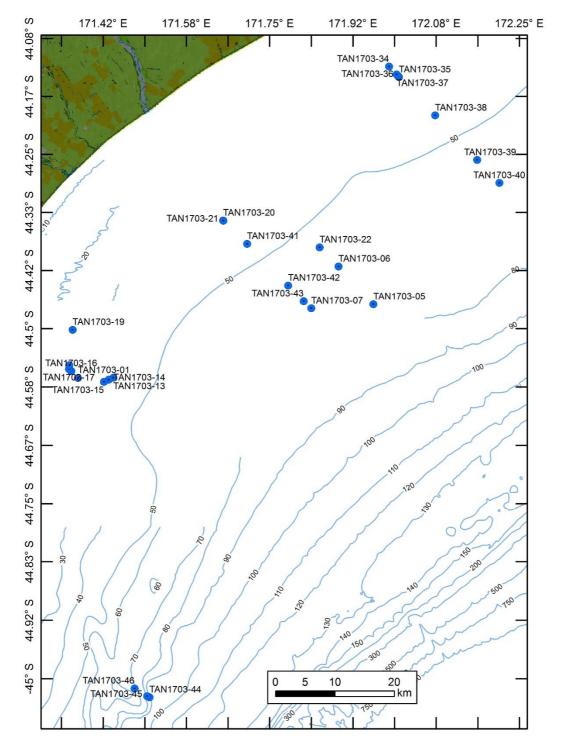




Figure 14: Distribution of Multibeam Bathymetry and Water Column Data (based on shiptrack rather than actual swath coverage). Detail of EM2040 acquisition and processing are provided in Section 7.4

7.5 Sediment Coring

Figure 15: Distribution of sediment cores. Detail of core acquisition and processing are provided in Section 7.5

7.6 CTD data

Figure 16: Distribution of CTD casts and tows in the study area. More detail about the specific geometry of CTD tows are provided in Appendix XX. Detail of CTD acquisition and processing are provided in Section 7.6

7.7 Coast Cam

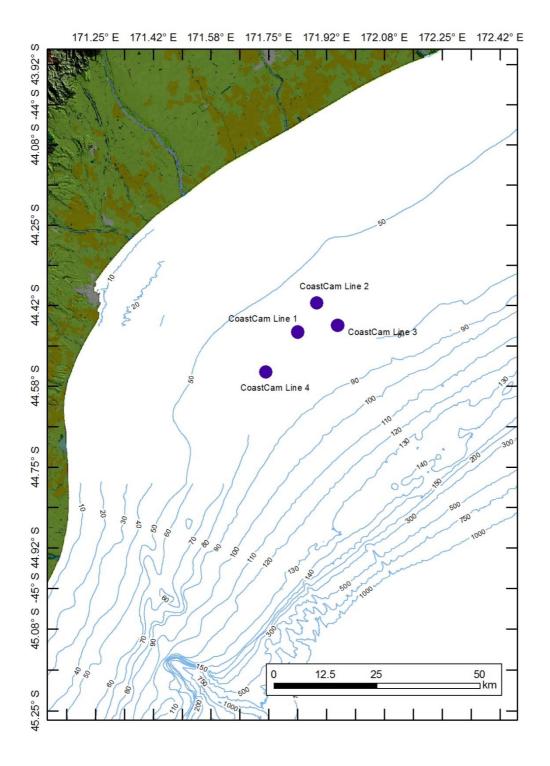


Figure 17: Distribution of CoastCam deployments in the study area. More detail about the specific geometry of CoastCam deployments are provided in Appendix XX. Detail of CoastCam acquisition are provided in Section 7.7

8 Equipment Set Up, Acquisition and Processing Parameters

The following section contains the details of the equipment setup and the acquisition and processing parameters for the different gear types.

8.1 Controlled Source Electromagnetics

8.1.1 Physical concept of controlled source electromagnetics

Marine controlled source electromagnetic (CSEM) is a geophysical exploration method to derive the electrical properties, i.e. resistivity, of the seafloor. Electrical conduction in seafloor sediments occurs through ions in the pore fluids, and therefore the resistivity of seafloor sediments depends mainly on the sediment porosity, pore space connectivity and the conductivity of the pore fluid. An important source for ions is the amount of salt in the pore fluid. Figure 18 shows the relationship between salinity and pore fluids conductivity (1/resistivity) for different temperature values. The relationship between the bulk resistivity of the sediment, porosity and pore fluid resistivity may be described by the experimentally derived Archie's Law, which holds for most sediments with little clay content:

$$\rho_{bulk} = a \phi^{-m} S^{-n} \rho_{fluid}$$

Where ρ_{bulk} is the ρ_{fluid} resistivity of the seafloor and pore fluid respectively, ϕ is the porosity, S the pore fluid saturation, and a, m and n are constants, which range between 0.5-1.5, 1.8-2.4 and ~2 respectively in marine sediments.

Typical seawater resistivity varies between 0.3 to 0.33 m depending on seawater salinity and shallow marine sediments typical have a bulk resistivity of around 1 m. Fresh water resistivity ranges between 1 and 100 Ohm, thus the bulk resistivity increases by a factor of 3 to 30 for fresh water saturated sediments.

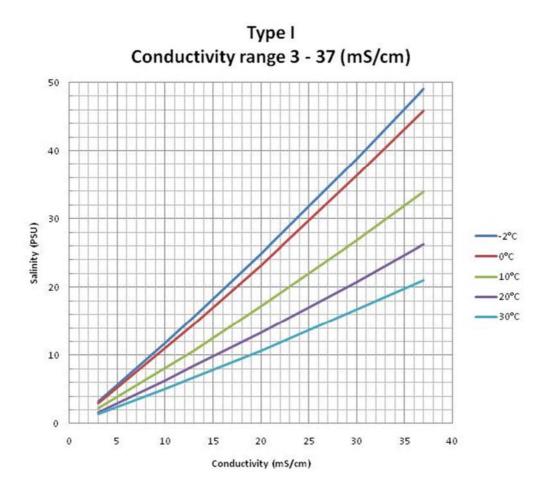


Figure 18: Pore fluid conductivity for different salinity values and temperatures.

Bulk electrical resistivity of marine sediments can be derived from CSEM data. For this, an electromagnetic wave is generated through a seafloor transmitter, which subsequently diffuses outward (Figure 19). The wave's diffusion speed and amplitude damping is a function of seawater and seafloor resistivity. The speed increases with increasing resistivity while amplitude damping decreases with increasing resistivity. Through monitoring the shape of the electromagnetic wave at different offsets, a resistivity model may be derived via inversion. The inversion is a statistical search process which identifies resistivity models with responses that fit well with the instrumented responses. Short offset data and early time signals are most sensitive to shallow structures, while long offset data and late time signals contain information about the deeper structures (penetration depth is about 1/3 of offset).

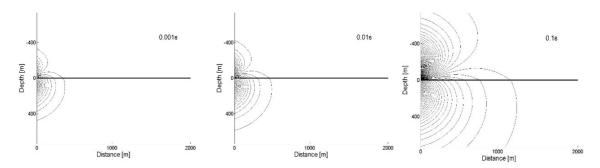


Figure 19: Snapshots of the propagation of an electrical dipole field, generated at the seafloor (black line) at 0.001, 0.01 and 1 sec after current switch on in transmitter dipole. The sea-layer and seafloor are assumed to be infinitely thick with resistivity of 0.3 Ohm and 1 Ohm respectively.

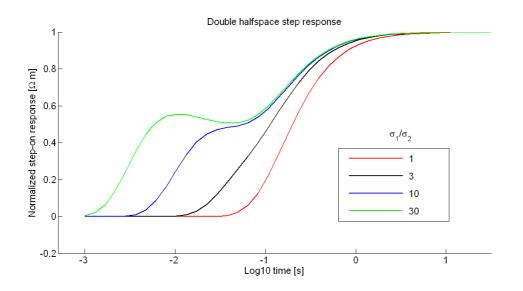


Figure 20: Electric seafloor dipole-dipole response for a switch on transmitter current wave form at 100 m transmitter-receiver offset. Response is shown for different conductivity contrasts between the seafloor (2) and a subsurface layer (1).

Figure 20 shows snap shots of the propagation of an electric dipole wave as created by the transmitter used in the experiment. The wave propagates faster through the more resistive seafloor than through the conductive sea-layer. The response as a function of time for a receiver 100 m away from the transmitter is shown in Figure 20 for sub-surface layer/seafloor conductivity (σ_1/σ_2) contrasts ranging between 1 and 30. The response changes significantly for different conductivity contrasts. For a high conductivity contrasts (e.g. high resistivity seafloor and a high conductivity sub-surface layer) the early arrival of the seafloor wave can be easily distinguished from the later time arrival of the sub-surface layer wave. If there is not a strong contrast the waves do not distinctly separate in time yet the transient is altered in amplitude.

Where CSEM measurements are performed in relatively shallow waters compared to the transmitter-receiver distance the so called airwave can have a big effect on the signal. For shallow oceans a fast or even the fastest path to the receiver may actually be through the sealayer into the very resistive air and back through the sea-layer to the seafloor receiver. This airwave may mask other arrivals of waves through seafloor resistors and thus makes a visual qualitative interpretation of the data more difficult.

8.1.2 CSEM Instrumentation

The seafloor-towed CSEM System HYDRA developed by BGR is a modular electric dipoledipole system consisting of a 100m long electrical transmitting dipole and 4 electrical receiving units (Figure 21). Each receiving unit (RX) consists of an autonomous, battery powered data logger mounted in a frame, and a receiving dipole being between 10 and 20m long. Transmitting dipole and receiving units are connected with rope at offsets from 150m to about 650m.

A stainless steel tow-body affectionately termed the "pig" is attached to the front end of the seafloor array. It has the function of a weight to keep the array on the seafloor and an instrument platform. For the MARCAN Project it will host the GEOMAR transmitter system that consists of three pressure cylinders containing the electronics being capable to transmit currents of up to 50A. The pig also contains a CTD sensor and an acoustic transponder. A mobile winch with 700m of opto-electrical cable is used to tow the array behind the ship.

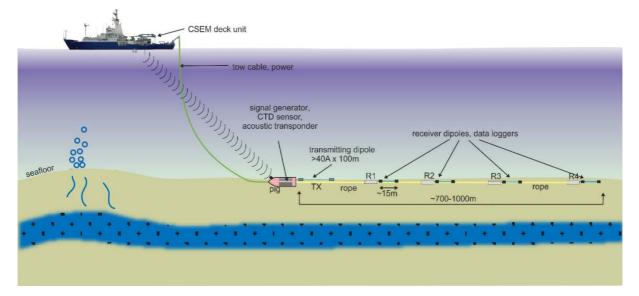


Figure 21: Experiment set-up of the towed electric dipole-dipole system used in this experiment.

8.1.3 Instrument Details

Winch and block.

The CSEM system is deployed and towed directly from its own self-contained electro-hydraulic tow winch that holds 700 m of 22mm diameter electro-optical cable with a peak tension load of 16 tons (Figure 22). For TAN1703 the winch has been welded to the aft deck at a distance of approximately 10m from the stern ramp. An 80cm diameter block with built in payout counter has been installed beneath the fantail on the aft of the ship (Figure 23).

Figure 22: Tow Winch used for the CSEM Survey

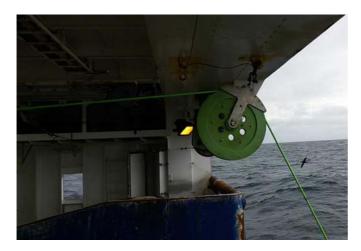


Figure 23: Block attached beneath fantail for the CSEM cable

The Pig.

The pig is a stainless steel casing with a weight of 400kg in the air constituting the front end of the electric dipole-dipole seafloor array. For the MARCAN experiment the pig hosts the pressure vessels with GEOMAR transmitter electronics, a CTD sensor and a Kongsberg Hipap acoustic transponder provided by NIWA (Figure 24).

The pig was deployed and recovered down the stern ramp using a combination of the ship winches (Gilson and Cod-end winch) and the CSEM winch (Figure 25).

Figure 24: Pig with open lid showing transmitter pressure vessels, CTD mounted inside its body and acoustic transponder in its nose.

Figure 25: Pig deployment and recovery proceedure

HYDRA Receivers

The HYDRA receivers are battery-powered low-noise data loggers recording the receiver dipole voltage with 22 bit ADC at a sampling rate of 10 kHz. The receiver electronic has been developed and built by MAGSON GmbH Berlin (Figure 26). A precise time signal is provided by Chipscale Atomic clocks, which are synchronized to GPS time prior to each deployment.

Figure 26: HYDRA Receiver Boards by MAGSON GmbH

GEOMAR Transmitter

The Geomar transmitter has been developed in-house and consists of a modem/data logger, an H-Bridges, three DC-DC convertes, data logger with modem and rechargeable lead gel batteries. It supplies up to 50 A current in a full or half duty cycle with variable length through copper transmitter current electrodes (Figure 27), which are separated in the experiment by 100 m distance (Transmitting dipoles Figure 21). The transmitter is linked to the ship by the winch cable, which serves as a power lead to the transmitter and also as a modem line to communicate real-time with the transmitter. The lead gel batteries serve as a power buffers to the transmitter and are recharged during transmission pauses. Like the receivers, the transmitter is synched to a very stable, chip-scale atomic clock. Maximum drifts observed over 24 hours were 0.2 ms. For safety reasons, the transmitter is switched on after it has been launched, usually at a water depth of approx.40 m, and is switched off before it reaches the water surface at recovery.

Figure 27: One of two transmitter electrodes

8.1.4 Instrument issues encountered during TAN1703

Payout Counter of Tow Winch

The payout counter of the tow winch provides wrong readings, probably due to the false installation of the counter on the block. Pay out readings have been compared with true cable length resulting in an error of about 14%. Thus, 100m on the payout counter compares with 114m measured cable length. Discrepancies remained between the offset recorded between the ship and Hipap transponder on the pig with an error in cable measurements of approximately 5%.

Mechanical connections

The eyes of connection ropes of the seafloor receivers have been damaged during the towing process. Connections were cut off and replaced through knots. Jackets and Kevlar of the tow cable has been found damaged before CSEM-6 deployment at the pig ends due to sharp edges on the pig's nose. The area has been sealed with splicing tape and protected with tape and spiral wrap, and was functioning for deployment CSEM-6.

Power supply to Hydra Receivers

On deployment CSEM-5 and CSEM-8, the two far offset HDYRA receivers have stopped working. An investigation after the survey showed that the battery power supply to the logger has been disrupted shortly causing a reset of the receivers. Since the reset happened shortly after a tension peak in the cable during deployment CSEM-5 has been observed, we theorized that a seafloor obstacle has been encountered causing a jolt in the receiver housing. However, such a disruption occurred a second time during deployment CSEM-8.

8.1.5 CSEM Experiment

All together 7 CSEM profiles were acquired within this cruise during 9 deployments of the CSEM streamer (Figure 11). Two profiles required double deployments to complete (CSEM-1/CSEM-2 and CSEM-3/CSEM-6). The profiles cover the IODP drill area for calibration purposes, and extend north-east and south-west along the entire bight-shelf.

The survey lines were completed using the ships Dynamic Positioning system. The streamer was towed over the seafloor at a speed of between 1 to 2 knots between stations and then stopped at intervals of 200 m, 500 m or 1000 m depending on the targets for a few minutes to allow low noise data acquisition.

Pay out of the winch cable was set to approximately three time the water depths and adjusted accordingly during the profile. Table 3 lists an overview of the profiles acquired.

	Table 3: Deployment start dates, waypoints and deployment details. Times in UTC, start time related to R4 in water, end time related to R4 out of water. Profile locations given in Figure 11						
Start Date (UTC) Deployment Information Deployment Description							

Otart Date (010)	Deployment information	Deployment Description
CSEM-1	Start: 23:14 [UTC]	Profile parallel to IODP line, direction: SE – NW,
08.04.2017	End: 09:09	Pig back on deck, short circuit in adaptor to tow winch
	Duration: 9h 55min	connection, redeployment after repair.
	No. of Waypoints: 5	Sync signal lost on transmitter because of low buffer batteries
		caused by deck time
		Data on all receivers, but receivers are not synchronized with
		TX
CSEM-2	Start: 22:38 [UTC]	Profile CSEM-1 continued in SE-NW direction, 500m offsets
10.04.2017	End: 21:32	between waypoints
	Duration: 23h 54min	Data on all receivers
	No. of Waypoints: 67	
CSEM-3	Start: 00:08 [UTC]	Profile over IODP site 1353, in NW – SE direction,
12.04.2017	End: 13:00	200m offsets between waypoints. Deployment stopped due to
	Duration: 12h 52min	weather conditions
	No. of Waypoints: 44	Data on all receivers
CSEM-4	Start: 22:26 [UTC]	Profile in NW - SE direction, 500m offsets between waypoints
14.04.2017	End: 00:45	Data on all receivers
	Duration: 26h 11min	
	No. of Waypoints: 66	
CSEM-5	Start: 22:45 [UTC]	Profile parallel to CSEM-4 in NW - SE direction, 500m offsets
16.04.2017	End: 01:20	between waypoints
	Duration: 27h 05min	Data on R1 and R2, R3 and R4 stopped recording at 23:58
	No. of Waypoints: 80	and 00:00 before surveying started. Likely cause was a
		seafloor obstacle they run over which interrupted battery
		connection
CSEM-6	Start: 00:40 [UTC]	Profile is completing line CSEM-3 in NW-SE direction,
19.04.2017	End: 09:10	overlapping 2 last waypoints of line CSEM-3. Array was just on
	Duration: 8h 30min	IODP site 1354 when survey was stopped due to worsening
	No. of Waypoints: 28	weather conditions. 200m offsets between waypoints.
		Data on all receivers
CSEM-7	Start: 04:30 [UTC]	Profile constitutes a tie-line between profiles 1 and 3 SW-NE
24.04.2017	End: 04:10	direction. 1000 m offsets between waypoints.
	Duration: 23h:40min	Data on all receivers
	No. of Waypoints: 54	
CSEM-8	Start: 11:40 [UTC]	Profile south of IODP site 1353.
25.04.2017	End: 09:10	500m offsets between waypoints.
	Duration: 10h 30min	Data on R1 and R2, R3 and R4 stopped recording at two
	No. of Waypoints: 79	hours after surveying started.
CSEM-9	Start: 08:10 [UTC]	Profile from IODP site 1353 in south-west direction. Acquisition
28.04.2017	End: 11:00	had to be aborted due to electronic failure of the transmitter.
	Duration: 2h:50min	
	No. of Waypoints: 5	

Transmitter Settings.

For all deployments, the same transmitter current setting was used. The transmitter dipole length was chosen as 100 m. A transmitter current waveform is switched on exactly 1 minute and subsequently switched off for recharge of the lead-gel batteries for 1 minute. This cycle of intermittent transmission is repeated for the entire survey time. During the on-time a half duty cycle with a period of 4 seconds has been chosen as a signal form (Figure 28). The current amplitude is +/- 19 A, yielding a dipole moment of the transmitter of 190 A m. A slight current-over shoot is observed at current switch on owing to electrical regulations delay in the DC-DC converters. However, the overshoot has no effect on the data.

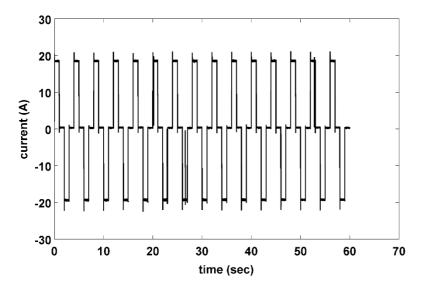


Figure 28: Transmitter signal during 1 minute on-time

Receiver Settings.

4 receivers have been used for the MARCAN experiment (B107 to B110). The dipole length of each receiver remained constant. However, the distance between receiver and transmitter dipoles changed slightly after deployment CSEM-5 due the fact that chafed eyes connecting parts of the transmitter had to be replaced. Detailed receiver settings are listed in Table 4.

Table 4: Overview of receiver IDs, gain factors, dipole lengths and transmitter-receiver offsets (dipole center to dipole center) for the respective deployments

Date (UTC)	R1	R2	R3	R4
CSEM-1	B107, gain 0	B108, gain 1	B109, gain 2	B110, gain 2
08.04.2017	10.53m	14.85m	15.03m	19.95m
	149.85m	274.21		
CSEM-2	B107, gain 0	B108, gain 1	B110, gain 2	B109, gain 2
10.04.2017	10.53m	14.85m	15.03m	19.95m
	149.85m	274.21m	401.37m	649.32m
CSEM-3	B107, gain 0	B108, gain 1	B110, gain 2	B109, gain 2
12.04.2017	10.53m	14.85m	15.03m	19.95m
	149.85m	273.19	401.35m	649.32m
CSEM-4	B107, gain 0	B108, gain 1	B110, gain 2	B109, gain 2
14.04.2017	10.53m	14.85m	15.03m	19.95m
	149.85m	273.19	400.35	648.30
CSEM-5	B107, gain 0	B108, gain 1	B110, gain 2	B109, gain 2
16.04.2017	10.53m	14.85m	15.03m	19.95m
	149.85m	273.19	400.35	647.57
CSEM-6	B107, gain 0	B108, gain 1	B110, gain 2	B109, gain 2
19.04.2017	10.53m	14.85m	15.03m	19.95m
	149.85m	273.19	400.35	646.77
CSEM-7	B107, gain 0	B108, gain 1	B110, gain 2	B109, gain 2
24.04.2017	10.53m	14.85m	15.03m	19.95m
	149.85m	272.26	398.52	644.94
CSEM-8	B107, gain 0	B108, gain 1	B110, gain 2	B109, gain 2
25.04.2017	10.53m	14.85m	15.03m	19.95m
	149.85m	271.05	396.48	641.97
CSEM-9	TBA	TBA	TBA	TBA
28.04.2017				

8.1.6 CSEM preliminary processing

Preliminary processing of selected way points on CSEM-2 and CSEM-4 was carried out for a qualitative assessment of the CSEM data. Figure 29 shows the preliminary processed data in terms of electric fields in V/m per unit dipole moment for the closest and furthest receiver to illustrate the signal record while moving and on station. Transients derived at different positions along one profile are consistent showing a change in saturation field for late times, which increases with decreasing water depths (Figure 30). The wave arrival shows variations along the profile but no dramatic changes, pointing to a relatively layered underground. There is a strong change in general characteristics though between data along CSEM-2 and CSEM-4. At CSEM-4 clear early arrivals point to a shallow resistive layer.

Figure 31 shows modelled responses for the short transmitter receiver configuration at 148 m offset. These theoretical responses are shown for different models and may serve as type curves for a first preliminary interpretation of the observed data. Responses are shown for two water depths (blue colors: water depth=80 m, red colors: water depth = 50 m). The seafloor model consists of a conductive 1 Ω m back ground onto which a 100 m thick resistor with a resistivity of 1000 Ω m is imposed. Solid, dashed and dotted line show the response where the top of the resistor is at 10m, 20m and 40m below seafloor. The cyan and magenta lines show responses for a resistor with a resistance of $10\Omega m$ and a top at 10 m depth. It is evident that the water depth as well as seafloor resistivity exert first order control on the response at late times. At early times however, shallow resistors (at 10m up to 40m depth) cause an early arrival before the air wave, the signal is independent of water depth (solid blue and red line coincide up to about 1 ms). If the shallow resistor has a less pronounced anomaly (10 Ω m instead of 1000 Ω m), the arrival occurs somewhat later, however still at such early times that it is not influenced by the air wave (magenta and cyan line coincide at early times). Going back to the observations along CSEM-2 and CSEM-4 we can conclude based on the type curves, that early signal arrivals may be interpreted independent of the changing water depth along the profile. While only weak early arrivals are visible in the data along CSEM-2, stronger and earlier arrivals are observed along CSEM-4. The change in character between the early arrivals suggests, that a stronger resistive shallow anomaly is present underneath CSEM-4. The anomaly may be associated with the presence of fresh water, however may also be caused by a gas saturated pore space. The existence of the latter is indicated by the presence of gas flares in the water column imaging as well as blanking in the TOPAS data.

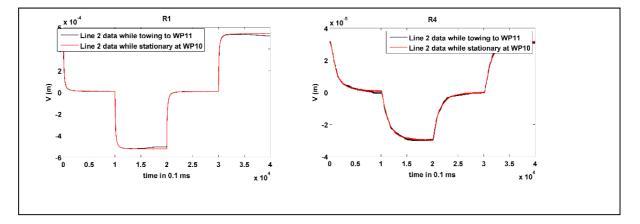


Figure 29: Data example at WP10 and WP11 on CSEM-2 illustrating the difference between data collected while towing and data collected on station. Left panel shows receiver 1 (offset = 149

m) and right panel shows receiver 4 (offset = 646 m). The data shown is a stack of 15 duty cycles recorded during a minute while the transmitter is on. Only a slight deterioration of data quality is visible in this particular data comparison, however, noise levels might increase in other parts of the profile depending on winch angle, wave motion, cable pay-out, seafloor condition and towing speed.

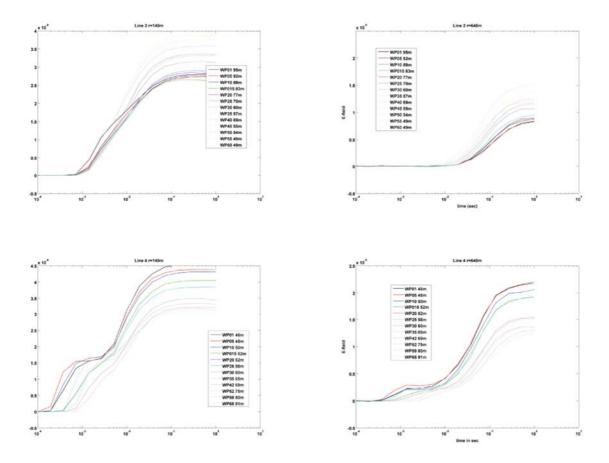


Figure 30: CSEM data stacks at different weigh points for transmitter switch-on transients on profile 2 (top panels) and profile 4 (lower panels). The left two panels show RX1 data at 149 m distance from transmitter, and right two panels show RX4 data at 648 m distance.

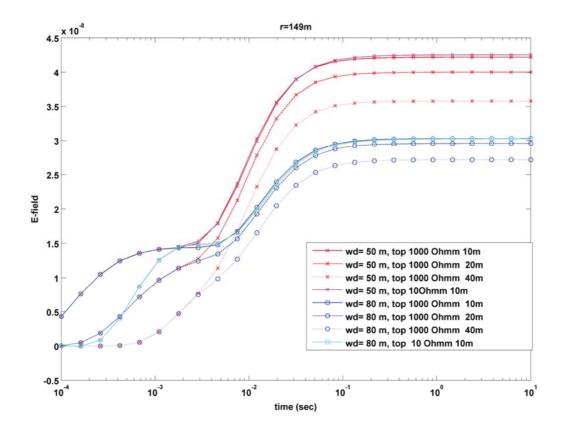


Figure 31: Responses for models with two different two water depths (blue colors: water depth=80 m, red colors: water depth = 50 m). The seafloor model consists of a conductive 1 Ω m back ground onto which a 100 m thick resistor with a resistivity of 1000 Ω m is imposed. Solid, dashed and dotted line show the response where top of the resistor is at 10m, 20m and 40m below seafloor. The cyan and magenta lines show the response for a resistor with a resistance of 10 Ω m at 10 m depth.

8.1.7 Pig-mounted CTD

The CSEM ,pig' has been equipped with a Seabird SBE37 CTD. The instrument is time synchronized with GPS before deployment and records autonomously electrical conductivity and depth information during the CSEM data acquisition. Knowledge of these parameters is essential for electromagnetic data inversion, since the electromagnetic wave propagating through the sea-layer has a strong effect on the data. Precise knowledge and consideration of the sea-layer parameters will enhance the precision of the derived seafloor resistivity variations. In the context of this project, the data will also help to identify seafloor regions with low salinity, which might be indicative of potential ground water seepage area.

The CTD has been merged preliminary with navigation data of the Kongsberg Hipap acoustic transponder, which has also been attached on the pig, via time marks. It should be noted here, that the merging is preliminary since some problems with the navigation recording via OFOP existed that needed to be corrected by hand. No sensible merge of CTD and navigation data could be derived for Line 1, either due to problems in the navigation or ctd files. Due to a power failure on the CTD no data has been acquired along Line 6. Some preliminary analysis of this data is presented in Section 9.5.1

8.2 EM2040 Multibeam

The EM2040 multibeam echo-sounder is a high resolution seabed mapping system for water depths down to 500 m. This echo-sounder operates at bandwidths from 200 to 400 kHz, across track coverage of about 5.5 times water depth (depending on depth and mode) and a maximum ping rate of 50 Hz. The system dynamically applies beam focusing to both transmit and receive functions in order to obtain the maximum resolution inside the acoustic near-field. The transmit beams are electronically stabilised for roll, pitch and yaw, while the receiver beams are stabilised for roll movements. As configured on *RV Tangaroa*, the EM2040 is a single RX system, with 256 beams (or 576 beams in dual swath mode), yielding 400 soundings (or 800 soundings in High Density mode). Detailed specifications of the EM2040 system are shown in Table 5.

Water column data, which show the received amplitude of the entire water column for each beam, were recorded simultaneously with the multibeam echo-sounder data.

Seafloor Information System (SIS) version 4.3.2 was the real-time software application used on board the vessel for multibeam data acquisition. This software includes the necessary features for running and operating the multibeam system. It includes extensive tools for visualising the sounding data as well as the seabed image data, and enables checks on system calibration and data quality to be made in real-time.

Type of Instrument	EM2040
Frequency	200 or 300 kHz user defined, 200 kHz> 100m
	bottom depth, 300 kHz < 100m bottom depth
Maximum ping rate	50 Hz
Beam spacing	HD Equidistant Beam Spacing
Angular coverage mode	Manual set to 65/65
Number of beams per swath	256
Number of swaths per ping	2, giving a total of 512 beams per ping
Number of soundings per ping	800
Nominal depth range from transducers	10 – 500 m, with typical values for this survey of
	20 – 300 m
Beamwidth	0.4 – 0.75 degrees depending on frequency
Coverage	1000 m nominal max (500 m each side, fixed for
	this survey), ranging from 80 to 1000 m for this
	survey, with a typical value of approximately
	300 m (150 m / side)
Coverage sector	65 degrees per side maximum (fixed for this
	survey)
Depth resolution	0.25 % of water depth
Ping mode	Manual: 200 or 300 kHz, depending on depth
	for this survey
Beam forming method	Medium CW < 200m, FM > 200m
Range sampling rate	Up to 60 kHz
Pulse length	Shortest 25 μs
Dual swath	Dynamic
Pitch stabilisation	Enabled
Auto-tilt	Off

Table 5: Summary of EM2040 operating parameters for TAN1703.

During TAN1703, the EM2040 multibeam system generally collected excellent data; however, there was a noticeable heave artefact in the bathymetry data. POS data were recorded during the survey and it is anticipated the heave effect on the data will be corrected in post-voyage data processing. Line orientation and survey scheduling were often focussed on CSEM and seismic survey objectives where swath data was also collected, primarily for the water column data. As a result bathymetry and water column data are collected on turns, perpendicular to, and on occasion over existing swath lines.

8.2.1 Motion sensors

Throughout TAN1703, a single Applanix POSMV V5 unit was in operation. This system interoperates the data coming from the GPS, Gyros, and MRUs. Lever arms are then applied to these sensor readings to convert them to an established reference point known as the "new keel reference point". This reference point is then used by the EM2040, EM302, and TOPAS when calculating their respective attitude values. The POSMV supplies a pitch and roll accuracy of 0.027°, a heading accuracy 0.022°, and a heave accuracy of +/- 5cm or 5% of the observed heave.

8.2.2 EM2040 Calibration

As a consequence of mounting the Kongsberg EM2040 MBES for the first time on *RV Tangaroa* a calibration of the system was necessary. The calibration was carried out on the wreck of the MV *Jubilee* ($42^{\circ}21.18$ 'S, $174^{\circ}46.81$ 'E) on Sunday 9th April 2016 by means of a patch test. Weather conditions during the calibration were good with variable winds, 5-10 knots, and c 1 m swell.

Offsets between the Tx and Rx transducer arrays of the EM2040 MBES and the reference point are applied in the SIS acquisition software (Figure 32).

	Forward (X)	Starboard (Y)	Downward (Z
Pos, COM1:	0.00	0.00	0.00
Pos, COM3:	0.00	0.00	0.00
Pos, COM4/UDP2;	0.00	0.00	0.00
TX Transducer:	1.2927	-2.2753	0.9130
RX Transducer:	1.2927	-2.7013	0.9270
Attitude 1, COM2/UDP5:	0.00	0.00	0.00
Attitude 2, COM3/UDP6:	0.00	0.00	0.00
Waterline:			-6.1
Depth Sensor:	0.00	0.00	0.00

Figure 32: Sensor setup of the EM2040 MBES

The offsets between the positioning antenna and the reference point are applied in the POS/MV. The POS/MV outputs position and attitude at the reference point. Lever Arms and Mounting Angles of the IMUs are shown in (Figure 33).

ting Lever Arm 1.372 -0.395
-0.395
0.000
-3.584
80
Jw.r.t.
iment
re IMU
1

Figure 33: PosMV Lever Arms & Mounting Angles

An SuPlus V2 probe was used to collect a sound velocity profile of the water column for the Pitch, Roll and Heading calibration tests.

Pitch

The pitch tests was undertaken over the wreck of the MV *Jubilee* in the following manner: Two reciprocal collinear lines were surveyed orthogonal over the edges of the wreck. These lines were analysed for pitch offset in the EM2040 MBES using the Kongsberg SIS calibration tools (Figure 9-11) showed a pitch offset of 1.7° .

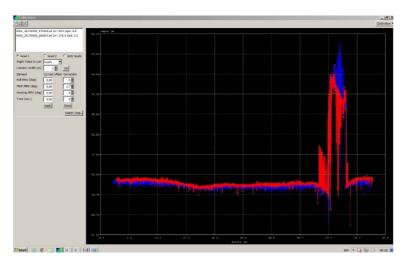


Figure 9-11: Pitch test showing a pitch offset of 1.7° applied.

Roll

The roll test was undertaken over a flat area in the vicinity of the wreck of the MV *Jubilee*. Two collinear lines were run. The lines were analysed in the Kongsberg SIS & CARIS HIPS 9 calibration modules, showing a roll offset of 0.26° (Figure 34).

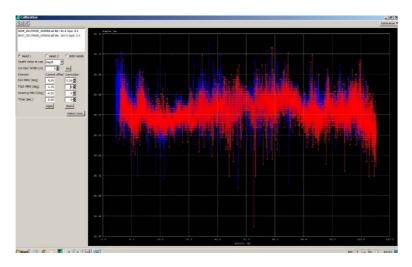


Figure 34: Roll test showing a roll offset of 0.26° applied

Heading

Heading tests were conducted over the wreck of the MV *Jubilee*. Two parallel lines were surveyed in the same line direction across the wreck. The data was analysed in the region of overlap between the two lines using the Kongsberg SIS & CARIS HIPS 9 calibration modules. The test showed a heading offset of -0.55° (Figure 35).

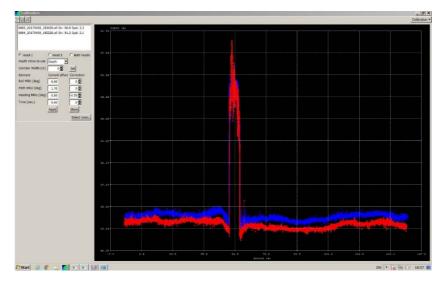


Figure 35: Heading test showing an offset of -0.55° applied

Calibration Results

On completion of the calibration of angular offsets the required offsets for the EM2040 MBES were as shown in Figure 36.

Port		Roll	Pitch	Heading
C Starb.	TX Transducer:	0.00	0.00	0.00
	RX Transducer:	0.00	0.00	0.00
	Attitude 1, COM2/UDP5:	0.26	1.7	-0.55
	Attitude 2, COM3/UDP6:	0.00	0.00	0.00
(Transducer Orient	Stand-alone Heading:			-0.55
🖱 Forw. 😨 Aft				

Figure 36: Angular Offsets after calibration

8.2.3 EM2040 bathymetry and backscatter processing

Raw bathymetric data were acquired using a Kongsberg EM2040 multibeam system running Seafloor Information System (SIS) version 4.3.2 Files of soundings (*.all files) from each completed file were imported into CARIS HIPS version 9.1 software for initial processing. A standard CARIS workflow was followed prior to the generation of field sheets and digital elevation models (DEMs). The process involved the following steps:

- 1. Conversion: HIPS and SIPS files are created from the survey data (*.all files).
- 2. Load tides: A zero-tide was applied initially on board to the bathymetric soundings. Subsequent processing on land will use a tidal correction.
- 3. Merge: This component of the processing includes calculating the final geospatial positions and corrected depths for soundings, based on observations such as raw depths, navigation information, vessel motion (gyro, heave, pitch and roll) and tide.
- 4. Calculate TPU: Total Propagated Uncertainty (TPU) is derived from a combination of all individual error sources, and calculated using error values specified in the RV *Tangaroa* vessel file.

The bathymetry data were examined and cleaned in CARIS HIPS line-by-line basis in the Swath Editor tool. Bathymetric soundings that represented gross errors or obvious noise were manually rejected.

A field sheet was created to cover each of the survey targets. Within each field sheet, the bathymetry data were gridded into a Bathymetry Associated with Statistical Error (BASE)

surface at a 25 m-grid resolution (for the shelf surveys) using the Combined Uncertainty Bathymetric Estimation (CUBE) tool. The BASE surface is a georeferenced TIFF representation of the seabed derived from processed bathymetry and computed uncertainty (error) values. When a CUBE surface is created, soundings are weighted and contribute to surface grid nodes based on TPU values and distance from the nodes. The CUBE surface allows for multiple depth estimates or hypotheses to exist at a single grid node, depending on variability of the sounding data. CUBE uses a "Disambiguation" function to determine which hypothesis at each node is the most statistically robust.

The multibeam echo-sounder data were pre-processed on board using Caris software (version 8.1.9), which provides the tools for manual and automatic multibeam data processing and quality control.

Bathymetric data processing accounted for total propagated uncertainty and basic quality control. Noise in the multibeam bathymetry data resulted from high swells during unfavourable weather conditions. Backscatter data were also corrected for beam pattern, gain, time varied gain, angle varied gain, speckle, brightness and contrast.

8.2.4 EM2040 Water column

The water column data logged by the EM2040 system were visualised using the *Fledermaus* Mid-water software tool. The data were generally of good quality, apart from the presence of a pattern of interference with other acoustic sources evident in the shallow shelf data, and a few disrupted pings on some lines where beams were blanked out due to ship movement or bubble-sheeting of the transducer face due to bad weather. Several flare, or gas seep, sites were identified in 2-dimensional, along-track curtain views, generated from horizontal stacking and ordering of the acoustic return data for each echogram.

8.3 EM302 Multibeam

8.3.1 System setup

The EM302 multibeam echo-sounder is a high resolution seabed mapping system for water depths down to 7000 m. This echo-sounder operates at a frequency of 30 kHz, with an angular sector of 140°, across track coverage of 3-5 times water depth (depending on depth and mode) and a maximum ping rate of 10 Hz. The system dynamically applies beam focusing to both transmit and receive functions in order to obtain the maximum resolution inside the acoustic near-field. The transmit beams are electronically stabilised for roll, pitch and yaw, while the receive beams are stabilised for roll movements. As configured on RV *Tangaroa*, the EM302 is a 1° TX by 1° RX system, with 288 beams (or 576 beams in dual swath mode), yielding 432 soundings (or 864 soundings in High Density mode). System operating parameters for the EM302 during TAN1703 are given in Table 6. Throughout TAN1703, two Applanix POSMV V5 motion sensors were run concurrently, and their differentials monitored. These sensors have a Pitch and Roll accuracy of 0.02°, a Heading accuracy 0.02°, and a Heave accuracy of +/- 5cm or 5% of the range.

Water column data, which show the received amplitude of the entire water column for each beam, were recorded simultaneously with the multibeam echo-sounder data.

Seafloor Information System (SIS) version 4.2.1 was the real-time software application used on board the vessel for multibeam data acquisition. This software includes the necessary

features for running and operating the multibeam system. It includes extensive tools for visualising the sounding data as well as the seabed image data, and enables checks on system calibration and data quality to be made in real-time.

Type of Instrument	EM302
Frequency	30 kHz
Maximum ping rate	Auto / set by K-Sync when in combination with TOPAS sub-bottom profiler and ES60 single- beam
Beam spacing	HD Equidistant Beam Spacing
Angular coverage mode	Auto
Number of beams per swath	288
Number of swaths per ping Number of soundings per ping	2, giving a total of 576 beams per ping 864
Nominal depth range from transducers	10 – 7000 m, with typical values for this survey of 22 – 1970 m
Beamwidth	1.0 x 2.0 degrees
Coverage	8000 m nominal max (4000 m each side, fixed for this survey), ranging from 80 to 7600 m for this survey, with a typical value of approximately 2800 m (1400 m / side)
Coverage sector	65 degrees per side maximum (fixed for this survey)
Depth resolution	0.25 % of water depth
Ping mode	Auto: Shallow, Medium and Deep, depending on depth for this survey
Beam forming method	CW (FM disabled)
Range sampling rate	45 kHz
Pulse length	Auto 5 ms
Dual swath	Dynamic
Pitch stabilisation	Enabled
Auto-tilt	Off

Table 6: Summary of EM302 operating parameters for TAN1703.

8.3.2 EM302 bathymetry and backscatter processing

Raw bathymetric data from Seafloor Information System (SIS) version 4.2.1 (*.all files) from each completed file were imported into CARIS HIPS version 9.1 software for initial processing. A standard CARIS workflow was followed prior to the generation of a digital elevation model (DEMs). The process involved the following steps:

- 5. Conversion: HIPS and SIPS files are created from the survey data (*.all files).
- 6. Load tides: A zero-tide was applied initially on board to the bathymetric soundings. Subsequent processing on land will use a tidal correction.

- 7. Merge: This component of the processing includes calculating the final geospatial positions and corrected depths for soundings, based on observations such as raw depths, navigation information, vessel motion (gyro, heave, pitch and roll) and tide.
- 8. Calculate TPU: Total Propagated Uncertainty (TPU) is derived from a combination of all individual error sources, and calculated using error values specified in the RV *Tangaroa* vessel file.

The bathymetry data were examined and cleaned in CARIS HIPS line-by-line basis in the Swath Editor tool. Bathymetric soundings that represented gross errors or obvious noise were manually rejected.

Bathymetric data processing accounted for total propagated uncertainty and basic quality control. Noise in the multibeam bathymetry data resulted from high swells during unfavourable weather conditions. Backscatter data were also corrected for beam pattern, gain, time varied gain, angle varied gain, speckle, brightness and contrast.

8.4 Sound velocity profiles for multibeam echosounders

5 sound velocity profiles were obtained during TAN1703 to calibrate and correct travel-times and water depth for the EM203 and EM2040 instrument Table 7. An AML Smart Probe Minos.X (serial no. 30195) system was used for 170408a. An SuPlus V2 (serial no. 3604) was used for the remaining SVP casts.

File name	Date Time e (UTC)				
			Latitude (S) decimal degrees	Longitude (E) decimal degrees	
170408a	08/04/2017	23:15	42.0°	174.0°	544
170409c	09/04/2017	04:23	44.6°	172.2°	29
170412a	12/04/2017	20:19	44.6°	171.4°	41
170416a	16/06/2017	13:19	44.6°	172.0°	85
170420a	20/06/2017	01:07	44.6°	172.7°	189

Table 7: Date, time, position and depth of the five sound profiles obtained during TAN1703

8.5 TOPAS Sub-Bottom profiler

This survey used a TOPAS PS 18 Parametric Sub-Bottom Profiler (SBP), which is permanently mounted to a pod on the ship's hull and controlled with software by the multibeam operators.

The transmitted waveform used throughout TAN1703 was a linear chirp (LFM). The chirp frequencies used throughout the survey were 2.0 to 6.0 kHz, with a chirp length of 15 ms on the shelf (depths less than approximately 200 m). Transmitter output level was set to 0 dB, providing a manufacturer's maximum output level of 100%.

The TOPAS PS 18 beam is stabilised for heave, roll and pitch movements via motion data fed from the POSMV. In addition, a "Master depth" is provided from the EM2040 MBES to aid the "bottom track" function. The acoustic beam can also be steered manually or automatically – when slope is available from the multibeam echo sounder system – to take into account bottom slope. Both of these methods were employed during TAN1703 to optimise results. TOPAS operating parameters are given in Table 8.

Control		Setting	Comment
Trigger mode		External (K-Sync)	
Pulse form		Chirp (LFM)	
Chirp frequency		2.0–6.0 kHz	
Chirp length		15 and 20 ms	Optimised for bottom type and water depth
Transmitter output (power)	level	0 dB (max)	
Heave/Roll/Pitch stabilisation	(HRP)	Auto	From primary POSMV
Delay control		Automatic	Set to manual only if bottom-lock is lost
Upper / Lower delay		10% / 50%	
Delay offset		0 ms	
Sample rate		40 kHz	
Trace length		300 ms	
Gain		0 dB, very occasionally 3 dB	Optimised for bottom type and water depth
High-pass filter		1.0 kHz	,, ,
Sound speed		Referenced to EM2040 velocity sensor	Stand-alone underway
·		(typically 1514–1515 m/s)	AML sensor in bow- thruster room
Processing			
Bottom tracker		Enabled	
Filters		Matched, Corner frequencies High Res	
Gain (digital)		Auto (typically 0–12), or adjusted manually to obtain best display	Optimised for bottom type and water depth
Time-varying filter		Disabled	
Time-varying grain		Bottom-tracked	Optimised for bottom
		Offset -1 ms	type and water depth
		Typical ramp	
		A–B: length 4.3 ms, slope 3.86 dB/ms	
		B–C: length 9.0 ms, slope 0.56 dB/ms	
		C–D: length 20.1 ms, slope 0.08 dB/ms	
Attribute processing		Instantaneous amplitude	

Table 8: TOPAS operating parameters

8.6 2D Multichannel Seismic Reflection (MCS) System

8.6.1 Equipment and Acquisition Setup

The MARCAN MCS survey used 3 active solid-state sections of the GeoEel Digital seismic streamer (Geometrics) consisting of 24 channels with a group interval of 12.5 m. Offsets of 22 m and 308 m for first and last channel, respectively, were changed at Line3a to 61 m and 348 m and maintained for the rest of survey A. Digicourse "birds" were used to support a streamer depth at 2.5 m.

The seismic source was a single mini GI-gun (13/35 cu inch) towed in 1.5 m depth. The gun floatation was provided by a mussel float.

Figure 37 shows the streamer and source setup. All survey parameters and geometry values can be found in Table 9.

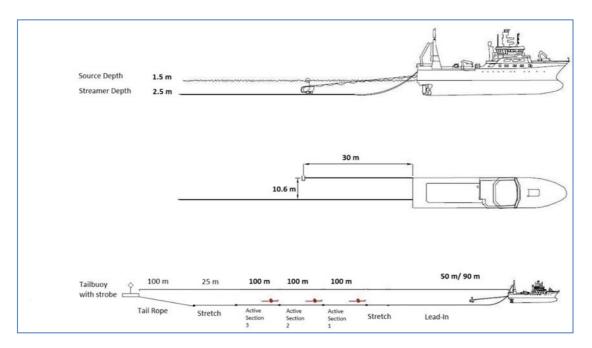


Figure 37: Streamer and Source setup and geometry used for the seismic surveys.

The CompAir Reavell 5000 compressor was used during both seismic surveys with a combined runtime of almost 100 hours, constantly providing between 1800 and 2000 PSI (124 - 138 bar) for nearly 100000 airgun blows. Manual dumps of condensate from the 2nd, 3rd, and 4th stages of the compressor and from the accumulator tank were carried out every 30 minutes by the seismic watch-keeper and the stage temperatures, oil pressure, and air pressure readings at these times were recorded.

The dry components of the seismic acquisition system consisted of the GeoEel deck unit, the trigger unit, the bird controller, the acquisition computer and the navigation computer. The HydroPro navigation software from Trimble was used to merge DGPS position provided by POSMV through DAS (POSMV fwd antenna accurate to +/- 0.4 m) and streamer geometry

information into a format that could be easily interpreted by the seismic watch-keepers. A serial string containing smoothed ship's navigation and interpolated gun position was fed from the navigation computer into the acquisition computer to be logged with the SEG-D files. An example of the string follows, showing the shot/file number, time, date, ship and gun positions, ship heading and speed:

Record=1008, User_string=110708.026,20042017,Ship,43.968382 S,172.278943
E,Gun,43.968053 S,172.278283 E,Heading_true,118.50,Ship_SOG,4.05,Tow,
\$\$\$\$\$,\$\$\$\$\$

A schematic of the complete seismic acquisition setup including wet and dry components is shown in Figure 38.

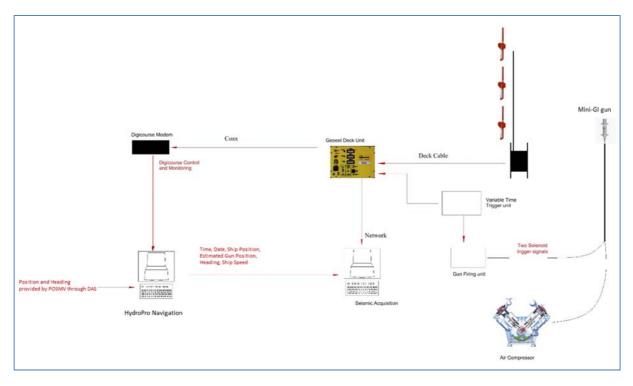


Figure 38: Complete seismic acquisition setup with wet and dry components.

8.6.2 Seismic Surveys

The seismic equipment was used in two different surveys, totalling around 92 hours, c 100000 fired shots and 603 line km of recorded seismic data.

Prior to gear deployment and recovery, tool box meetings were carried out. After reducing ship's speed to 2 knots and turning the ship into the wind the streamer was launched into the water, beginning with the solar light-equipped tail buoy. Three Digicourse birds were attached without at the beginning of each active section of the streamer, which was then moved to the starboard stern side into a snatch block to begin testing prior to surveying. The distance of the streamer behind the ship was estimated by counting the turns on the winch and calculating the circumference (winch diameter 1.2 m). After testing the streamer for connection and leaks, the airgun was lowered into the water by hand from the trawl deck level and also tested. Upon testing and configuring the survey with the desired parameters, the bridge was informed to proceed towards the given waypoints and surveying started with 4 knots ship's speed. During

the surveys the gear was recovered several times to change bird's batteries or remove kelp from birds and/or the tail buoy. Two small boat operations

All deployments and recoveries went smoothly and without incident. Communications between seismic chief and bosun/leading hand was done via radio. Safety gear, including glasses, gloves and ear protection, was worn during all deployments and recoveries.

Two people were on watch in the hydro dry-lab during seismic data recording to always ensure data quality during the acquisition. This meant constantly watching all sub-windows on the acquisition software and half-hourly entries in the logbook, checking birds, leakage and to undertake the compressor checks. During rougher weather and at night time, a visual check out the stern of the vessel was added to look for anything suspicious. Also at night time during tight portside turns, visual control over possible entanglement of streamer and airgun was carried out by one person, observing out over the ship's stern and carrying a radio for rapid communication with the bridge. Figure 39 shows a screenshot of the acquisition window.

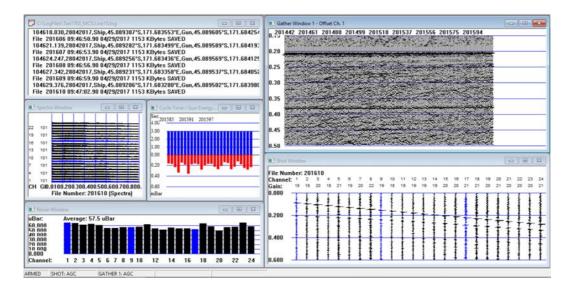


Figure 39: Screenshot of acquisition window. Sub-windows showing, clockwise starting from top left: incoming serial strings and file/shot number, seismic gather of a single channel, 48 channels of a single shot with noise/signal defining polygons in red and green, respectively, noise window as a bar graph of RMS amplitude of each channel, and cycle time and gun energy in blue and red, respectively.

The Bird controller allows for defining the bird position along the streamer and depth settings. Figure 40 shows a screenshot of the bird controller window with 3 birds deployed at 2.5 m depth.

Figure 40: Screenshot of bird control. Birds are attached at the beginning of each section, set to the desired depth and monitored regularly.

The overall quality of the acquired data is good. Figure 39 shows a screenshot of the acquisition window taken during the second survey. Weather conditions were rougher than during the first survey with 2-3 m long period swell and an additional short period chop. While shot gather and single channel gather show good data quality, relatively high noise levels in the noise window (averaging around $60 \mu Bar$) are observed. Given the very shallow water depth in this survey, direct arrival and seafloor reflection are very close together which made it impossible to locate the noise measuring window between direct arrival and the seafloor reflection. Instead the noise was measured above the direct arrivals which in general gives higher values.

Table 9 shows seismic survey parameter and geometry settings for all three surveys. For detailed information about change of parameters, i.e. depth of streamer and seismic record length, refer to the table with seismic log sheets in Appendix D.

Item	Value 1	Value 2	Value 3	Comments
Source to GPS	30 + 34 m			Behind vessel + on board to GPS
Source to 1st channel	20 m	60 m	100 m	x-offset
Offset between Source and Streamer	10.6 m			y-offset
1st channel behind boat	50 m	90 m	130 m	First change within survey 1, see logbook, Value 3 valid for survey2
Source depth	1.5 m			
Streamer depth	2.5 m			
Streamer length	300 m			3 x 100m solid sections with 8 hydrophone groups
Hydrophone groups	24			
Group spacing	12.5 m			
Source	13/35 cu inch			
Sampling rate	0.125 ms			
Record length	1.5 s			
Shot interval	3 s			
Nominal ships speed	4 knots			

Table 9: Parameter and	aeometrv setting	is for TAN1703	seismic survevs.
Tuble V. Fullameter und	geometry setting	5 IOI IANII 00	301311110 301 V0y3.

8.6.3 2D Multichannel Seismic Line-Keeping Navigation.

Ship's navigation was provided to the officer on watch by the scientific crew. For the EM2040, this was undertaken using a Helmsman display from the Multibeam lab. Due to complications with running 2 different SIS systems on the same network, using a standard remote Helmsman display feed was not available. To mitigate this issue a Helmsman display was run locally and a UltraVNC remote desktop connection was used to view it from the bridge. For the 2D seismic line-keeping, a specific navigation setup was implemented.

To provide run line location, ship location, and technical support to the Tangaroa's bridge, two third-party software packages were used. Trimble's HYDROpro was used to interpret GPS data and to provide ship reference point orientation capability. HYDROpro was also used to provide a visual representation of run line and ship locations. A UltraVNC client was used to provide a remote desktop connection from the bridge allowing the bridge to view the navigation information on the computer in the hydro dry lab. The bridge mouse and keyboard inputs were disabled for the remote connection. Figure 41 shows the run-line navigation system configuration and information flow lines used during TAN1703.

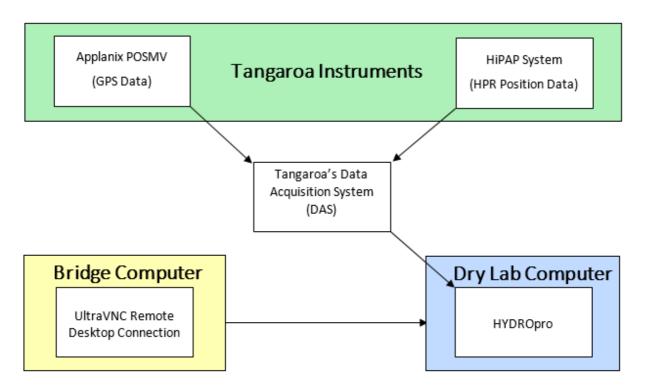


Figure 41: Run-line navigation system setup and information flow lines

Figure 42 shows the graphical user interface of HYDROpro which was used by the hydro dry lab and the bridge. On the right side of the screen important information like ships location, UTC time, ships speed, ships heading, and MCS line information is displayed. Along the bottom of the screen is a large offline bar which was used by the bridge.

The gun position for each shot is needed for the MCS processing. This can be obtained be using the GPS location of the ship and applying an appropriate offset. As no MCS gun tow reference point was calculated in relation to any existing reference points in use on the Tangaroa, measurements were calculated from a schematic drawing relating the known position of the 8200 GPS antenna and the gun tow point. Since the 8200 antenna location is known in relation to other reference points the appropriate offsets could be calculated. The MCS gun position was then calculated 30m behind the gun tow point. Figure 43 shows the offsets used for the MCS gun tow point, 8200 GPS antenna location, and the "new keel reference point" used for the POSMV GPS locations. Please note that these reference points are all calculated using an arbitrary "origin" location which HYDROpro requires. This "origin" location is along the keel of the Tangaroa but has no other meaning and does not refer to any reference point used by the Tangaroa systems.

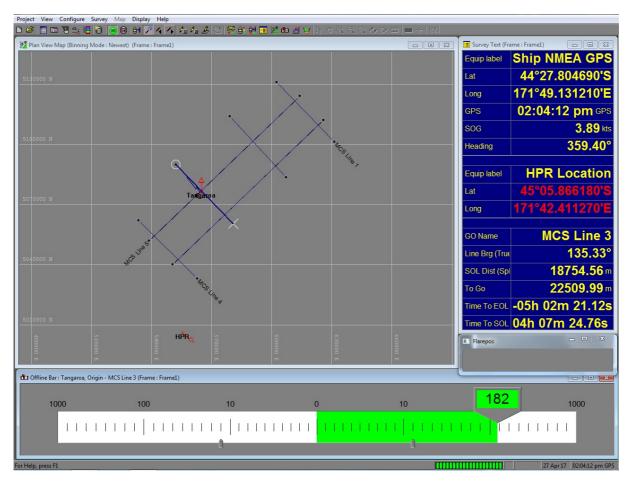


Figure 42: User interface for HYDROpro used for MCS navigation

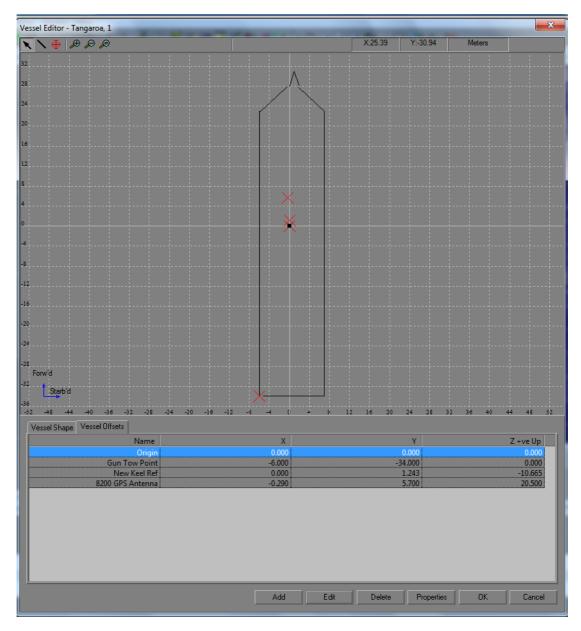


Figure 43: Tangaroa Reference points and Offsets used in HYDROpro

8.6.4 Marine Mammal Observations

Using a single mini GI-gun (13/45 cu inch) the seismic survey falls within the criteria for Level 3 surveys, which are exempt from the provisions of the *Code of Conduct for Minimising Acoustic Disturbance to Marine Mammals from Seismic Survey Operations*, as mandated by the Department of Conservation. Nevertheless, during the daylight hours of seismic operation watch-keepers kept on eye on the water for any marine mammal sightings. There were two sightings of 2-3 Blue or Finn Whales and 1 Sperm Whale during the first seismic survey, both between 1 to 2 miles away (Appendix D).

8.6.5 2D Multichannel Seismic Processing Workflow and Parameters

The following section outlines the on-board data processing workflow for the multichannel seismic reflection data. When the acquisition parameters varied at any stage during data collection, this was noted in the survey logs. This was later accounted for by using appropriate streamer geometry definition files for generating the line geometry.

We carried out the seismic processing using *Globe Claritas*. Python scripts and libraries were used to pre-process navigation data and to convert from geographical to NZTM projected coordinates. The full processing sequence consisted of the following steps:

SEGD to SEGY

SEGD formatted data from individual shots were converted to SEGY data for each entire line. A line was defined by selecting suitable start and end shot point numbers. Source positions in geographic (WGS84) coordinates were extracted from the SEGD headers during the conversion from SEGD to SEGY and were written to text files.

Coordinate conversion

Prior to application of marine geometry and signal processing, the geographic coordinates were transformed into projected NZTM coordinates. The navigation data had sub meter precision. The SEGY standard can only handle integer numbers in the segy headers. Therefore the data was converted into decimetres and written to the seismic headers in this form. The COORD_SCALE parameter was set to -10 in the Claritas work flows.

Define streamer geometry

The streamer geometry was defined from measured offsets between the shot position and the first receiver. The layout of the streamer geometry with respect to the airgun is given in Figure 37. This layout was occasionally changed during the survey as given in Table 9.

Bandpass filtering and spherical divergence corrections

To remove low-frequency swell noise, the data were filtered with a bandpass filter with corner frequencies of 50, 100, 500 and 700 Hz. Figure 9-6 shows examples before and after bandpass filtering. Overall the data quality is excellent with as high signal to noise ratio and well defined wavelet shape.

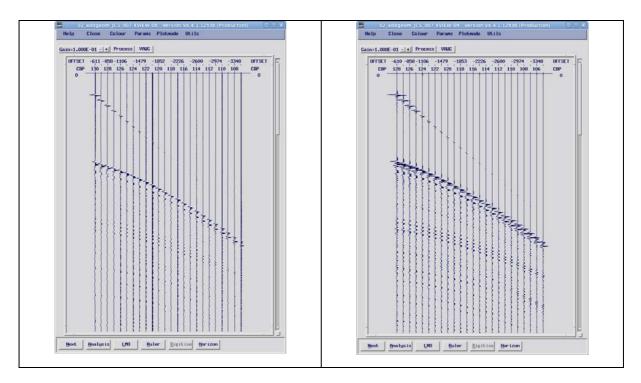


Figure 44: Example shot gathers before and after bandpass filtering to remove swell noise. Filter frequencies of the band pass filter: 50, 100, 500, 700 Hz

CDP binning and sorting

For each line the location of common midpoints and source receiver offsets was determined using the Claritas GEMOETRY tool and later added to the segy data in a Claritas job flow. A crooked line geometry was established for each seismic line from the distribution of shot points. Traces were binned at a 6.25 m Common Depth Point (CDP) spacing along the line, which resulted in a nominal fold of 24 traces per CDP given that each shot gather consisted of 24 channels, spaced 12.5 m apart. The CDP numbers and CDP trace coordinates were written to the trace headers and the data were then sorted into CDP gathers. A bulk static shift of 27 ms was applied to the seismic traces to account for the gun triggering delay.

Normal move-out correction and stacking

A constant velocity (1500 m/s) was used to apply NMO corrections to the CDP gathers prior to stacking. Figure 9-7 shows an excerpt from the stacked section of line 4 to illustrate data quality of the brute stack. An AGC of 250 ms was applied.

								Seisn	nic data zoon	1						-
lp	Close	Parans	Save													
4283	4.62ms	Amp:+0.00	0E+00			Zandia /HO	PCON Pro lack	HOPPON / TON 1	203 HORCON/P	OMMON/DATA/SE	EV/I inst sta	ckod crau				
374	0 3760	780 3800 3	820 38	10 3960 3990	3900 393	and the second sec				and the second second second	and the second se		4280 4300	4320 4340 43	60 4380 4400	0 4420 4440
	0 3100	100 3000 3	OLO JO	10 5000 500			3300 1000 1			110 1110 110	1100 1200	4220 4240 4260	1200 1300	1020 1010 10		tent tent
																100.000
																No.
															encomete e	PERCENT.
	Sec. 1				CONTRACTOR	No. of Concession, Name	_						-			
	-			COLUMN THE R	-	-	and the second	of the second			-	State of the local division of the local div	C. S. Statement	Calledon of the second		-
_	-			-					-		Constant and	∇f	An and the second second		-	
1	1 Case	Carlos and	Stank.	Station of the second	North and	Louis	and the second				1	ALC: ALC	And the second second	- Salar	Count stars	A COLOR
	No.		-	7	Concession of the local division of the loca	and the second	ALC: NOT THE OWNER	and the second second			and the second	- and		-		
	an arts	- Alexandre			and the	2 million	-	- Andrewson and a state of the		And the Party of the	and the second				- Alexandre	
-						And Personnel of Concession, Name	-	Contraction of the			and the second			C. C. C. C. C. C.		10000
- 1	-												der teller	Sand Stall		CALCULATION OF
		-	and the second	departments 1					Contraction of the	5.7	-	and the	Service .	Participant -	and the second	Contraction in
. 1							Contraction of the local division of the loc	2177			Jain					Sec. 1
-		Carline a		North		Contra Land	A DECIMAN	Contraction of the	Complete State		(and	Collins .	- Harris		and a state	COLUMN T
- 1		1 States		A COLOR		ALA CONTRACT			and a street of	-	and the second	and the			ALCONTRACT.	-
	-	Caller-		And a							12 martin					
	1	1		All mill					and and a second		-			- miles		Concession in which the
								Carlo and						-		Concession in which the
		part -			-		Concernance of the second							and the same of	-	
	-			And Street of St				Comparison of	Service and	and the second						2702255
_	-	and the second	-	and the second				w		and the second second		"Charpenter		- John -		
						and the second s										and the
																a State of
115	11.77	-10.09	6	-8.41	-6.73	-5.05	-3.36	-1.68	0.0	1.68	3.36	5:05	- 6-73	8.41	10.000	1.0
		10:05			5115		0100					Contract of the second				
								Close	Rau Cont	rast						

Figure 45: Brute stack example section excerpt featuring bright spots about 50 ms below seafloor typically interpreted to be gas intrusions. A lot of the deeper features (TWT > 150) are likely multiples and peg-lack multiples in this example.

Processed data viewing

SEGY data were imported into the *Kingdom Suite* software for subsequent viewing. CDP location coordinates were set in the SOURCE_X and SOURCE_Y headers for compatibility with *Kingdom Suite*. A scaling factor of 0.01 has to be applied to scale to NZTM meters.

8.7 K-Sync Unit

The Kongsberg K-Sync unit provides synchronisation between the various echo-sounders used on TAN1703 to avoid interference between sounders of similar frequencies. Echosounders that do not affect each other can be placed in groups. For TAN1703 only 2 sounders were in operation at a time and each had a different time slice assigned. An example of typical shot-synchronisation periods in 200 m of water were as follows: EM2040 MBES (0.5 s), TOPAS SBP (0.3) and ES60 single-beam echo-sounder (0.3 s, fixed, and an additional 100 ms delay in water depths more than 200m).

8.8 Sediment Coring and Geochemistry

Coring was carried out using NIWA's in-house, purpose-built piston coring system (Figure 46). The corer is deployed through the starboard cutaway using a railway trolley system. The corer is then lifted over the side with the A-Frame and deployed on the deep ocean winch, fitted with 16 mm-diameter steel wire.

8.8.1 Piston Corer Setup and Operation

The corer comprises a steel framework supporting a lead-filled, stainless steel, spiral-welded pipe ~35 cm diameter x 920 mm in length, and weighing about 725 kg. More weights can be

added in 35 kg increments, up to a total of about 1200 kg. Barrels made from Schedule 40 seamless line pipe (outside diameter (OD) of 88.9 mm and a 5.49 mm wall thickness) are attached to the lower end of the head using 12 mm bolts. The barrels are available in three lengths (4 m, 3 m, or 2 m) and are joined using a sleeve secured with 12 mm bolts that locate in holes drilled at each end of the barrels. A stainless steel core catcher is fitted inside the lower end of the core liner and a core cutter is attached to the lower end of the barrel again using 12 mm bolts.

During TAN1703, polypropylene core liners (73 mm OD, 3 mm wall thickness) were placed inside the barrel and were cut to length using a fine toothed hand-saw. A solid stainless steel piston was connected to the end of a 14 mm diameter, 6x31 galvanized steel piston strop. The piston strop length was matched to the barrel length and the desired free-fall distance (usually 3 m). The trigger strop length was set to that required for the desired free-fall and a 60 kg lead trip weight was attached.

Accurate positioning of the core location is achieved using the ship's Kongsberg HiPAP system. For the deeper cores, a beacon was attached approximately 30 m up the wire from the top of the core head. A beacon was not used for the shallow cores.

8.8.2 Corer Configuration for TAN1703

The basic corer configuration used during TAN1703 was the standard core head with a 6 m barrel (1 x 4 m, and 1 x 2m length) with the beacon attached to the wire. Difficulties were encountered with core recovery at all shallow shelf sites due to the sediment being mainly coarse sand or eroded strata. The core configuration was changed to a gravity core with a 3 m barrel and seven 35 kg extra weights added to the head bringing the total head weight up to about 955 kg. However no useable cores were recovered using this configuration. Attempts were also made to use a 3 m piston core in this sediment type but only one useable core of about 1.8 m was recovered.

Coring operations were then moved into deeper water and piston cores with a 6 m barrel were used with 955 kg of weight. This configuration was successful in recovering four cores ranging from 4-6 m in length. The configuration was changed back to a piston core with a 3 m barrel for the final few cores on the shelf but no sediment was recovered from these sites.

Figure 46: NIWA Piston Corer configuration and deployment procedures

8.8.3 Sediment Core Sampling Procedure

Recovered core material was taken directly from the coring system and capped and taped. The cores were cut into 1 m long sections starting from the top and the recapped and taped. All sections were then labelled top and bottom and the station and core number. Any material in the core catcher was bagged and retained.

The lowermost 1m sections were taken to the temperature controlled lab for pore water extraction. All other sections and core catcher samples were stored in a refrigerated space.

8.8.4 On-board Laboratory Analyses

Pore water sampling

The core sections were transferred to the temperature controlled lab (temperature constantly kept between 5 and 7°C) and the pore water was extracted from the whole ground liner using rhizon samplers (Dickens et al, 2007). Before use, the rhizons were placed in a beaker with DI water. A standard 3.8 mm diameter drill bit was used to drill a hole in the plastic liner. A spacer on the drill bit prevented it from going into the core material. A rhizon sampler was carefully pushed into the sediment and connected to a 20 mL disposable syringe. Vacuum was established by pulling the syringe plunger and keeping it open with a wooden spacer. After a few minutes, the syringes were taken off and the first 1 mL of sample was discarded. The vacuum was then reattached and sampling continued until either the syringe was filled or sampling was stopped. For further subsampling and measurements a total amount of 30 mL was required for each sample, thus two extraction-runs were needed. At sample volumes over 15 mL (or after a reasonable time) the vacuum was released, the pore water was stored in a scintillation vial and the syringe was attached for the second run (sometimes overnight in a 5°C refrigerated room). The pore water flow was medium to good, so that most sample volumes (both runs, ~37 mL) were sampled after a maximum of six hours. The pore water from both runs was mixed to a master sample and sample splits were taken from this pool. Filtering was not necessary because the maximum pore width of the rhizons is 0.2 µm (thus the samples are sterile filtrated).

Adjustable pipettes (Eppendorf 2500 μ L, Eppendorf 1000 μ L, Eppendorf 200 μ L) were used to transfer the sample from the pool to the splits for isotopes, cations, anions and DIC. The latter was preserved with 90 μ L saturated copper sulfate solution (>25g CuSO4*5H2O in 100 mL MQ water).

All samples and sample splits were labelled with core information, a sequential sample number and the sample split (**TAN1703** - "station number" - **P** "sequential sample number" and sample split). Table 10 summarizes the core sampling approach.

A detailed core sampling table is provided in Appendix F.

sequence	1	2	3	4	5	6	7
split	δ18O	δ2Η	DIC	anions	cations	residual of master sample	measurements pH, temperature, DO, conductivity
analysis	onshore	onshore	onshore	onshore	onshore	backup	offshore
CTD amount / type	~4.7 mL	~1.85 mL	9 mL	4 mL	4 mL	~4 - ~20 mL	~7 mL
preserve	very small headspace, sealed with tape, dark & refrigerated	very small headspace, sealed with tape, dark & refrigerated	0.09 mL CuSO4, dark & refrigerated	dark & refrigerat ed	dark &room temp	dark & refrigerated	-
vial	4 mL twist cap glass vial	1.5 mL twist cap plastic vial	9 mL crimp cap glass vial	4 mL twist cap glass vial	4 mL twist cap glass vial	Scintillation vial PP 20ml	-
TAN1703-08	5x	5x	4x	5x	5x	5x	yes
TAN1703-26	5x	5x	4x	5x	5x	5x	yes
TAN1703-28	18x	18x	11x	18x	18x	18x	yes
TAN1703-29	13x	13x	10x	13x	13x	13x	yes
TAN1703-30	17x	17x	11x	17x	17x	17x	yes
TAN1703-31	12x	12x	7x	12x	12x	12x	yes
TAN1703-32	2x	2x	0	2x	2x	2x	yes

8.9 CTD

CTD data acquisition instrumentation combined a Seabird Electronics Inc. (SBE) 911plus CTD and a 24 x 10-litre SBE 32 Carousel water sampler. The CTD sensor configuration consisted of TC-ducted primary temperature and conductivity (SBE 3plus and SBE4, respectively), and primary dissolved-oxygen (SBE 43), plumbed horizontally and pumped by a SBE 5T pump; TC-ducted secondary temperature and conductivity (SBE 3plus and SBE 4), and secondary dissolved-oxygen (SBE 43), plumbed horizontally and pumped by a second SBE 5T pump; pressure (Digiquartz); a single fluorometer (Seapoint SCF); a single transmissometer (Wetlabs C-Star 25-cm Red); solar photosynthetically active radiation (PAR) (Biospherical Instruments QCP-2300L-HP); and sonar altitude (Tritech PA500/6K8). The instruments and their calibration dates are shown in Table 11.

Instrument	Model	Calibration date			
Primary Temperature	SBE 3Plus	4 Mar 2017			
Primary Conductivity	SBE 4	8 Mar 2017			
Secondary Temperature	SBE 3Plus	8 Mar 2017			
Secondary Conductivity	SBE 4	8 Mar 2017			
Primary Dissolved Oxygen	SBE 43	18 Mar 2017			
Pressure	Digiquartz	02 Jun 2014			
Fluorometer	Seapoint SCF 2972				
Wetlabs C-Star 2cm red transmissometer	CST1493-DR	16 Nov 2011			
sonar altimeter	Tritech PA500/6K8				
PAR sensor	Biosherical Instrume	Biosherical Instruments			

Table 11: CTD instruments and their calibration dates ((where available)
	(Where available)

The exact instrument and sensor configuration, including sensor type, serial number and calibration coefficients, for each station were specified in the corresponding .xmlcon file. The water sampler carried 24 10-litre external-spring Niskin-type bottles (Ocean Test Equipment Standard 10 BES). Data acquisition software was SBE Seasave Version 7.22.3.

The raw CTD dataset was stored in directories under the top-level directory ctd3225. The time series of raw sensor outputs for any station u88nn cast 1, filename u88nna1, was stored in the corresponding .hex file: ctd3225\raw\u88nn\u88nn\u88nna1.hex. Other files created by the data acquisition software (a .xmlcon file, a .hdr file and a .bl file) were also stored in the same directory (ctd3225\raw\u88nn\).

CTD3225 (TAN1703, MARCAN) occupied 27 stations, named u8861 to u8887. The first seven casts were made by towing the CTD at between 2 and 5 m above the bottom at a ship speed of about 1.5 knots. This was an attempt to target the many flare positions identified in the EM2040 water column data to see if the flares were freshwater. Note that the files u8862– u8864 were all recorded on the same tow. The files were stopped and restarted without bringing the CTD back on-board at about 4 hour intervals in case the data was lost. The towed deployments were files u8861–u8867.

The remainder of the casts (u8868 onwards) were standard vertical casts with bottles fired either at the bottom or at any depth where low salinity water was detected.

The performance of all instrumentation was within nominal limits. The CTD routine 'process_one' creates a rosette file (*.ros) for each cast where bottles are fired. Because the data frequency is so high (24 Hz), the files produced contain the data from 48 scans around the presumed bottle closing time. The data from the 48 scans for each bottle fired was averaged and is included in Appendix G.

8.9.1 CTD water sampling and on-board laboratory analyses

Water column water samples were collected from Niskin bottles. Immediately after the CTD returned on deck, the drawtube (stored in a container of fresh seawater) was pre-rinsed with sample water and attached to the Niskin bottle's spigot. The temperature probe was pre-rinsed

with sample water followed by the flask and the stopper for the DO water (3 rinses). The flask was then filled and overflowed, avoiding the formation of air bubbles. During the overflow the temperature probe was inserted and the oxygen draw temperature was measured after a threefold overflow of the flask volume was ensured. With the sample water still flowing, the temperature probe and the drawtube were removed. The sample (significantly filled above the neck) was taken to the Hydro wet lab, where 1mL of each reagent #1 (MnCl2, first) and reagent #2 (Nal/NaOH, second) were added to the sample as close to the bottom of the flask as possible. The formation of air bubbles in the dispensers as well as during the closure of the flask was avoided. The flask was well shook to allow a mixing of the reagents with the sample water. A second shake was given after 20-30 minutes before the neck was filled with DI water. The flask was stored in the dark.

For the DIC sample the Schott bottle and the cap were pre-rinsed (3 times) and filled ensuring a 1.5 overflow and the avoiding of formation of air bubbles. A headspace of ~1cm was created and one drop of saturated HgCl2 was added to the sample in the chemical lab. The sample was stored dark and refrigerated.

Another Schott bottle was taken for the subsamples and the measurements in the same way as the DIC sample was taken, but without headspace. This sample was then taken to the temperature controlled lab. For the splits the required amount of sample was filtered through 0.2 μ m one way filter attached to a disposable syringe. The first mL was discarded. Sample splits for isotope analyses were taken directly from the filters, splits for anions and cations (pipetted with adjustable pipette, Eppendorf 2500 μ L) as well as the volumes for further measurements (pH and conductivity) were taken from a scintillation vial filled with the filtered sample water. The remaining unfiltered sample was stored refrigerated and dark as backup. All samples and sample splits were labelled with CTD information, a sequential sample number and the sample split (**TAN1703** - "station number" - **C** "sequential sample number" and sample split). Table 12 summarizes the splitting scheme and preservation for all samples by CTD station. Further sampling details are included in Appendix H.

Water measurements

Except of the measurement for the oxygen draw temperature, all other measurements were carried out in the temperature controlled lab (temperature constantly kept between 5 and 7 °C). The former was performed on deck at ambient temperature conditions.

pH value

The pH value was measured with a WTW SenTix 41 glass electrode, connected to a WTW pH 3210 pH meter. The pH meter was calibrated prior to a measurement interval using AppliChem color coded NBS scale pH buffer solutions (pH = 4.01 and 7.00). Slope and offset of the sensor were recorded. The instrument shows the pH with a resolution of 0.001 pH units. The measurement has an accuracy of better than ± 0.02 pH units.

Temperature

The temperature was measured simultaneously with the pH measurement for the pore water samples and during the DO sampling for the water column water samples by using the same probe and meter as already mentioned in the pH value section above. The integrated temperature sensor has a resolution of 0.1 °C and the accuracy of the measurement is ± 0.1 °C.

Dissolved Oxygen value

The DO value of the pore water samples was determined by a luminescent dissolved oxygen (IntelliCALTM LDO101) probe, connected to a Hach HQ30d portable single input, multi-parameter meter. Calibration was carried out before each measurement interval using tab water for a water-saturated air (100%) calibration procedure. Slope and offset of the sensor were recorded. DO values are measured with a resolution of 0.01 mg/L and an accuracy of ± 0.1 mg/L for 0 to 8 mg/L and ± 0.2 mg/L for > 8 mg/L.

Conductivity value

The conductivity was measured with a conductivity (IntelliCALTM CDC401) probe, connected to a Hach HQ30d portable single input, multi-parameter meter. Calibration was carried out prior to each measurement interval using a seawater standard (IAPSO). The value for the cell constant (K) of the electrode was recorded. The resolution of the conductivity values is 0.1 μ S/cm (for values between 20.0 and 199.9 μ S/cm) and the accuracy of ±0.5% of the reading.

Pure water

DI water was brought to the vessel in two 20 L carboys and was used for the preparation of rhizons as well as for the cleaning of the probes after each sample measurement.

sequence	1	2	3	4	5	6	7	8
split	DO	measuremen t temperature	DIC	isotopes δ18O and δ2H	anions	cations	residual of master sample	measurem ents pH, conductivit y
analysis	onshore	offshore	onshore	onshore	onshore	onshore	backup	offshore
CTD amount / type	~125 mL	sample draw temp	~280 mL	~4.7 mL each	4 mL	4 mL	~280 mL	~10 mL
preserved	1 mL MnCl2 and 1 mL Nal/NaOH, DI water in bottle neck, stored dark	-	1 drop satur. HgCl2, dark & refrigerate d	very small headspace , sealed with tape, dark & refrigerate d	dark & refrigera ted	dark &room temp	dark & refrigera ted	-
vial	125 mL PYREX flask	-	250 mL Schott bottle	4 mL twist cap vial	4 mL twist cap vial	4 mL twist cap vial	250 mL Schott bottle	-
TAN1703-01	2x	yes	2x	4x	1x	1x	1x	yes
TAN1703-05	2x	yes	2x	4x	1x	1x	1x	yes
TAN1703-06	2x	yes	2x	4x	1x	1x	0	yes
TAN1703-07	2x	yes	2x	4x	1x	1x	1x	yes
TAN1703-13	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-14	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-15	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-16	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-17	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-18	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-19	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-20	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-21	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-22	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-34	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-35	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-36	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-37	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-38	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-39	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-40	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-41	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-42	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-43	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-44	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-45	1x	yes	1x	2x	1x	1x	1x	yes
TAN1703-46	1x	yes	1x	2x	1x	1x	1x	yes

Table 12: division and preservation se	cheme for CTD samples
--	-----------------------

8.10 Coast Cam

The Coast Cam is NIWAs in-house built shallow water (<350 m) towed camera system (Figure 47). It uses NIWA Deep Towed Imaging System (DTIS) software to remotely control a 12

MegaPixel Canon EOS 540 SLR and a Sony AVC HD hybrid HDD handy Cam. The SLR camera fires two 580EX2 flashes via an ST-E2 speedlite transmitter. A controller inside the camera housing fires the camera automatically at a preselected interval. On TAN1703 we used a 15 second interval. The HD video records to an internal HDD and a SD feed is monitored via an on deck monitor. The main LiPo 22 volt battery on the coast cam gives approximately a two hour battery life before the system needs to be retrieved and have the batteries replaced.

Figure 47: NIWA CoastCam

Coast Cam was deployed using its dedicated winch and controller. The winch was secured to the coring railway and the winch cable fed through a block on the starboard cut away A frame. HYDROpro navigation was used to record time of deployment, ships position and Hipap beacon position.

An issue with the winch slip-rings meant that when the winch was driving the modem connection was lost and would reconnect once the winch had stopped. As a result we were not able to maintain the camera to a constant 1M above the seafloor.

9 **Preliminary results**

The following sections provide preliminary results from the data as analysed during the TAN1703 voyage. The intention is to provide an overview of data quality and to highlight features of interest rather than provide a comprehensive interpretation and correlation of the datasets. All interpretations presented here are subject to change and refinement with further analysis.

9.1 Controlled Source Electromagnetics

Preliminary analysis was carried out for the CSEM data to assess whether it delivers realistic resistivity models. We compare a preliminary inversion model to logging data and observations at the IODP site U1353 (Figure 1). Figure 48 shows the inversion model and corresponding data fit to the transients at weigh point 15 on CSEM-2, which is close to IODP Hole U1353C. While the inversion model may only be considered quantitatively due to first order data processing, the results suggest bulk part resistivity values which are on the same order of magnitude as observed in borehole below 100 m depth (Figure 49 left panel). The existence of a high resistivity zone with a top above 100 m corresponds to the observation of a fresh water aquifer in the IODP borehole (Figure 49 right panel). There is a disagreement in the depth of the aquifer however, which is predicted to be around 50 m at U1353C according to drill hole data, while slightly greater depths are predicted by the preliminary CSEM inversion. Clearly this is a very preliminary look at the data and further more thorough analysis will refine the model understanding significantly.

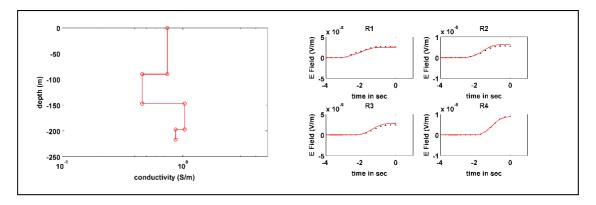


Figure 48: Inversion conductivity model (left panel) obtained by fitting data for receiver 1 to 4 at weigh point 15 on Line 2 in the vicinity of the IODP borehole 15353. Right panel shows the observed data from CSEM-2 (black) compared to the responses to the inversion model (red).

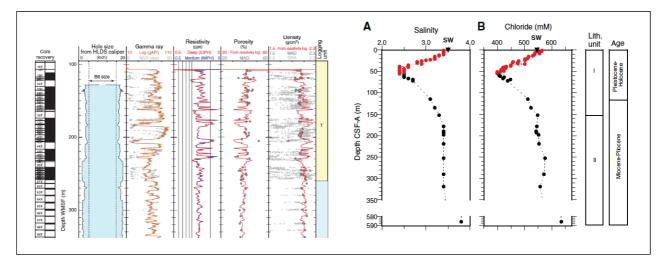


Figure 49: IODP wire line logging data in hole U1353C and salinity and chloride values in holes U1353A (black) and U1353B (red).

9.2 Multichannel Seismic Reflection Data



Figure 50: Example multichannel seismic profile from Line-4. bright (high amplitude) regions just below the seafloor likely indicate shallow gas.

0.36 --0.17641005100_00 --0.17641005100_00 --0.17641005100_00 0.376 -0.37641005100_00 --0.17641005100_00 --0.17641005100_00 0.376 -0.37641005100_00 --0.17641005100_00 --0.17641005100_00 0.376 -0.37641005100_00 --0.17641005100_00 --0.17641005100_00 0.376 -0.37641005100_00 --0.17641005100_00 --0.17641005100_00 0.376 -0.37641005100_00 --0.17641005100_00 --0.17641005100_00 0.376 -0.37641005100_00 --0.17641005100_00 --0.17641005100_00 0.376 -0.37641005100_00 --0.17641005100_00 --0.17641005100_00 0.376 -0.37641005100_00 --0.17641005100_00 --0.17641005100_00 0.376 -0.37641005100_00 --0.17641005100_00 --0.17641005100_00 0.376 -0.37641005100_00 --0.17641005100_00 --0.17641005100_00 0.376 -0.37641005100_00 --0.17641005100_00 --0.17641005100_00 0.376 -0.37641005100_00 --0.17641005100_00 --0.17641005100_00 0.376 -0.37641005 --0.17641005 --0.17641005 0.376 -0.37641005 --0.17641005 --0.17641005 0.376 -0.37641005 --0.17641005 --0.17641005-

9.3 TOPAS Sub-Bottom Profiler

Figure 51; TOPAS line across southern shelf illustrating post glacial sediment drape. Location of IODP drill hole shown by vertical dash line We were able to collect one successful core in this drape despite several attempts. Beneath the drape erosional and depositional stratigraphy relating to the fluvial history of the shelf is clearly evident.

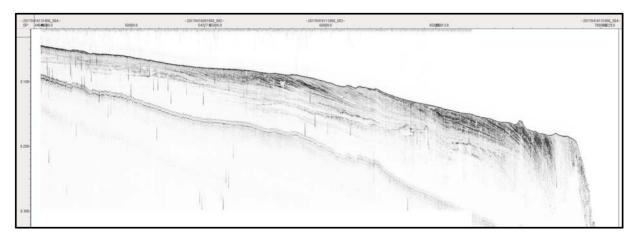


Figure 52: TOPAS line across northern shelf illustrating eroded surface with no post glacial drape. No coring was possible in these sedments

9.4 EM2040 water column data

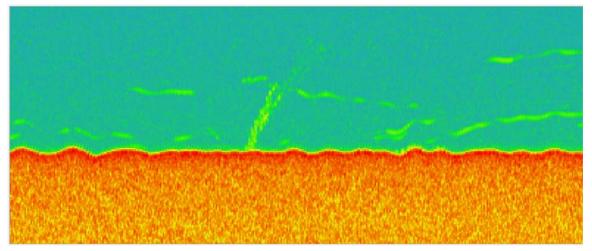


Figure 53: Water column flare (sub-vertical feature in centre of profile). Feature is characteristic of gas flares observed in other regions of New Zealand's East Coast.

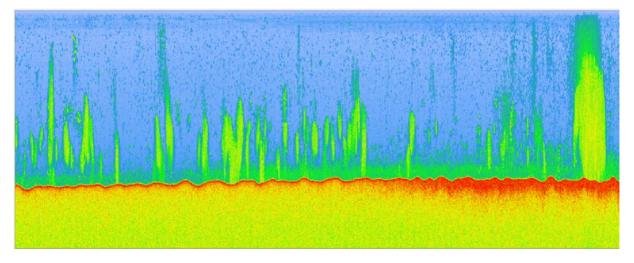
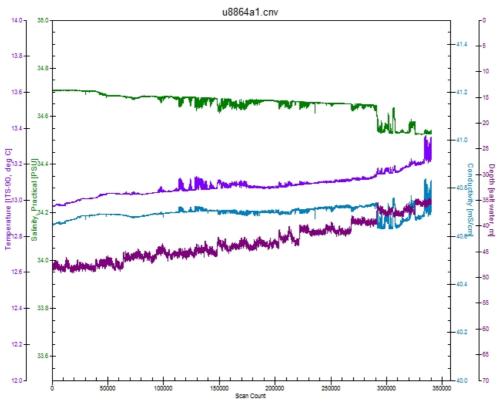



Figure 54: Water column features imaged in a region where CTD observations show a region of low salinity

9.5 CTD data

Figure 55: Towed CTD plot from the NIWA CTD and Nisken rosette. Measurements are taken approximately 5m above the seabed. Note marked change in salinity readings towards end of line that does not correlate with a temperature change. The water column image in Figure 54 is from this region.

9.5.1 GEOMAR CTD

The pig-mounted towed CTD data are illustrated by 3D scatter plots of conductivity as a function of location and depth for each profile (Figure 56). There is a general trend to be observed between depth and conductivity. This is due to the fact that the temperature generally decreases with depth, and temperature decrease causes a reduction in electrical conductivity at the same salinity (see Figure 18 from EM report). Next to the general trend, some more local variations exist though. E.g. along Line 8, a major decrease in conductivity is observed without a larger change of depth. Assuming that there is not larger temperature variations at such a small scale, it suggests that the decrease in conductivity may be attributed to a decrease in salinity. However, whether the decrease in salinity is due to ground water discharge or may be attributed to small scale currents of fresher coastal water may not be derived from the data.

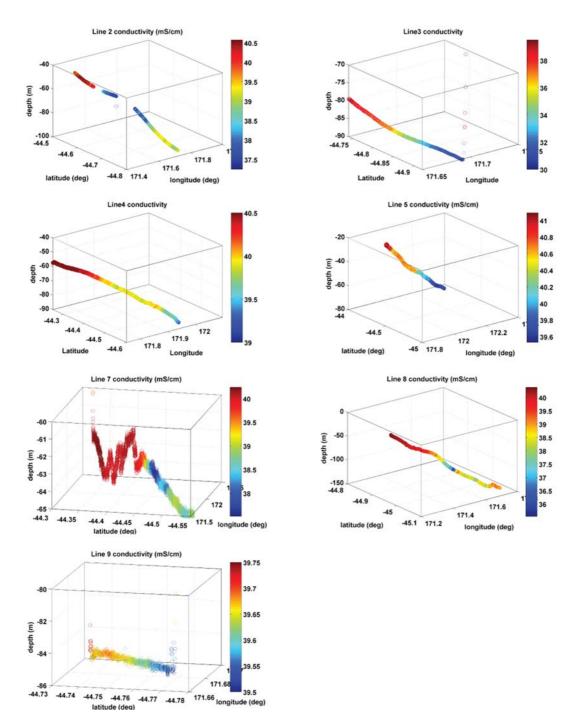


Figure 56: Towed CTD conductivity as a function of depth and position for Line 2 to Line9. Note different colour scale for each Line.

To investigate the relationship between conductivity, depth and temperature further and to identify possible anomalies we have plotted these parameters for all lines (Figure 57). The observed relationship between conductivity and temperature primarily follows a linear trend. However some anomalies may be observed, particularly along the southern most profiles. In an attempt to identify these regions we defined visually a linear relationship between temperature and conductivity (upper panel Figure 58). We then determined the difference between the observed conductivity and the conductivity predicted based on the concurrent observed temperature measurement (lower panel Figure 58). Figure 59 shows the

measurement points, for which the predicted conductivity is smaller than a threshold value set to -1.25 mS/cm. Particularly strong anomalies are identified by this analysis mainly in the southern regions and along borehole 1353. While this analysis identifies local anomalies, it is not, however, able to identify the cause of the anomalies.

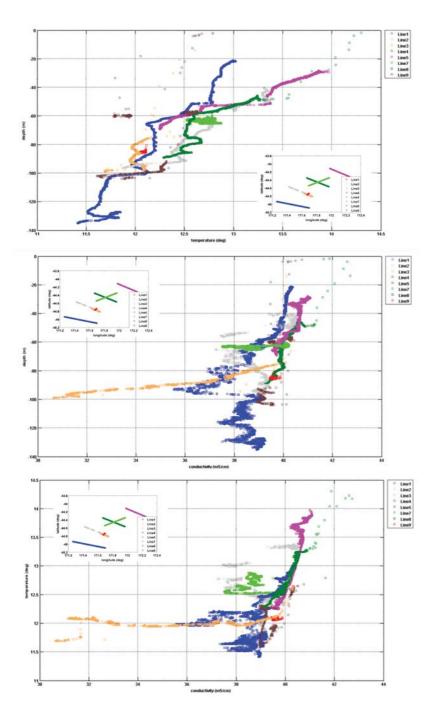


Figure 57: Graphs of observed relationship between conductivity, temperature and depth for towed CTD along all profile lines.

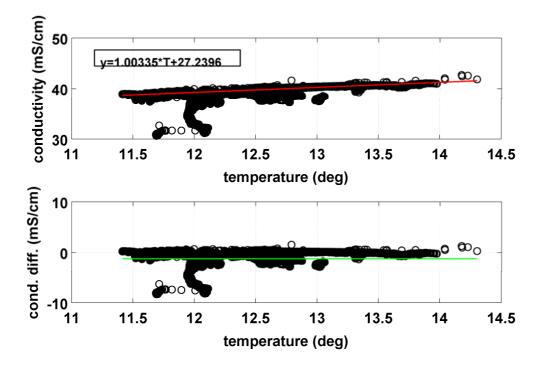


Figure 58: Upper panel: Observed temperature values against observed conductivity for all Lines. Red line denotes a visually defined linear relationship of temperature versus conductivity, which is obeyed by most points. Lower panel: Difference in conductivity predicted based on observed temperature and observed temperature. Green line identifies threshold values of -1.25

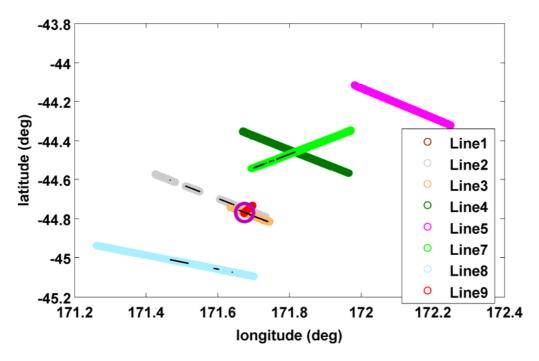


Figure 59: Profile lines and ctd anomalies (>-1.25 mS/cm) shown as black dots. The large pink circle denotes the position of U1353.

9.6 Coast Cam

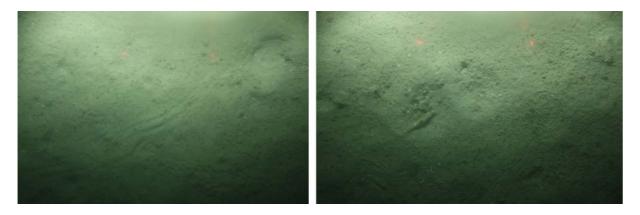


Figure 60: Coastcam photos showing generally muddy seabed with scattered fauna and trace marks indicating faunal perambulation

10 Acknowledgements

Funding for RV *Tangaroa* was from the New Zealand Ministry of Business, Innovation and Employment (MBIE) through the Tangaroa Reference Group (TRG).

Scientific personnel and equipment were funded by European Research Council (ERC) Grant 677898 as part of the MARCAN project.

Appendix A TAN1703 Daily Activity Log

7/4/17

Scheduled departure of 0900 hrs pushed out to 1100 hrs 1130 hrs Away from wharf Abandon ship drill carried out in the harbour Proceed out of heads into heavy sea (6-8 m swells) Transit to Kaikoura for multibeam survey, arrive 2330 hrs

8/4/17

Issues with Camera Winch delayed SVP to 0530 hrs 0600 hrs Commence EM302 survey of Kaikoura Canyon at 1600 hrs completed swath mapping and commence transit to main study area

9/4/17

0810 hrs on site for first CSEM deployment

1030 hrs Toolbox covering SOP and JHA for CSEM then commence CSEM deployment

1400 hrs having issue with CSEM pig so recover back onboard for maintenance

1745 hrs pig redeployed but still issues remaining with synchronisation and HDP feed

2000 hrs commence CSEM recovery

2110 hrs CSEM system on board

2130 hrs transit to ship wreck of Jubilee for EM2040 patch test

10/4/17

0800 hrs EM2040 patch test complete. Attempted drone flight following discussion of SOP but drone flight aborted after impact with ship railing on takeoff. 0830 hrs commence EM2040 transect across shelf

11/4/17

1000 hrs commence CSEM redeployment 1130 hrs CSEM pig deployed and commence survey

12/41/7

0930 hrs commence CSEM recovery
1030 hrs CSEM recovery complete and commence water column acoustic survey
1400 hrs CTD deployment for towed transect
1600 hrs CTD recovered
1730 hrs Coring Toolbox covering SOP and JHA
1820 hrs deploy piston corer
2030 hrs no core recovery from 3 attempts. Heading to acoustic survey through the night

13/4/17 1030 hrs deploy CSEM 2300 weather degrading likely will need to recover gear

14/4/17 0000 hrs weather degraded to the point where gear recovery required. First mate made the call and CSEM recovery commenced 0130 hrs CSEM on board. Moving to acoustics survey 0630 hrs commence CTD survey to run through the night

15/4/17 0800 hrs Recover CTD Transit to start of CSEM line-3 1115 hrs CSEM deployed 1200 hrs identified issue with pig CSEM recovered 1446 hrs CSEM in the water and running. Ship DP system playing up a bit

16/4/17

1330 hrs CSEM recovered 1345 hrs deploy SVP in advance of acoustics survey 1400 hrs commence acoustics survey

17/4/170830 CSEM toolbox0900 hrs Acoustics complete. Ship commencing DP trials.1000 hrs Commence CSEM deployment1130 hrs CSEM in water and running

18/4/17 1230 hrs Commence CSEM recovery 1530 hrs Deploy CTD for towed surveys 2330 hrs completed CTD deployments

19/4/17

0000 hrs Deploy Coastcam 0700 hrs Coastcam deployment completed moving to CSEM start 1230 hrs commence CSEM deployment following delays due to technical issues 1400 hrs gear in the water and running 2015 hrs Wind up to 30 kts sustained. Required to recover gear. 2130 hrs CSEM onboard and transit to coring stations 2230 hrs Commence coring

20/4/17

0730 hrs meet with Port Timaru pilot0800 hrs alongside wharf. Delayed ETD due to arrival of batteries for CSEM1430 hrs Depart port1630 hrs onsite for CTD deployment

21/4/17
0000 hrs finish coring. Very poor recovery.
0015 hrs Commence TOPAS survey
0700 hrs Finish TOPAS survey and transit to MCS deployment location
0900 hrs Commence MCS gear deployment
1100 hrs MCS gear deployed and running
1545 hrs loose belts on compressor. Fixed by engineers

22/4/17

0930 hrs Large amount of seaweed on tail buoy. Recover to remove seaweed. Tail buoy flipped and GPS unit flooded.

Lots of seaweed in water requiring minor course diversions

23/4/17

0200 hrs recover first section to change out front bird as non responsive 1600 hrs pull streamer out of water to remove seaweed

24/4/17

1400 hrs EOL for seismic survey commence gear recovery
1500 hrs Seismic gear onboard and moving to CSEM deployment start
1830 hrs CSEM deployed and running
1912 hrs adjust station interval to 1000 m to optimise coverage

25/4/17

1600 hrs recover CSEM 2100 hrs on station for coring

26/4/17

0600 hrs coring complete. Commence Acoustic surveying to CSEm deployment start at 1030 hrs

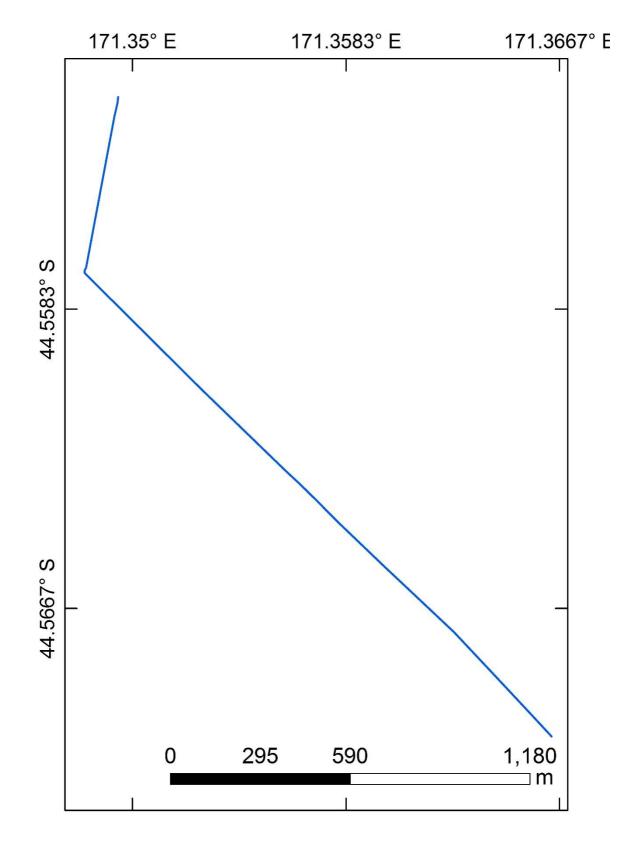
1145 hrs CSEM in water and running

27/4/17 1030 hrs Commence CSEM recovery 1130 hrs transiting to CTD sites

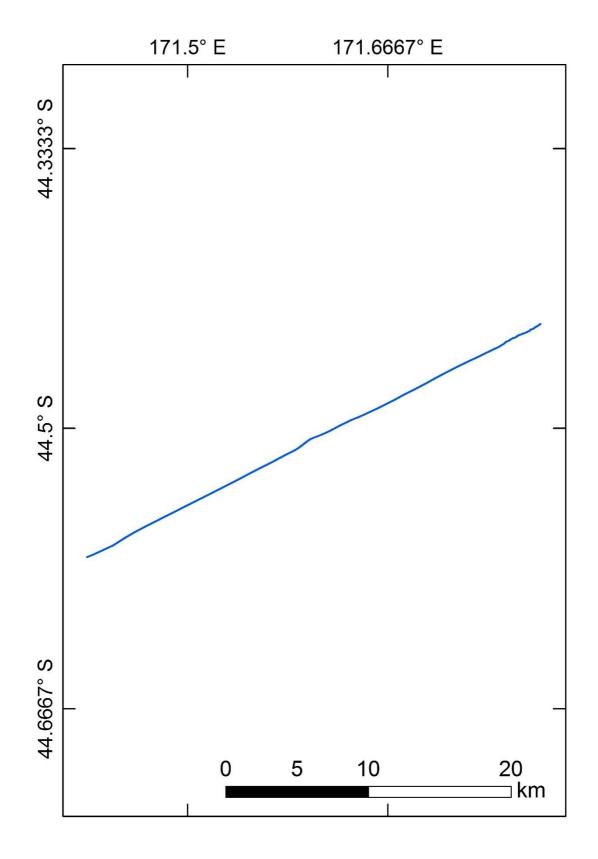
28/4/17

0230 hrs completed CTDs 0630 hrs Transit to CSEM start 0900 hrs onsite for CSEM and deploy receiver string. Wind gusting 45 kt NE. Master call to abort deployment and recover receiver string 1030 hrs Shift to acoustics survey and wait for weather to ease as forecast 1400 hrs Return to CSEM deployment site for weather assessment. Wind now 30 kt from south. Hold for easing 1900 hrs Deploy CSEM 2330 hrs CSEM communication fault. Recover gear and terminate CSEM surveying for trip

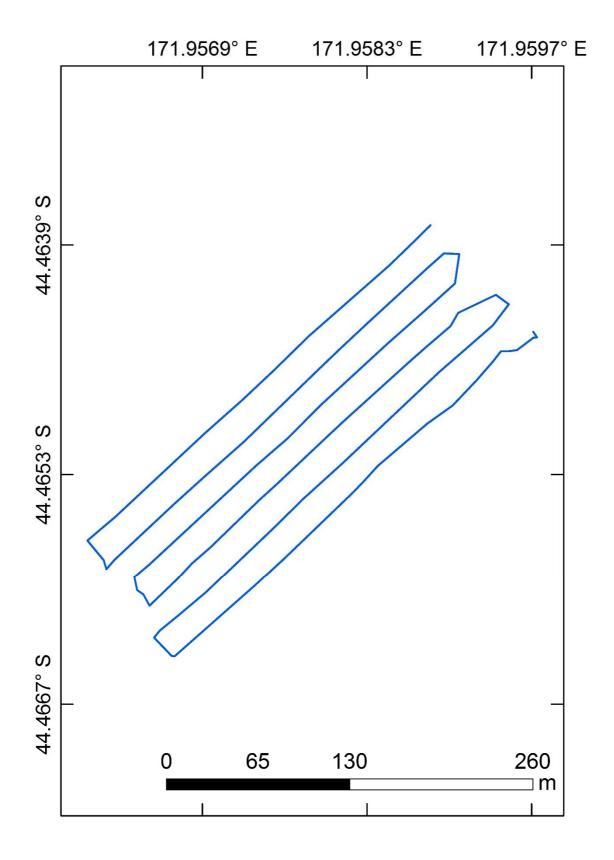
29/4/17

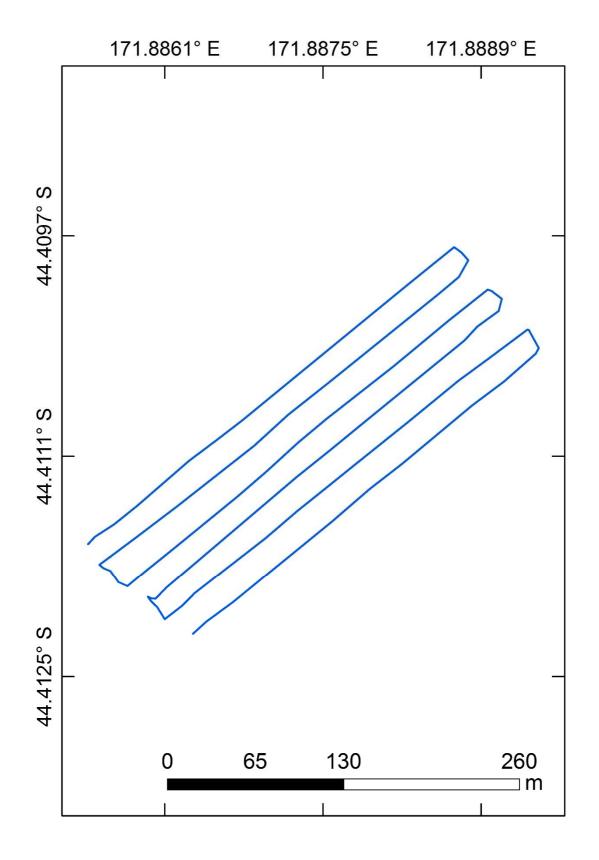

0030 hrs move to acoustic mapping 0750 hrs on site for MCS deployment 0850 hrs commence seismic deployment 0920 hrs Seismic system running

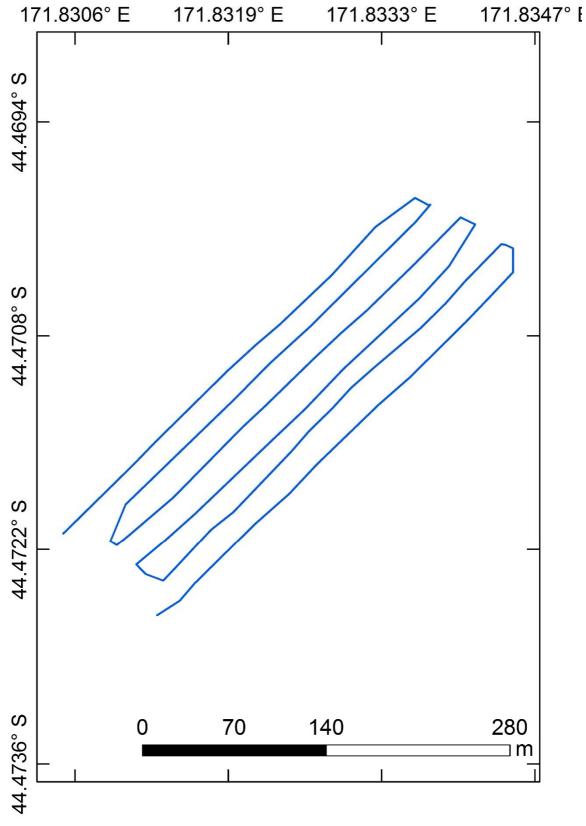
30/4/17


0120 hrs completed seismic survey and recovering equipment 0200 hrs seismic equipment onboard and commence transit to Wellington

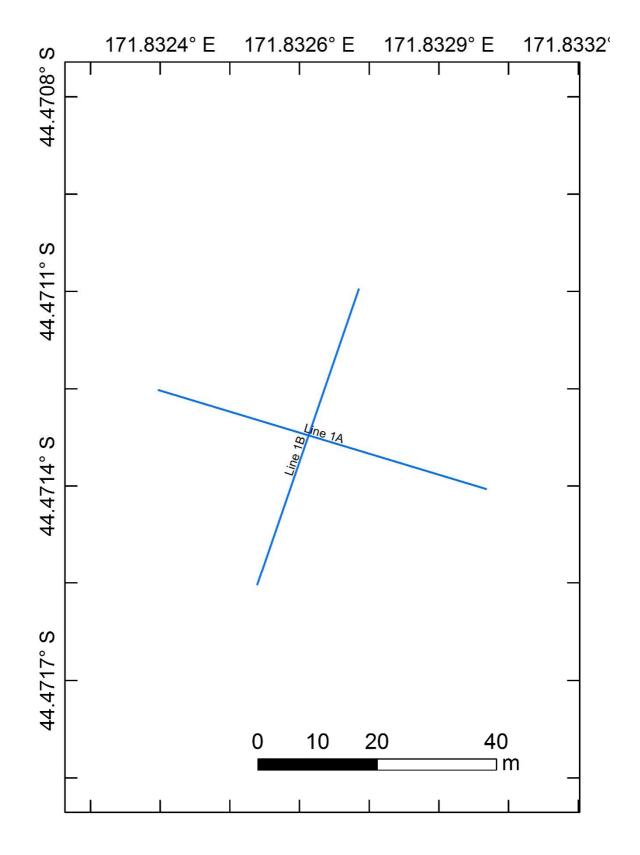
31/4/17 0800 hrs Scheduled to meet pilot at Wellington Heads


Appendix B Detailed maps of CTD tows

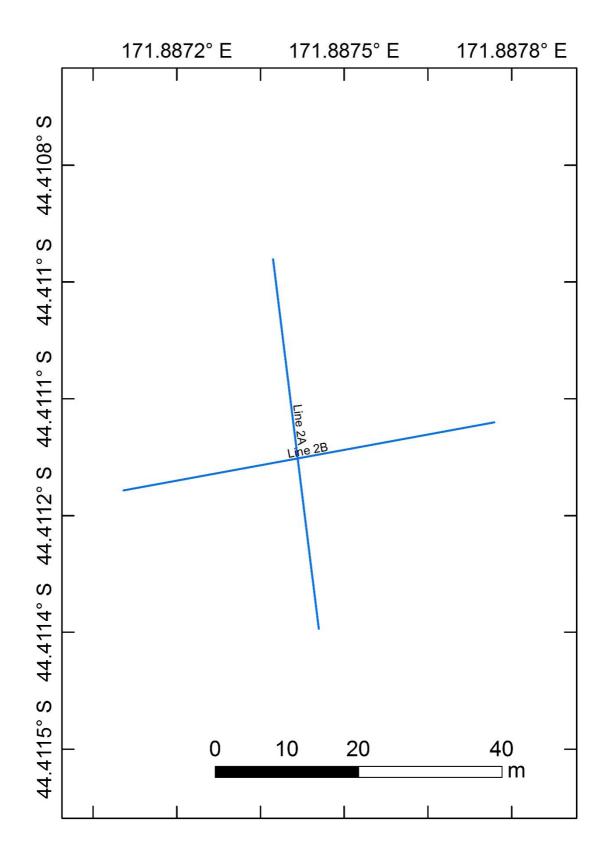

CTD Tow 1


CTD Tow 2

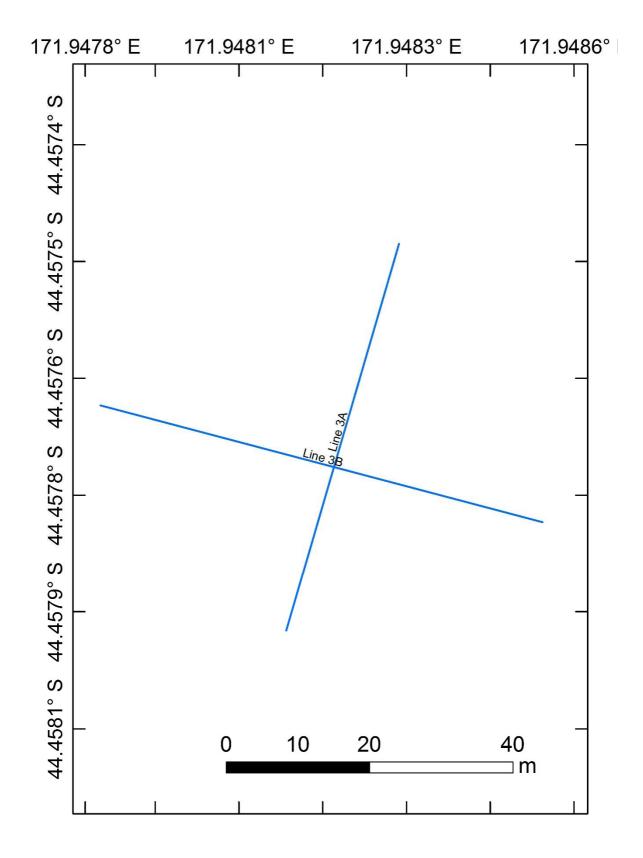
CTD Tow 3

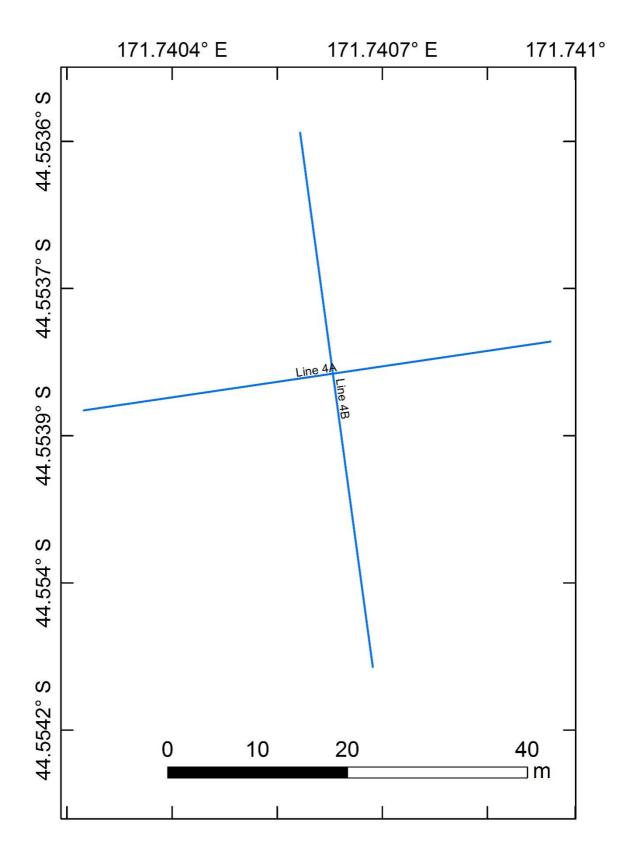


CTD Tow 4



CTD Tow 5


Appendix C Detailed maps of Camera tows


Coast Cam Site 1

Coast Cam Site 2

Coast Cam Site 3

Coast Cam Site 4

Appendix D Seismic Log Sheets

	Notes	SOS1, SOL1, set-up l		Bird3 surfaces sometimes									Compressor belt repaired	EOL1	SOL1-2	Compressor stopped	Compressor started again					Bird3 almost at surface			EOL1-2	SOL2									
Leakage Bird	check check	30 yes	30 yes	44 yes	61 yes	95 yes	127 yes	112 yes	80 yes	55 yes	45 yes	39 yes	37 yes	38 yes	43 yes	34 yes	35 yes	36 yes	32 yes	28 yes	30 yes	34 yes	34 yes	29 yes	27 yes	27 yes	26 yes	24 yes	22 yes	22 yes	22 yes	20 yes	18 yes	16 yes	14 yes
Compressor	Check	117 yes	135 yes	136 yes	137	134 yes	132 yes	126 yes	130 yes	131 yes	131 yes	132 yes	134 yes	134 yes	228 yes	233 see comment	234 see comment	236 yes	236 yes	232 yes	231 yes	229 yes	229 yes	228 yes	233	311 yes	313 yes	314 yes	317 yes	314 yes	317 yes	321 yes	318 yes	317 yes	317 yes
Speed Ship	knots Heading	3.6	4	3.4	4.4	3.5	3.8	3.8	3.9	4.4	3.9	34.3	3.4	3.8	3.8	3.5	4	4	4	4.1	4.1	4	3.9	3.9	4.3	3.5	4.3	4.2	3.78	3.8	4	4	3.5	4.6	4
Longitude	dd.mmmm	172.2788	172.3111	172.35099	172.3839	172.41519	172.43997	172.1076	172.5031	172.5377	172.5717	172.6007	172.6422	172.6487	172.645	172.6069	172.6027	172.5959	172.5609	172.5223	172.4841	172.44048	172.4101	172.3747	172.3602	172.344	172.3055	172.274	172.2425	172.2129	172.1798	172.145102	172.085	172.0506	172.0205
attitude L	dd.mmmm c	43.96826	43.9908	44.01968	44.04351	44.06608	44.08376	44.1076	44.1291	44.1538	44.1782	44.1991	44.2286	44.2332	44.24089	44.26189	44.2642	44.2678	44.2873	44.3083	44.3293	44.35307	44.3699	44.38927	44.3972	44.3941	44.3644	44.3404	44.3166	44.294	44.2699	44.2424	44.1966	44.1704	44.147
Shot La	No. d	1000	1590	2276	2861	3416	3891	4528	5083	5702	6302	6833	7575	7690	8000	8600	8676	8793	9386	10004	10596	11294	11805	12398	12627	13000	13733	14321	14926	15520	16140	16760	17902	18549	19111
Time UTC	hrs:min Line No.	23:06 Line1	23:29 Line1	00:10 Line1	00:40 Line1	01:06 Line1	01:31 Line1	02:03 Line1	02:30 Line1	03:02 Line1	03:32 Line1	03:57 Line1	04:35 Line1	04:41 Line1	04:50 Line1-2	05:20 Line1-2	05:24 Line1-2	05:30 Line1-2	06:00 Line1-2	06:30 Line1-2	07:00 Line1-2	07:34 Line1-2	08:00 Line1-2	08:30 Line1-2	08:41 Line1-2	08:53 Line2	09:30 Line2	10:00 Line2	10:30 Line2	11:00 Line2	11:30 Line2	12:00 Line2	13:00 Line2	13:30 Line2	14:00 Line2
Date UTC	dd/mm/yy	20/04/17	20/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17

	Notes	EOL2	Transit line to Line3									E0L2-3	SOL3				tailbouy sank	SOL3a, new set-up II								EOL3a	SOL3-4, transit to Line4		slowed to 1 kn for zodiac	back to 4 kn	boat still out slow	up to speed			
Leakage Bird	check check	13 yes	12 yes	13 yes	13 yes	12 yes	12 yes	12 yes	12 yes	13 yes	13 yes	18 yes	14 yes	16 yes	20 yes	21 yes		0 yes	4 yes	10 yes	13 yes	14 yes	140 yes	67 yes	50 yes	39 yes	38 yes	32 yes				18 yes	160 yes	18 yes	28 yes
ompressor	Heading Check	311 yes	224 yes	228 yes	228 yes	226 yes	226 yes	225 yes	225 yes	226 yes	223 yes	224 yes	137 yes	135 yes	135 yes	140 yes	141	133 yes	139 yes	136 yes	135 yes	136 yes	131 yes	133 yes	138 yes	139 yes	217 yes	217 yes				212 yes	212	211 yes	213 yes
Speed Ship	knots Hea	3.7	4.1	4.5	4.1	4	4.6	4.32	4.1	ß	3.8	3.8	4.2	3.4	3.8	4.1	2.6	4	3.7	3.8	4.2	3.9	4	3.9	4.3	3.7	3.4	ŝ				4.2	4.05	3.4	3.7
Longitude S	dd.mmmm k	171.9867	171.953	171.915	171.8786	171.8425	171.8085	171.7695	171.7357	171.6955	171.66	171.6534	171.656	171.6945	171.724	171.7538	171.7634	171.7689	171.7843	171.8146	171.849	171.8819	171.9174	171.9487	171.9829	172.024	172.0205	171.9934				171.9577	171.9304	171.902	171.8838
Lattitude L	d.mmmm	44.1215	44.1238	44.1494	44.1729	44.1964	44.2187	44.24409	44.2665	44.2926	44.316	44.3204	44.3424	44.3709	44.392	44.4137	44.4206	44.4247	44.4361	44.4584	44.4829	44.5065	44.5323	44.5549	44.5795	44.6091	44.6247	44.656				44.699	44.7296	44.763	44.7843
Shot La	No. d	19721	20000	20685	21310	21903	22479	23099	23662	24310	24898	25017	26000	26722	27271	27827	28007	30000	30381	30956	31565	32155	32818	33374	33973	34699	35000	35711	35850	36100	36388	36975	37622	38346	38802
Time UTC	hrs:min Line No.	14:29 Line2	14:56 Line2-3	15:30 Line2-3	16:00 Line2-3	16:30 Line2-3	17:00 Line2-3	17:30 Line2-3	18:00 Line2-3	18:30 Line2-3	19:00 Line2-3	19:06 Line2-3	19:28 Line3	20:00 Line3	20:32 Line3	21:00 Line3	21:09 Line3	23:15 Line3a	23:30 Line3a	00:00 Line3a	00:30 Line3a	01:00 Line 3a	01:32 Line3a	02:00 Line 3a	02:30 Line 3a	03:05 Line3a	03:24 Line3-4	04:00 Line 3-4	Line3-4	04:22 Line3-4	04:34 Line3-4	05:03 Line3-4	05:35 line3-4	06:12 line3-4	06:30 line3-4
Date UTC	dd/mm/yy	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	21/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17

	Notes		end of line, gun trigfger off	Compressor switched itself off at 2700psi	SOL Line 4										1st bird on surface. Pressure sensor fail		EOL Line4. Replaced 1st bird before turn		SOL line4-5. Leakage slowly coming down			EOL4-5	SOL 5							slightly off course, seaweed				slightly off course, seaweed
e B	cneck cneck	JI YES 28 YES	27 yes		27 yes	26 yes	16 yes	25 yes	24 yes		23 yes	22 yes	7 yes	19 yes	13 yes	15 yes	15 yes		36 yes	17 yes	17 yes	18 yes	16 yes	15 yes	14 yes	15 yes	16 yes	21 yes	13 yes	13 yes	13 yes	14 yes	15 yes	17 yes
_	C	203 yes 208 yes	225 yes		317 yes	314 yes	310 yes	314 yes	319 yes		315 yes	310 yes	315 yes	313 yes	314 yes	311 yes	309 yes		150 yes	150 yes	148 yes	148	40 yes	46 yes	49 yes	53 yes	46 yes	45 yes	48 yes	59 yes	30 yes	51 yes	54 yes	52 yes
	knots Heading	4.1	4.5		4.4	4.6	4.1	4	4.2		3.8	4.3	4.5	4.4	4	3.5	3.5		4	4.6	4.3	4.3	4.3	3.8	4.1	4	4	4.2	ъ	4	4.5	4	3.7	4.1
	dd.mmmm 1	171.8351	171.8213		171.7958	171.772	171.7364	171.7066	171.6726		171.6054	171.5747	171.5369	171.5019	171.4726	171.4383	171.4209		171.3942	171.4263	171.4499	171.4652	171.4898	171.5166	171.5511	171.5832	171.6229	171.6524	171.6859	171.7214	171.7542	171.7863	171.82006	171.863
	aa.mmmm ac	44.8403	44.8569		44.8533	44.8371	44.8122	44.7917	44.7679		44.7214	44.6999	44.6737	44.6491	44.6284	44.6043	44.5923		44.6068	44.6449	44.672	44.6898	44.6861	44.6676	44.6436	44.6212	44.5936	44.5729	44.5496	44.5253	44.5028	44.4787	44.45568	44.4274
t	NO. 00.1	39977	40311		50000	50450	51090	51639	52275		53485	54039	54692	55290	55809	56444	56759		60000	60777	61361	61709	63000	63485	64100	64685	65350	65889	66456	67078	67686	68290	68871	69622
Ŋ	DT-00 line NO.	07:33 line3-4	07:50 line3-4		08:08 line4	08:30 line4	09:00 line4	09:30 line4	10:00 line4	10:30 line4	11:00 line4	11:30 line4	12:00 line4	12:30 line4	13:00 line4	13:30 line4	13:46 line4		14:54 line4-5	15:30 line4-5	16:00 line4-5	16:09 line4-5	16:36 Line5	17:00 line5	17:30 Line5	18:00 Line5	18:30 Line5	19:00 Line5	19:30 Line5	20:00 Line5	20:30 Line5	21:00 Line5	21:30 Line5	22:07 Line5
Date UTC	aa/mm/yy	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17	22/04/17

	Notes			Whales starboard 1.5 nm away						slowing down for zodiac	down to 1.5 -2 kn	birds at 7, 10 and 18 m depth	back up to 4 kn			stopped for compressor repair	SOL 5a								turn end of line, switched off	start pof line				end of line, gun trigfger off	start pof line				
Leakage Bird	check check	16 yes	20 yes	25 yes	16 yes	28 yes	21 yes	25 yes	18 yes			10		19 yes	15 yes		6 yes	4 yes	4 yes	3 yes		2 yes	2 yes	2 yes	3 yes	3 yes	3 yes	2 yes	2 yes	2 yes	2 yes				
Compressor	ling Check	45 yes	62 yes	49 yes	43 yes	46 yes	48 yes	43 yes	45 yes			41 yes		45 yes	44 yes		43 yes	46 yes	47 yes	47 yes	43 yes	42 yes	44 yes	44 yes		133 yes	134 yes	132 yes	136 yes	169 yes	232 yes	225 yes	226 yes	227 yes	225 yes
Speed Ship	knots Heading	4.1	4.2	3.7	3.1	3.8	3.9	4	3.8			1.5		3.7	3.7		4.1	3.7	3.5	3.5	4.3	4	3.7	3.7		4.2	3.8	4.2	4.2	4	3.8	4.5	4.2	4.2	4.4
Longitude S	dd.mmmm k	171.8856	171.9213	171.9526	171.9813	172.0137	172.0452	172.0763	172.1071			172.1258		172.1533	172.1861		172.1899	172.2268	172.255	172.2872	172.3258	172.3544	172.3889	172.4196		172.4361	172.4873	172.5236	172.5535	172.587	172.5772	172.5552	172.5259	172.4924	172.4589
tude	dd.mmmm do	44.4107	44.3863	44.3622	44.3426	44.3193	44.2971	44.2752	44.2532			44.2395		44.2204	44.197		44.1945	44.1679	44.1479	44.1249	44.0975	44.0769	44.0523	44.0303		44.0299	44.0474	44.0732	44.0945	44.1199	44.1298	44.1454	44.1669	44.1906	44.21456
Shot Latti	No. dd.	70045	70698	71318	71861	72482	73076	73673	74275	74422	74577	74895	75103	75470	76068	76433	77000	77698	78244	78805	79510	80029	80687	81240	81434	00006	90440	91089	91628	92241	100000	100404	100975	101580	102194
Time UTC	hrs:min Line No.	22:30 Line5	23:01 Line5	23:32 Line5	00:00 Line5	00:30 Line5	01:00 Line5	01:30 Line5	02:00 Line5	02:07 Line5	02:15 Line5	02:30 Line5	02:40 Line5	03:00 Line5	03:30 Line5	03:48 Line5	05:26 Line5a	06:00 Line5a	06:30 Line5a	07:00 Line5a	07:30 Line5a	08:00 Line5a	08:30 Line5a	09:00 Line5a	09:10 Line5a	09:36 Line5a-6	10:00 Line5a-6	10:30 Line5a-6	11:00 Line5a-6	11:29 Line5a-6	11:40 Line6	12:00 Line6	12:30 Line6	13:00 Line6	13:30 Line6
Date UTC	dd/mm/yy	22/04/17	22/04/17	22/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17

Notes																									EOL 6, EOS1	SOS2, SOL10, new set-up III	20 kn dropping, 2-3m swell	long swell +choppy					dolphins at bow
Leakage Bird check check	7	3 yes	3 yes	2 yes	3 yes	3 yes	3 yes	2 yes	1 yes	1 yes	8 yes	9 yes	9 yes	9 yes	10 yes	9 yes	9 yes	9 yes															
Ship Compressor Heading Check	ъ	227 yes	227 yes	226 yes	228 yes	229 yes	229 yes	229 yes	229 yes	227 yes	224 yes	227 yes	225 yes	223 yes	231 yes	230 yes	217 yes	225 yes	218 yes	221 yes	223 yes	222 yes	222 yes	227 yes	226	283 yes	287 yes	297 yes	291 yes	290 yes	286 yes	289 yes	289 yes
Speed Ship knots Head	o.	4	4.2	4.1	4.2	4.1	3.7	4.2	4.1	4.3	4	3.8	3.9	4.3	3.6	3.6	4	3.6	4	3.9	3.6	3.8	4.2	4.2	4.5	ŝ	4	3.5	3.2	4.4	4.1	4.3	4.2
Longitude Si dd mmmm ki	17	172.3945	172.3616	172.3273	172.2913	172.2563	172.2261	172.1935	172.1601	172.128	172.0951	172.0623	172.0268	171.9957	171.9646	171.9291	171.8997	171.8658	171.8322	171.801	171.7664	171.7329	171.6982	171.6618	171.6365	171.79033	171.7439	171.7042	171.6642	171.6277	171.5854	171.5401	171.50338
Lattitude L dd mmmm d	69	44.2606	44.2841	44.3085	44.3343	44.3592	44.3805	44.4037	44.428	44.45	44.4734	44.4965	44.5215	44.5434	44.5653	44.59	44.6109	44.6347	44.6579	44.6801	44.7041	44.7276	44.7516	44.7772	44.7947	45.12776	45.1115	45.097	45.0882	45.06925	45.0541	45.0376	45.02448
Shot I	102777	103380	103965	104575	105222	105848	106386	106978	107578	108178	108778	109378	110022	110598	111177	111824	112385	112990	113602	114177	114806	115390	115990	116615	117039	200016	200705	201290	201896	202462	203088	203741	204285
Time UTC hrs-min line No	14:00	14:30 Line6	15:00 Line6	15:30 Line6	16:00 Line6	16:30 Line6	17:00 Line6	17:30 Line6	18:00 Line6	18:30 Line6	19:00 Line6	19:30 Line6	20:00 Line6	20:30 Line6	21:00 Line6	21:30 Line6	22:00 Line6	22:30 Line6	23:00 Line6	23:30 Line6	00:00 Line6	00:30 Line6	01:00 Line6	01:30 Line6	01:53 Line6	21:27 Line10	22:00 Line10	22:30 Line10	23:00 Line10	23:30 Line10	00:00 Line10	00:33 Line10	01:00 Line10
Date UTC dd/mm/w	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	23/04/17	24/04/17	24/04/17	24/04/17	24/04/17	24/04/17	28/04/17	28/04/17	28/04/17	28/04/17	28/04/17	29/04/17	29/04/17	29/04/17

	Notes						EOL10,	SOL10-11, transit line	very shallow			end of transit line	SOL11													EOL11, EOS2
Leakage Bird	sck check	9 yeah	8 yes	8 yes	8 yes	9 yes	9 yes	9 yes	8 yes	8 yo	8 ya	yes	8 yes	9 yes	9 yes	9 yes	9 yes	9 yes	9 yes	9 yes	9 yes	9 yes	9 yes	10 yes	10 yes	
Compressor Lea	Check check	287 yes	290 yes	290 yes	291 yes	295 yes	300 yes	174 yes	174 yes	173 yes	177 yes	6	40 yes	42 at start of line	42 yes	39.5 yes	43 yes	46 yes	46 yes	49 yes	45 yes	47 yes	50 yes	47 yes	48 yes	0
Speed Ship	ots Heading	3.6 28	3.4 29		3 29	4.2 29	4 30	3.9 17	4.05 17	3.9 17	4.4 17	4 179	4.1 4	4	3.85 4	3.89 39.	4.4 4	4.3 4	4.3 4	4.16 4	4.37 4	3.8 4		4	3.7 4	3.5 5
Longitude Spe	dd.mmmm knots	171.463	171.4213	171.3799	171.34057	171.3015	171.2496	171.2358	171.2419	171.2486	171.2555	171.2604	171.2311	171.252	171.2859	171.3215	171.3548	171.39	171.4266	171.4629	171.5003	171.5294	171.5613	171.59	171.6237	171.6488
Lattitude Lo	dd.mmmm dd	45.0096	44.9948	44.97978	44.9653	44.9511	44.9322	44.9475	44.9797	45.0098	45.0409	45.0658	45.0741	45.0592	45.0365	45.0123	44.9893	44.9651	44.94	44.9149	44.8891	44.8688	44.8472	44.827	44.8039	44.7862
Shot La	No. dd	204882	205483	206085	206686	207282	208054	300000	300605	301184	301798	302251	40000	400383	400967	401592	402175	402779	403383	403992	404618	405175	405789	406350	406974	407443
Time UTC	min Line No.	01:30 Line10	02:00 Line10	02:30 Line10	03:00 Line10	03:30 Line10	04:08 Line10	04:30 Line10-11	05:00 Line10-11	05:30 Line10-11	06:00 Line10-11	06:23 Line10-11	07:10 Line11	07:30 Line11	08:00 Line11	08:30 Line11	09:00 Line11	09:30 Line11	10:00 Line11	10:30 Line11	11:00 Line11	11:30 Line11	12:00 Line11	12:30 Line11	13:00 Line11	13:23 Line11
Date UTC Time	dd/mm/yy hrs:min	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17	29/04/17

Appendix E Marine Mammal Observations

Day	Time	Location	Latitude (S)	Longitude (E)	Туре	Number	Directions / heading
27/04/17	22:00	South	45°	(⊑) 171º	Dusky	hundreds	SW
		Canterbury	04.6900	28.056	< 2 m		
24/04/17	15:30	South	44°	171°	Finn	1	NE
		Canterbury	44.2385	29.12	Whale		
					<24 m		
24/04/17	15:00	-	44°	171º 28.6	Dusky	200-300	South
			41.10		< 2 m		
23/04/17	11:30	-	44°	171°	Blue	2-3	East
			21.39	57.65	whale		
					or		
					Finn		
					Whale		
23/04/17	10:00	South	44°	171º 50.9	Sperm	1	East
		Canterbury	26.05		whale		
					< 18m		

Appendix F Core sampling table

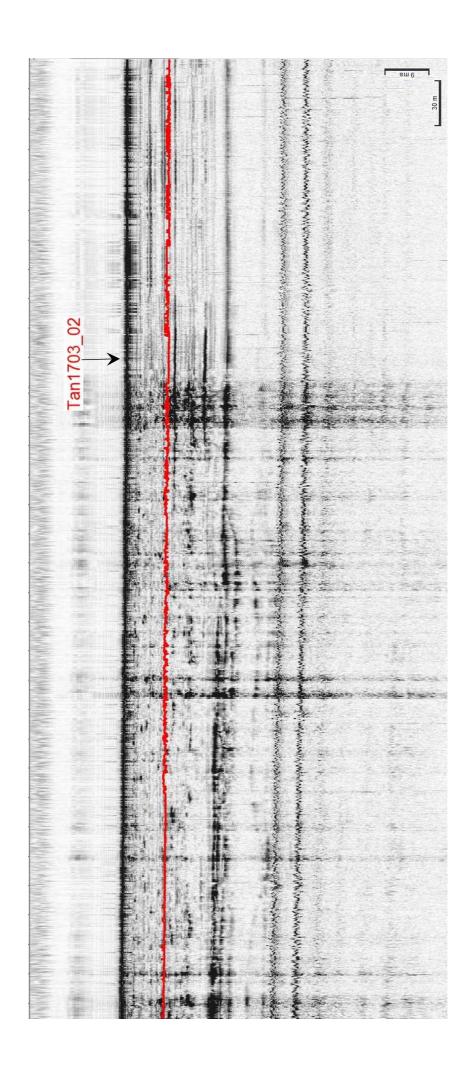
	remarks					TAN1703-26: PW sampling over night				DIC: black after addition of CuSO4 solution	DIC: black after addition of CuSO4 solution		0 mL sample	TAN1703-29 to 32: PW sampling over night													DIC: slightly black after addition of CuSO4 solution			DIC: slightly black after addition of CuSO4 solution			
	master leftover (approx.)		5	8	ı	14	14	5	18	8	10	ı	0	15	15	15	15	8	10	10	12	12	10	9	8	5	8	10	10	8	15	12	
	conductivity mS/cm	51.1	52.4		54.3	51.2	51.6	51.6	51.7	51.3	51.3	52.6		51.7	51.5	51.5	51.7	51.7	51.6	51.7	51.6	51.7	51.7	51.7	51.5	51.6	51.6	52.0	51.9	51.6	51.9	51.2	
s	DO mg/L	9.51	10.25	9.16	12.46	9.92	9.69	11.94	10.53	7.13	7.14	11.82	I	7.81	10.84	10.80	10.96	11.31	11.28	11.19	10.32	11.25	11.28	10.96	10.71	9.81	8.64	10.94	11.05	7.55	9.96	10.53	
measurements	рН	8.170	7.952	7.954	8.184	7.961	8.033	7.903	7.826	7.926	7.842	8.087	I	7.809	7.849	7.840	7.828	7.843	7.844	7.876	7.915	7.914	7.905	7.891	7.880	7.874	7.818	7.884	7.924	7.935	7.874	7.944	
meas	temp sample in lab °C	5.0	7.9	7.3	7.0	6.6	6.5	7.0	6.6	7.7	7.4	6.8	ı	6.8	6.6	6.6	6.9	7.2	7.2	7.3	7.4	7.1	6.9	7.1	7.1	7.0	6.9	7.1	6.9	7.0	6.8	6.7	-
	Anions mL		4	4	ı	4	4	4	4	4	4	ı	0	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
	Cations mL		4	4		4	4	4	4	4	4	ı	0	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
	DIC mL		<u>б</u>	6	,	6	6	6	6	6	6	•	0	6	6	6	6	6	6	6	6	6	ი	6	6	6	6	6	6	6	6	6	
samples taken	δ2H mL		~1.85	~1.85	'	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	•	0	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	
sample	δ18Ο mL	1	~4.7	~4.7	ı	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	I	0	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	
	depth from core top [cm]		160	150	·	119	109	5	15	396.5	407	-	5	15	110	210	310	410	510	551	561	5	15	110	210	310	375	5	15	525	06	90	
	total length [cm]		184	184		129	129	416	416	416	416	1	570	570	570	570	570	570	570	570	570	385	385	385	385	385	385	535	535	535	184	129	
	sample #		£	P2		P3	P4	Ρ5	P6	P7	P8	ı	Ъ9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20	P21	P22	P23	P24	P25	P26	P27	P28	
	core station TAN1703-	IAPSO	∞	8	IAPSO	26	26	28	28	28	28	IAPSO	29	29	29	29	29	29	29	29	29	30	30	30	30	30	30	31	31	31	8	26	
	date NZST 2017	12 Apr	19 Apr	19 Apr	21 Apr	21 Apr	21 Apr	25 Apr	25 Apr	25 Apr	25 Apr	25 Apr	25 Apr	25 Apr	25 Apr	25 Apr	25 Apr	25 Apr	25 Apr	25 Apr	25 Apr	26 Apr	26 Apr	26 Apr	26 Apr	26 Apr	26 Apr						

	remarks	core' in zin han (sediment samule)																			DIC: black after addition of CuSO4 solution												
	master leftover (approx.)	18	15	19	4	18	12	20	12	20	13	19	10	20	6	20	10	18	8	18	14	18	17	8	20	8	18	18	10	16	6	20	
	conductivity mS/cm	52.2		51.8	52.2	51.7	51.5	51.8	51.5	51.5	51.9	51.6	51.7	51.3	51.4	51.1	51.2	51.2	51.5	51.5	51.4	51.5	51.5	51.5	51.5	51.5	51.8	51.5	51.6	51.8	51.7	51.3	
s	DO ma/l	10 74	10.64	10.69	10.68	10.94	11.15	9.47	10.06	10.35	9.46	9.59	8.79	8.69	7.75	8.52	8.47	7.92	7.31	6.75	8.92	11.45	9.76	11.00	11.22	10.75	9.98	10.16	10.29	11.05	10.68	9.30	
measurements	рН	7 876	7.865	7.789	7.799	7.882	7.981	7.873	7.799	7.824	7.829	7.835	7.721	7.721	7.842	7.732	7.737	7.798	7.682	7.687	7.924	7.860	7.788	7.838	7.860	7.835	7.873	7.838	7.861	7.884	8.263	7.843	
meas	temp sample in lab °C	7.3	7.2	7.1	7.2	6.8	6.8	6.8	6.4	6.8	6.5	6.5	6.9	6.8	6.6	6.9	6.8	6.8	7.2	7.1	6.9	6.9	6.9	6.8	6.8	6.8	6.7	6.8	6.8	6.8	6.8	7.0	2
	Anions mL	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
	Cations mL	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
	DIC mL				6	ı	6	ı	6	ı	6	ı	6	ı	6	ı	6	ı	6	·	6	,		6		6	ı		6	ı	6	•	
samples taken	δ2H mL	~1 85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	
sample	δ18Ο mL	~4 7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	
	depth from core top [cm]	10	24	50	123	33	63	40	65	100	125	150	175	205	230	255	280	306	331	356	380.5	65	159	259.5	359.5	459.5	40	65	85	135	160	180	
	total length [cm]	c	0	184	184	129	129	416	416	416	416	416	416	416	416	416	416	416	416	416	416	570	570	570	570	570	385	385	385	385	385	385	
	sample #	pcd	P30	P31	P32	P33	P34	P35	P36	P72	P37	P38	P39	P40	P41	P42	P43	P44	P45	P46	P47	P48	P49	P50	P51	P52	P53	P54	P73	P55	P56	P57	
	core station TAN1703-	32	32	8	8	26	26	28	28	28	28	28	28	28	28	28	28	28	28	28	28	29	29	29	29	29	30	30	30	30	30	30	
	date NZST 2017	26 Anr	26 Apr	26 Apr	26 Apr	26 Apr	26 Apr	26 Apr	26 Apr	26 Apr	26 Apr	26 Apr	26 Apr	26 Apr																			

┡	remarks															
	master leftover (approx.)	8	18	10	18	12	17	19	10	16	8	20	13	20	8	1
	conductivity mS/cm	51.6	51.6	51.5	51.5	51.5	51.7	51.7	51.8	52.0	52.0	51.8	51.7	51.7	51.6	52.9
ŝ	DO mg/L	11.32	10.08	9.82	9.30	8.35	10.52	9.96	7.93	10.15	10.30	8.32	6.89	4.43	6.95	11.75
measurements	рН	7.894	7.940	7.844	7.791	7.756	7.882	7.923	7.874	7.849	7.855	7.786	7.722	7.713	7.865	8.042
measi	temp sample in lab °C	6.9	7.3	6.7	6.9	7.1	6.9	6.9	7.2	6.6	6.7	6.8	6.9	6.8	6.8	7.3
	Anions mL	4	4	4	4	4	4	4	4	4	4	4	4	4	4	ı
	Cations mL	4	4	4	4	4	4	4	4	4	4	4	4	4	4	ı
	DIC mL	6	,	6		6	ı	ı	6		6	,	6	ı	6	ı
samples taken	δ2H mL	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	~1.85	
sample	δ18O mL	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	
	depth from core top [cm]	236	261	280.5	332	357	66	108	158	208	258	309	359	409	459	
	total length [cm]	385	385	385	385	385	535	535	535	535	535	535	535	535	535	
	sample #	P58	P59	P60	P61	P62	P63	P64	P65	P66	P67	P68	P69	P70	P71	ı
	core station TAN1703-	30	30	30	30	30	31	31	31	31	31	31	31	31	31	IAPSO
	date NZST 2017	26 Apr														

Appendix G Nisken Bottle table

		Depth	Altimeter			Salinity	Temp		Density	Conductivity
File_name	Bottle #	(m)	(m)	Lat (dd)	Long (DD)	(PSU)	(°C)	02_ml/l	(Kg/m^3)	(mS/cm)
u8861	1	24.98	6.04	-44.57036	171.36654	34.4599	13.6271	5.2057	1025.9595	41.0105
u8861	2	25.02	5.98	-44.57038	171.36652	34.4773	13.6112	5.0327	1025.9765	41.0137
u8865	1	68.56	3.98	-44.46502	171.95786	34.7226	12.4682	5.1224	1026.5928	40.1938
u8865	2	70.65	2.07	-44.46502	171.95790	34.7222	12.4529	5.1174	1026.6049	40.1796
u8866	1	59.45	3.31	-44.41098	171.88767	34.6955	12.6070	4.9952	1026.5033	40.2946
u8866	2	59.24	3.57	-44.41096	171.88770	34.6955	12.6071	4.9923	1026.5024	40.2946
u8867	1	63.70	2.21	-44.47094	171.83304	34.7003	12.5310	5.8197	1026.5413	40.2287
u8867	2	63.89	1.76	-44.47078	171.83327	34.7005	12.5361	5.7972	1026.5412	40.2338
u8868	1	39.99	2.14	-44.57012	171.43704	34.4642	13.4747	5.3826	1026.0617	40.8753
u8869	1	37.92	2.88	-44.57294	171.42806	34.4632	13.4838	5.3571	1026.0498	40.8821
u8870	1	36.56	2.44	-44.57590	171.41860	34.4605	13.4908	5.3547	1026.0402	40.8854
u8871	Ч	25.95	1.65	-44.56093	171.35296	34.4751	13.5387	4.8135	1025.9938	40.9420
u8872	1	24.49	2.59	-44.55752	171.34822	34.4580	13.5649	4.7626	1025.9687	40.9485
u8873	Ч	24.41	2.53	-44.55232	171.34922	34.4162	13.5945	4.8015	1025.9299	40.9322
u8874	Ч	21.95	2.64	-44.50110	171.35342	34.2663	13.7939	4.8123	1025.7617	40.9622
u8875	Ч	41.66	2.18	-44.34480	171.66022	34.6225	13.1869	4.7965	1026.2505	40.7671
u8876	Ч	41.96	1.95	-44.34549	171.65984	34.6260	13.1746	4.7916	1026.2570	40.7591
u8877	7	52.10	2.54	-44.38290	171.85051	34.6779	13.0056	5.1422	1026.3770	40.6557


Appendix H CTD sampling table

								residual discarded afterwards																													
	remarks conductivity	50.9	50.7	51.1	52.7	52.6	53.1	52.9	54.5	2.8	3.5	2.3	52.3	2.3	51.9	1.8	51.8	51.9	2.6	2.7	52.9	4.3	52.9	52.0	1.9	51.7	51.8	2.3	52.0	52.3	52.3	2.3	52.1	52.2	2.3	52.6	2.9
ents	mS/cm temp (of sample			5.0 5				9.6 5	11.1 5			8.6 5	_	1	8.2 5			9.8 5		7.7 5	~		7.3 5											8.0 5			7.2 5
measurements	in lab) °C																																				
meas	рН	8.087	8.151	8.170	8.030	8.048	8.009	8.107	8.036	8.1(8.192		8.242	8.141	8.1		8.229	8.1	8.151	8.163	8.1					8.236	8. 1.	8.205	8.184	8.207					8.236	8.027
	Oxygen Draw temp °C	13.7	13.6		12.7	12.6	12.8	12.7	12.7	12.7	ı	13.5	13.5	13.5	13.5	13.6	13.6	13.5	13.3	13.3	13.1	ı	11.75	13.5	13.8	13.6	13.8	13.4	13.2	13.0	13.3	13.0	12.8	12.9	12.5	12.8	•
	Residual unfiltered mL	~280	~280	ı	~280	~280	~280	I	~280	~280	I	~280	~280	~280	~280	~280	~280	~280	~280	~280	~280	ı	I	~280	~280	~280	~280	~280	~280	~280	~280	~280	~280	~280	~280	~280	ı
	Anions filtered mL	4	4	ı	4	4	4	4	4	4	ı	4	4	4	4	4	4	4	4	4	4	1	ı	4	4	4	4	4	4	4	4	4	4	4	4	4	I
en	Cations filtered mL	4	4	ı	4	4	4	4	4	4		4	4	4	4	4	4	4	4	4	4			4	4	4	4	4	4	4	4	4	4	4	4	4	ı
samples taken	δ2H filtered mL	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	ı	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	ı	ı	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	ı
san	δ18O filtered mL	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7		~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7			~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	~4.7	ı
	DIC unfiltered	yes	yes	1	yes	yes	yes	yes	yes	yes	ı	yes	ı	ı	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	ı									
	DO flask #	6	25	,	38	27	84	95	97	104	ı	118	136	142	149	151	155	163	165	166	167	ı	ı	170	171	202	259	257	256	255	251	250	247	243	242	236	
	DO unfiltered	yes	yes		yes	yes	yes	yes	yes	yes	ı	yes	ı	ı	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	'									
	depth m	25	25	•					64			40	38	36	26	25	24	22	42	42	52	ı	ı	28	32	32	31	46	56	63	46	57	62	92	91	79	'
	sample #	5	5 C	IAPSO	ទ	C4	C5	C6	C7	C8	IAPSO	ပ	C10	C11	C12	C13	C14	C15	C16	C17	C18	IAPSO	IAPSO	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	C29	C30	C31	IAPSO
	CTD station TAN1703-	01	01	•	05	05	90	06	07	07	•	13	14	15	16	17	18	19	20	21	22	,	ı	34	35	36	37	38	39	40	41	42	43	44	45	46	·
	NZOI style station #	U8861	U8861		U8865	U8865	U8866	U8866	U8867	U8867	I	U8868	U8869	U8870	U8871	U8872	U8873	U8874	U8875	U8876	U8877	ı	ı	U8878	U8879	U8880	U8881	U8882	U8883	U8884	U8885	U8886	U8887	U8888	U8889	U8890	ı
	date NZST 2017	12 Apr	12 Apr		18 Apr	18 Apr	18 Apr	18 Apr	18 Apr	18 Apr	18 Apr	19 Apr	20 Apr	26 Apr	27 Apr	27 Apr		27 Apr			27 Apr	27 Apr	28 Apr														

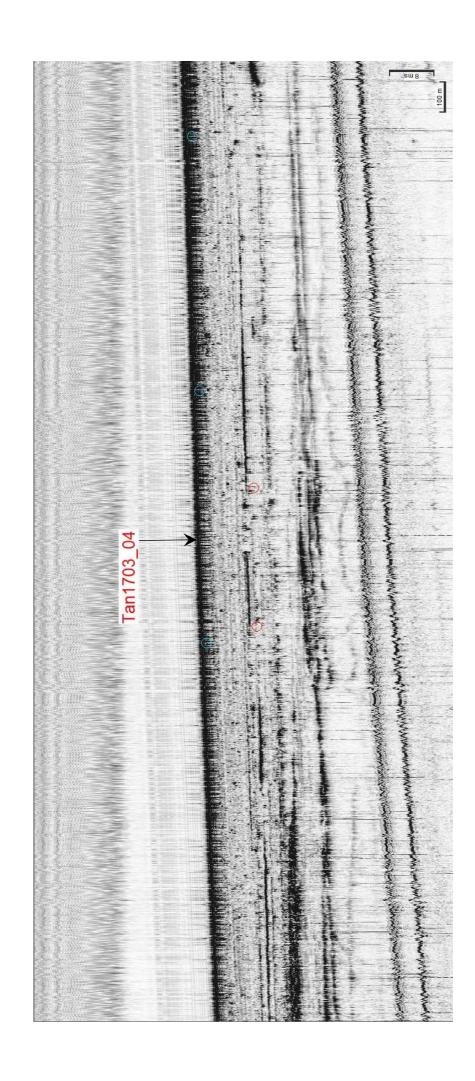
Appendix I Core Sampling Table

TAN17	TAN1703 – MARCAN	RCAN							
Core ID: Other ID:	TAN1703-02	03-02	Lat Lor	Latitude: Longitude:	Latitude: -44°34.223 Longitude: 171°21.898	Date/Time Depth (m):	me (NZST): m):	Date/Time (NZST): 12/04/2017 18:30 Depth (m): 31.0	0
Sample D	Sample Description					Gear type	Piston corer	er	
General D	General Description					Barrel Length (m)	9	Bent barrel	z
						Penetration (m)	,	Catcher/Cutter bags	0
						Core length (m)	0	Samples	0
						Sections	z	Tephra	z
						Fauna	z		unit
Sample pi	Sample processing – core ID:	ore ID:							
Section	Top depth (cm)	Btm depth (cm)	Logged	Phys Props		Ñ	Summary		
·		,							
ı	ı	ı							
:									

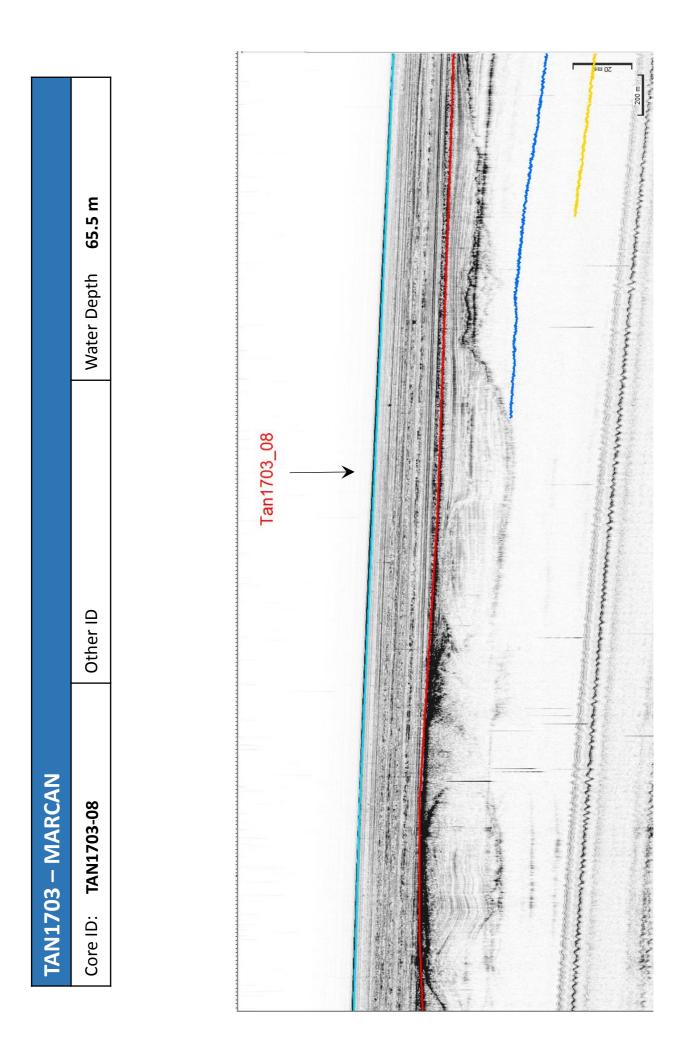
TAN1703 – MARCAN		
Core ID: TAN1703-02	Other ID	Water Depth 31.0 m

TAN17	TAN1703 – MARCAN	IRCAN							
Core ID: Other ID:	TAN1703-03	03-03	Lati Lon	Latitude: Longitude:	Latitude: -44°34.224 Longitude: 171°21.989	Date/Time Depth (m):	ime (NZST): (m):	Date/Time (NZST): 12/04/2017 19:14 Depth (m): 31.2	4
Sample D	Sample Description					Gear type	Gravity corer	Drer	
General C Small vol	General Description Small volume of muddy	eneral Description Small volume of muddy sand retained in zip-locked bag	-locked b	ងខ		Barrel Length (m)	m	Bent barrel	z
						Penetration (m)	1	Catcher/Cutter bags	0
						Core length (m)	0	Samples	1
						Sections	z	Tephra	z
						Fauna			unit
Sample p	Sample processing – core ID:	core ID:							
Section	Top depth (cm)	Btm depth Lo (cm)	Logged	Phys Props		-,	Summary		
	ı	,			1				
ı	ı	,			1				
·									
:									
	·								

TAN1703 – MARCAN			
Core ID: TAN1703-03	Other ID	Water Depth 31	31.2 m
	Tan1703_03		


and the second of the second o

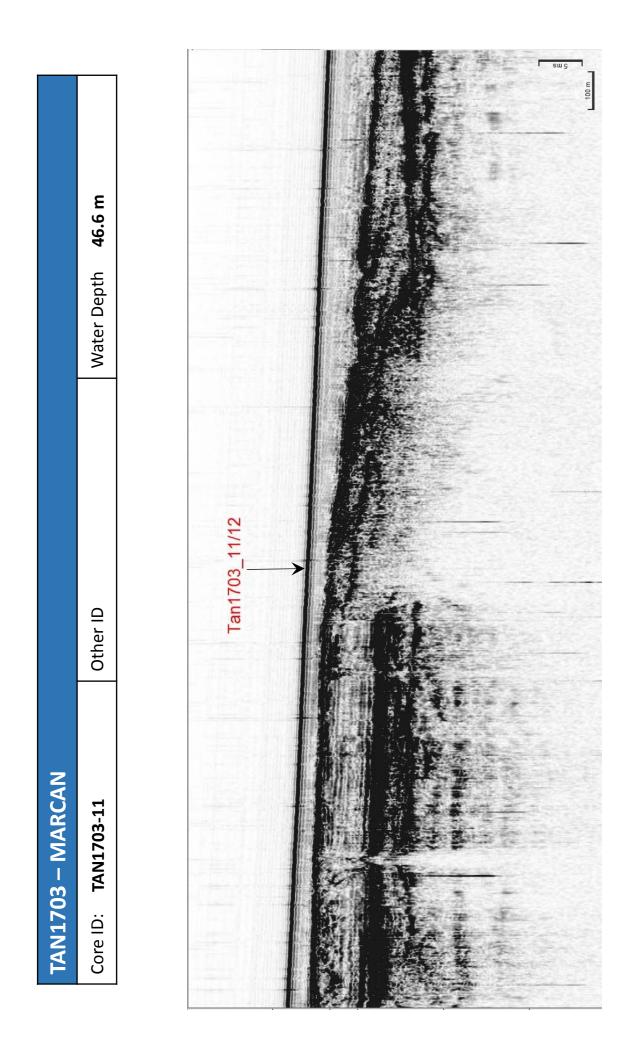
のためのであると


White States and the state

TAN17	TAN1703 – MARCAN	IRCAN							
Core ID: Other ID:	TAN1703-04	03-04	Lati Lon	Latitude: Longitude:	Latitude: -44°34.030 Longitude: 171°21.730	Date/Time Depth (m):	ime (NZST): (m):	Date/Time (NZST): 12/04/2017 20:11 Depth (m): 29.8	1
Sample D	Sample Description					Gear type	Gravity corer	Drer	
General C Small vol	General Description Small volume of muddy	eneral Description Small volume of muddy sand retained in zip-locked bag	o-locked b	ag		Barrel Length (m)	ſ	Bent barrel	z
						Penetration (m)	1	Catcher/Cutter bags	0
						Core length (m)	0	Samples	1
						Sections	z	Tephra	z
						Fauna			unit
Sample p	Sample processing – core ID:	core ID:							
Section	Top depth (cm)	Btm depth L (cm)	Logged	Phys Props		.,	Summary		
	ı	ı			ı				
ı	ı	ı							
·			·						
:									
	·								

TAN1703 – MARCAN		
Core ID: TAN1703-04	Other ID	Water Depth 29.8 m

TAN17	TAN1703 – MARCAN	RCAN							
Core ID: Other ID:	TAN1703-08	03-08	Lat	Latitude: Longitude:	Latitude: -44°43.321 Longitude: 171°36.080	Date/Time Depth (m):	ime (NZST): (m):	Date/Time (NZST): 19/04/2017 23:06 Depth (m): 65.6	96
Sample D	Sample Description					Gear type	Gravity corer	orer	
General [General Description					Barrel Length (m)	£	Bent barrel	z
						Penetration (m)		Catcher/Cutter bags	ı
						Core length (m)	1.84	Samples	0
						Sections	2	Tephra	z
						Fauna			unit
Sample p	Sample processing – core ID:	ore ID:							
Section	Top depth (cm)	Btm depth (cm)	Logged	Phys Props			Summary		
1	0	100			ı				
2	100	184							
:									
	·		•						

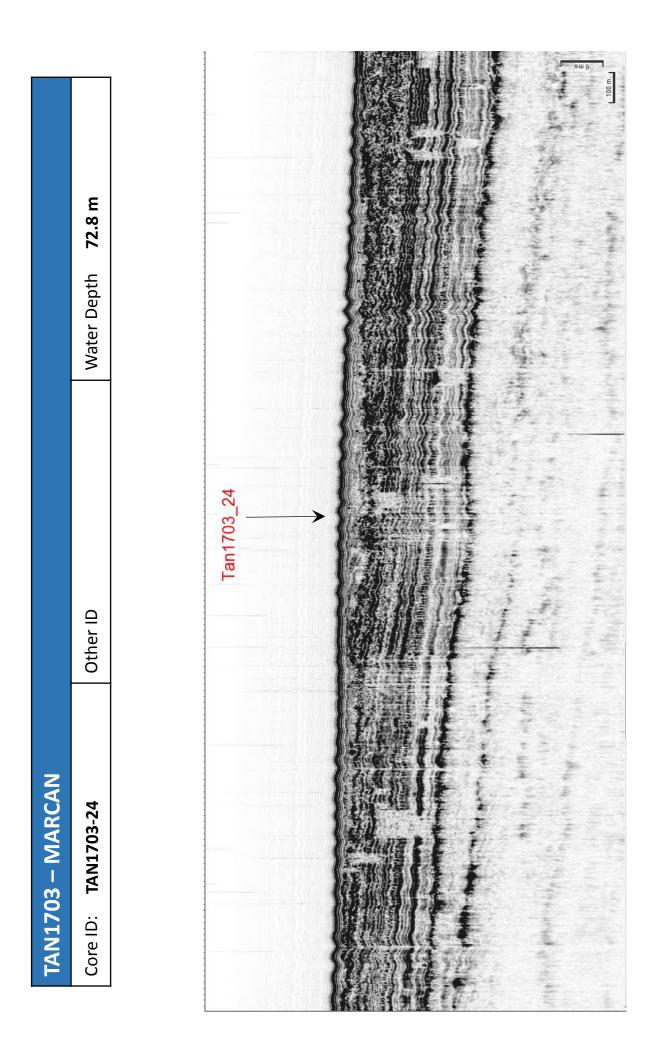

TAN17	TAN1703 – MARCAN	RCAN							
Core ID: Other ID:	TAN1703-09	60-60	Lat Lor	Latitude: Longitude:	Latitude: -44°39.231 Longitude: 171°30.245	Date/Time Depth (m):	ime (NZST): (m):	Date/Time (NZST): 20/04/2017 00:16 Depth (m): 51.5	9
Sample D	Sample Description					Gear type	Gravity corer	orer	
General L	General Description					Barrel Length (m)	m	Bent barrel	z
						Penetration (m)		Catcher/Cutter bags	ı
						Core length (m)	0	Samples	0
						Sections	0	Tephra	z
						Fauna			unit
Sample p	Sample processing – core ID:	core ID:							
Section	Top depth (cm)	Btm depth (cm)	Logged	Phys Props		S	Summary		
			·						
•									
·									
:									

TAN1703 – MARCAN		
Core ID: TAN1703-09	Other ID	Water Depth 51.5 m
	Tan1703_09/10	

TAN17	TAN1703 – MARCAN	RCAN							
Core ID: Other ID:	TAN1703-10	03-10	Lati	Latitude: Longitude:	Latitude: -44°39.256 Longitude: 171°30.246	Date/Time Depth (m):	me (NZST): m):	Date/Time (NZST): 20/04/2017 00:29 Depth (m): 51.0	6
Sample D	Sample Description					Gear type	Gravity corer	Drer	
General D	General Description					Barrel Length (m)	m	Bent barrel	z
						Penetration (m)		Catcher/Cutter bags	ı
						Core length (m)	0	Samples	0
						Sections	0	Tephra	z
						Fauna			unit
Sample p	Sample processing – core ID:	ore ID:							
Section	Top depth (cm)	Btm depth (cm)	Logged	Phys Props		S	Summary		
					·				
:									

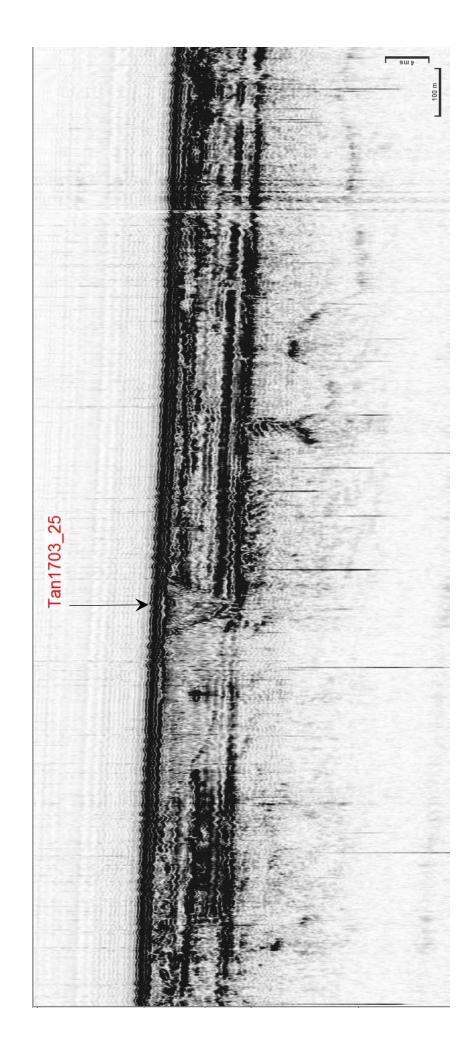
TAN1703 – MARCAN		
Core ID: TAN1703-10	Other ID	Water Depth 51.0 m
	Tan1703_09/10	
	->	

TAN17	TAN1703 – MARCAN	RCAN							
Core ID: Other ID:	TAN1703-11	03-11	Lat	Latitude: Longitude:	Latitude: -44°33.275 Longitude: 171°28.426	Date/Time Depth (m):	ime (NZST): (m):	Date/Time (NZST): 20/04/2017 00:35 Depth (m): 46.6	55
Sample D	Sample Description					Gear type	Gravity corer	Drer	
General D	General Description					Barrel Length (m)	ſ	Bent barrel	z
						Penetration (m)		Catcher/Cutter bags	ı
						Core length (m)	0	Samples	0
						Sections	0	Tephra	z
						Fauna			unit
Sample p	Sample processing – core ID:	ore ID:							
Section	Top depth (cm)	Btm depth (cm)	Logged	Phys Props		0)	Summary		
·					·				
:									
·									

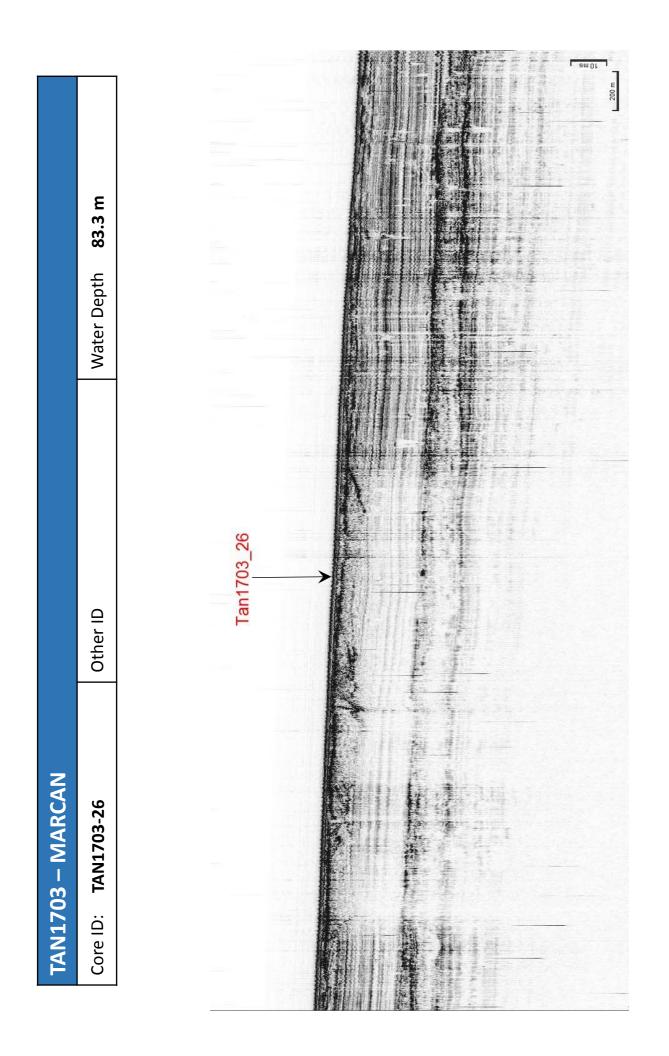

TAN17	TAN1703 – MARCAN	IRCAN							
Core ID: Other ID:	TAN1703-12	03-12	Lat Lor	Latitude: Longitude:	Latitude: -44°33.288 Longitude: 171°28.396	Date/Time Depth (m):	me (NZST): m):	Date/Time (NZST): 20/04/2017 00:45 Depth (m): 46.2	5
Sample D	Sample Description					Gear type	Gravity corer	Drer	
General D	General Description					Barrel Length (m)	m	Bent barrel	z
						Penetration (m)		Catcher/Cutter bags	ı
						Core length (m)	0	Samples	0
						Sections	0	Tephra	z
						Fauna			unit
Sample p	Sample processing – core ID:	core ID:							
Section	Top depth (cm)	Btm depth (cm)	Logged	Phys Props		S	Summary		
:									

TAN1703 – MARCAN	TAN1703-12 Other ID Mater Depth 46.2 m
TAN1703	Core ID: T

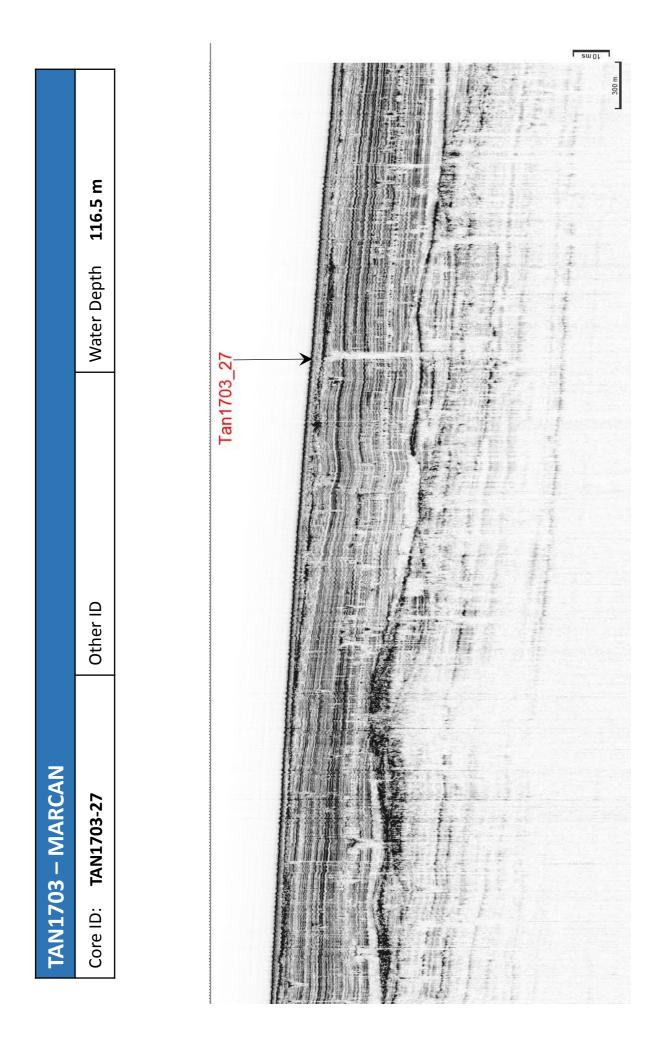
TAN17	TAN1703 – MARCAN	IRCAN							
Core ID: Other ID:	TAN1703-23	03-23	Lat Lor	Latitude: Longitude:	Latitude: -44°22.433 Longitude: 171°50.307	Date/Time Depth (m):	ime (NZST): (m):	Date/Time (NZST): 20/04/2017 18:48 Depth (m): 54.2	81
Sample D	Sample Description					Gear type	Gravity corer	orer	
General L	General Description					Barrel Length (m)	ſſ	Bent barrel	z
						Penetration (m)		Catcher/Cutter bags	ı
						Core length (m)	0	Samples	0
						Sections	0	Tephra	z
						Fauna			unit
Sample p	Sample processing – core ID:	tore ID:							
Section	Top depth (cm)	Btm depth (cm)	Logged	Phys Props		.,	Summary		
	•				1				
·									
:									


TAN1703 – MARCAN			
Core ID: TAN1703-23	Other ID	Water Depth	54.2 m
	Tan1703_23		
	→		
			swg g
			m 011

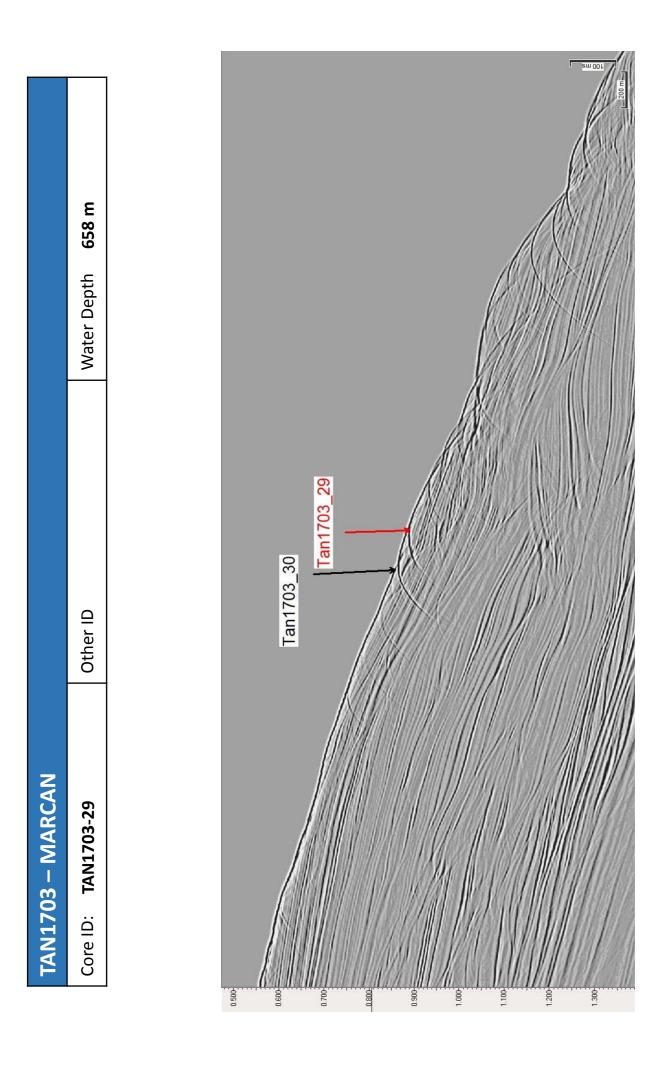
TAN17	TAN1703 – MARCAN	IRCAN							
Core ID: Other ID:	TAN1703-24	03-24	Latitude: Longitude	de: tude:	Latitude: -44°28.136 Longitude: 171°57.860	Date/Time Depth (m):	ime (NZST): (m):	Date/Time (NZST): 20/04/2017 20:00 Depth (m): 72.8	00
Sample D	Sample Description					Gear type	Gravity corer	orer	
General C Small vol	General Description Small volume of sandy n	eneral Description Small volume of sandy mud retained in zip-locked bag	ocked bag			Barrel Length (m)	œ	Bent barrel	z
						Penetration (m)		Catcher/Cutter bags	ı
						Core length (m)	0	Samples	1
						Sections	0	Tephra	z
						Fauna			unit
Sample p	Sample processing – core ID:	core ID:							
Section	Top depth (cm)	Btm depth Lo (cm)	Logged P	Phys Props		0)	Summary		
					1				
					I				
·					·				
:									

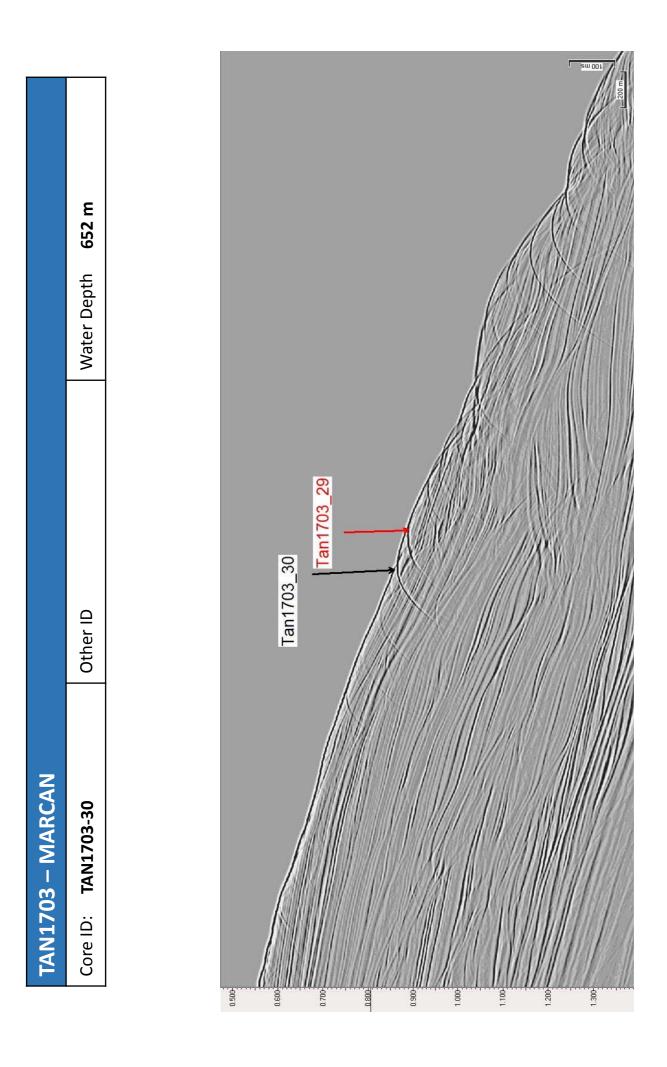


TAN17	TAN1703 – MARCAN	IRCAN							
Core ID: Other ID:	TAN1703-25	03-25	Lati Lon	Latitude: Longitude:	Latitude: -44°28.674 Longitude: 171°50.507	Date/Time Depth (m):	ime (NZST): (m):	Date/Time (NZST): 20/04/2017 20:53 Depth (m): 66.8	33
Sample D	Sample Description					Gear type	Gravity corer	orer	
General L Small vol	General Description Small volume of sandy n	eneral Description Small volume of sandy mud retained in zip-locked bag	-locked bag	þQ		Barrel Length (m)	£	Bent barrel	z
						Penetration (m)	ı	Catcher/Cutter bags	ı
						Core length (m)	0	Samples	1
						Sections	0	Tephra	z
						Fauna			unit
Sample p	Sample processing – core ID:	core ID:							
Section	Top depth (cm)	Btm depth L (cm)	Logged	Phys Props			Summary		
·					1				
:									


TAN1703 – MARCAN		
Core ID: TAN1703-25	Other ID	Water Depth 66.8 m

TAN17	TAN1703 – MARCAN	RCAN							
Core ID: Other ID:	TAN1703-26	03-26	Lat Lor	Latitude: Longitude:	Latitude: -44°33.303 Longitude: 171°56.478	Date/Time Depth (m):	me (NZST): m):	Date/Time (NZST): 20/04/2017 21:57 Depth (m): 83.3	22
Sample D	Sample Description					Gear type	Piston corer	rer	
General L	General Description					Barrel Length (m)	m	Bent barrel	z
						Penetration (m)		Catcher/Cutter bags	ı
						Core length (m)	1.29	Samples	0
						Sections	2	Tephra	z
						Fauna			unit
Sample p	Sample processing – core ID:	ore ID:							
Section	Top depth (cm)	Btm depth (cm)	Logged	Phys Props		S	Summary		
1	0	100			1				
2	100	129							
:									
	·	·							

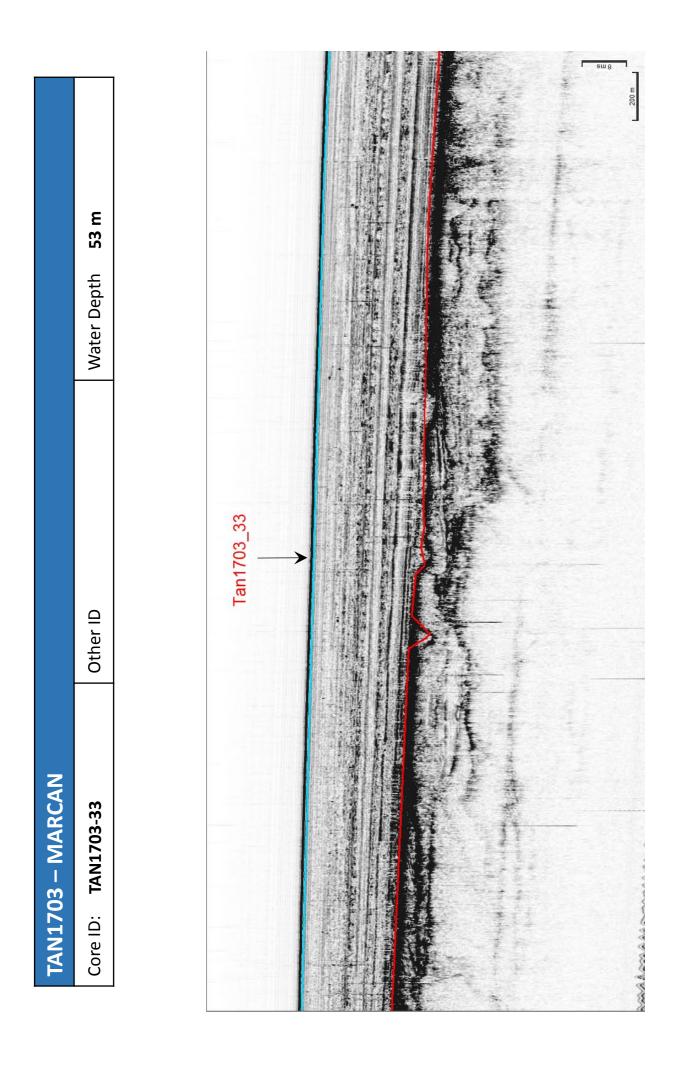

TAN17	TAN1703 – MARCAN	IRCAN							
Core ID: Other ID:	TAN1703-27	03-27	Lati Lon	Latitude: Longitude:	Latitude: -44°39.917 Longitude: 172°06.889	Date/Time Depth (m):	Fime (NZST) (m):	Date/Time (NZST): 20/04/2017 23:28 Depth (m): 116.5	88
Sample D	Sample Description					Gear type	Piston corer	rer	
General L Small vol	General Description Small volume of sandy n	eneral Description Small volume of sandy mud retained in zip-locked bag	locked bag	-		Barrel Length (m)	9	Bent barrel	z
						Penetration (m)	1	Catcher/Cutter bags	ı
						Core length (m)	0	Samples	1
						Sections	0	Tephra	z
						Fauna			unit
Sample p	Sample processing – core ID:	core ID:							
Section	Top depth (cm)	Btm depth L (cm)	Logged	Phys Props			Summary		
			·						
·									
·									
:									


TAN17	TAN1703 – MARCAN	ARCAN							
Core ID: Other ID:	TAN1703-28):	/03-28	Latitude: Longitude	de: tude:	Latitude: -45°00.634 Longitude: 172°02.185	Date/Time Depth (m):	me (NZST): m):	Date/Time (NZST): 25/04/2017 21:30 Depth (m): 1117	0
Sample D	Sample Description					Gear type	Piston corer	rer	
General L 20 cm to	General Description 20 cm top sample retair	eneral Description 20 cm top sample retained in zip-locked bag				Barrel Length (m)	Q	Bent barrel	z
						Penetration (m)		Catcher/Cutter bags	ı
						Core length (m)	4.16	Samples	1
						Sections	Ŋ	Tephra	z
						Fauna			unit
Sample p	Sample processing – core ID:	core ID:							
Section	Top depth (cm)	Btm depth Lo (cm)	Logged P	Phys Props		S	Summary		
1	0	100			1				
2	100	200			1				
S	200	300							
4	300	400							
S	400	416							
	·								

TANI703 - MARCAN Core ID: TANI703-28 Other ID Water Depth 111 m

TAN17	TAN1703 – MARCAN	ARCAN							
Core ID: Other ID:	TAN1703-29	/03-29	Lat Lor	Latitude: Longitude:	Latitude: -44°59.708 Longitude: 172°00.032	Date/Time Depth (m):	me (NZST): m):	Date/Time (NZST): 25/04/2017 23:10 Depth (m): 658	0
Sample D	Sample Description					Gear type	Piston corer	er	
General D	General Description					Barrel Length (m)	Q	Bent barrel	z
						Penetration (m)	,	Catcher/Cutter bags	ı
						Core length (m)	5.70	Samples	0
						Sections	9	Tephra	z
						Fauna			unit
Sample p	Sample processing – core ID:	core ID:							
Section	Top depth (cm)	Btm depth (cm)	Logged	Phys Props		Ñ	Summary		
1	0	100			ı				
2	100	200							
S	200	300							
4	300	400							
ß	400	500							
9	500	570							

TAN17	TAN1703 – MARCAN	ARCAN							
Core ID: Other ID:	TAN1703-30	/03-30	Lat Lor	Latitude: Longitude:	Latitude: -44°59.677 Longitude: 171°59.854	Date/Time Depth (m):	ne (NZST): n):	Date/Time (NZST): 26/04/2017 00:04 Depth (m): 652	74
Sample D	Sample Description					Gear type	Piston corer	er	
General D 31 cm top	General Description 31 cm top sample kept in liner	in liner				Barrel Length (m)	9	Bent barrel	z
						Penetration (m)	1	Catcher/Cutter bags	ı
						Core length (m)	3.85	Samples	1
						Sections	4	Tephra	z
						Fauna			unit
Sample pr	Sample processing – core ID:	core ID:							
Section	Top depth (cm)	Btm depth (cm)	Logged	Phys Props		۶۲.	Summary		
Ч	0	100			1				
2	100	200			1				
c	200	300							
4	300	385							
I	ı	ı							
ı									


TAN17	TAN1703 – MARCAN	RCAN							
Core ID: Other ID:	TAN1703-31 :	03-31	Lati	Latitude: Longitude:	Latitude: -44°58.311 Longitude: 171°58.104	Date/Time Depth (m):	ne (NZST): n):	Date/Time (NZST): 26/04/2017 01:58 Depth (m): 350	88
Sample D	Sample Description					Gear type	Piston corer	er	
General C Top samp	General Description Top sample retained in zip-locked bag	zip-locked bag				Barrel Length (m)	Q	Bent barrel	z
						Penetration (m)		Catcher/Cutter bags	ı
						Core length (m)	5.35	Samples	1
						Sections	9	Tephra	z
						Fauna			unit
Sample p	Sample processing – core ID:	core ID:							
Section	Top depth (cm)	Btm depth (cm)	Logged	Phys Props		Su	Summary		
1	0	100			1				
2	100	200			1				
£	200	300							
4	300	400							
Ŋ	400	500							
9	500	535			·				

TAN1703 – MARCAN Core ID: TAN1703-31	Other ID	Water Depth 350 m
100 010 010 010 010	Tan1703_31	

TAN17	TAN1703 – MARCAN	RCAN							
Core ID: Other ID:	TAN1703-32	03-32	Latit Lon <u></u>	Latitude: Longitude:	Latitude: -44°42.547 Longitude: 171°34.864	Date/Time Depth (m):	Time (NZST) (m):	Date/Time (NZST): 26/04/2017 05:01 Depth (m): 58.6	11
Sample D	Sample Description					Gear type	Piston corer	rer	
General D Small volu	General Description Small volume of materia	eneral Description Small volume of material retained in zip-locked bag	ked bag			Barrel Length (m)	9 (Bent barrel	z
						Penetration (m)	,	Catcher/Cutter bags	ı
						Core length (m)	0	Samples	1
						Sections	0	Tephra	z
						Fauna			unit
Sample pr	Sample processing – core ID:	ore ID:							
Section	Top depth (cm)	Btm depth Lc (cm)	Logged	Phys Props			Summary		
ı	ı				I				
ı	ı	,							
I	ı	,							
ı	ı	I							
I	ı	,							
•									

TAN1703 – MARCAN			
Core ID: TAN1703-32	Other ID	Water Depth	58.6 m
	Tan1703_32		
			Sm 8 10 10 10 10 10 10 10 10 10 10 10 10 10

TAN17	TAN1703 – MARCAN	RCAN							
Core ID: Other ID:	TAN1703-33	03-33	Lat Lor	Latitude: Longitude:	Latitude: -44°40.889 Longitude: 171°32.672	Date/Time Depth (m):	me (NZST): m):	Date/Time (NZST): 26/04/2017 05:41 Depth (m): 53	1
Sample Description	escription					Gear type	Piston corer	rer	
General D	General Description					Barrel Length (m)	Q	Bent barrel	z
						Penetration (m)		Catcher/Cutter bags	ı
						Core length (m)	0	Samples	0
						Sections	0	Tephra	z
						Fauna			unit
Sample pr	Sample processing – core ID:	ore ID:							
Section	Top depth (cm)	Btm depth (cm)	Logged	Phys Props		S	Summary		
ı					1				
I	ı	ı	·						
I	ı	ı							
ı	ı		·						
I	ı	ı							
ı									

