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The formalism of quantum estimation theory is applied to estimate the disorders in the positions
of two membranes positioned in a driven optical cavity. We consider the coupled-cavities and the
transmissive-regime models to obtain effective descriptions of this system for different reflectivity
values of the membranes. Our models consist also of high temperatures Brownian motions of
the membranes, losses of the cavity fields, the input-output formalism, and a balanced homodyne
photodetection of the cavity output field. In this two-parameter estimation scenario, we compare the
classical and quantum Fisher information matrices and evaluate the accuracies of the estimations.
We show that models prefer very different estimation strategies and the temperature does not have
a detrimental effect on the estimation accuracies but makes it more difficult to attain the quantum
optimal limit. Our analysis, based on recent experimental parameter values, also reveals that the
best estimation strategies with unit efficient detectors are measurements of the quadratures of the
output field.

I. INTRODUCTION

Parameter estimation is a crucial task at the heart of
engineering and physical sciences [1]. Quantum statisti-
cal inference attempts to find appropriate quantum mea-
surements or estimators, from which the value of one or
more parameters of a quantum mechanical system can
be estimated [2–4]. This task may not always guarantee
implementable measurements with current technologies,
and therefore one has to consider a family of quantum
measurements used in recent experimental setups. These
measurements generate data that is inherently random,
it is usually described by a probability density function
depending on the true values of the parameters to be es-
timated. Estimators are functions on the data and their
performance are usually assessed by their mean-squared
error or variance when they are unbiased. Being able to
place a lower bound on the mean-squared error or vari-
ance of any estimator provides us a benchmark against
which we can compare the performances of different es-
timation strategies. Although many lower bounds ex-
ist for classical systems [5], Cramér-Rao lower bound is
the one which has a straight extension to quantum sys-
tems and is by far the easiest to determine [6]. In the
multi-parameter estimation case with unbiased estima-
tors, which is our intention here, the covariance matrix
of the estimates is lower bounded by the inverse of the
quantum Fisher information matrix (QFIM) in terms of
matrix inequalities. Provided that we would like to per-
form inference in a quantum mechanical system with a
constrained set of quantum measurements, the process
of estimation is divided in our approach into two parts.
First, one determines the classical Fisher information ma-

trix (CFIM) from the probability density function of the
measurement data and investigates circumstances where
the CFIM is in the trace norm as close as possible to the
QFIM, which in terms of matrix inequalities is always
larger or equal than the CFIM [7]. Finally, in the classi-
cal postprocessing of measurement data, the attainability
of the Cramér-Rao lower bound is investigated. [8].

In this paper, we follow the above-described method-
ology for estimating the disorder in the positions of
mechanical membranes in an optical cavity. Multiple-
membrane cavity optomechanics is getting increasing at-
tention from the scientific community in the last decade.
In contrast with the standard optomechanical set-up of
a linear cavity composed of one fixed mirror and one
movable end mirror, the membrane-in-the-middle (MIM)
configuration sees the movable membrane, a dielectric
thick surface, in between the two fixed mirrors compos-
ing the optical cavity. The interesting features of this
set-up have been investigated both theoretically [9–11]
and experimentally [12]. The presence of the dielectric
material changes the properties of the optical mode, its
frequency, and therefore the position of nodes and anti-
nodes. Following these interesting results, the theoretical
investigation had shifted to multiple membrane-in-the-
middle (MMIM) configuration [13], where more mem-
branes are located inside the optical cavity. The analysis
of these systems showed promising features, like the en-
hancement of optomechanical coupling strengths based
on constructive interference [14–16].

Optomechanical systems are well-suited for studying
the nature of quantum mechanics of macroscopic objects
[17] as well as measuring weak forces with high sensitivity
and precision [18]. They lie at the heart of laser-based
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interferometric gravitational wave observatories [19], the
theoretical background of which has been known for sev-
eral decades [20, 21]. In such systems, the physical quan-
tity of interest is encoded in the displacement of the mov-
ing element, which must be estimated with the greatest
possible precision. These considerations carry forward to
the MMIM scenario, and in particular to systems with
two moving membranes, of which experimental investiga-
tions started only recently [22, 23]. However, previously
set rest positions of the membranes can be displaced due
to imperfections, and hence the precision of the whole
experimental setup is affected. Here, we provide a sys-
tematic estimation of disorders in the positions of the
membranes based on statistical inference. We follow and
extend our previous frequentist statistical inference ap-
proach [24], where the measurement data on a cavity
optomechanical system is obtained by determining the
output field of the cavity with the help of the input-
output relations [25] and measuring the escaping field by
balanced homodyne photodetection.
This paper is organized as follows. In Sec. II we intro-

duce two models describing the system when the reflec-
tivity of the membranes is either high or low. Then, we
employ the Heisenberg-Langevin equations to obtain the
steady-state and its fluctuations for the output field to
be measured. In Sec. III we discuss our multi-parameter
estimation strategy in the context of balanced homodyne
photodetection. Then, we apply our strategy to infer the
disorder in the positions of the membranes. In Sec. IV we
show the results and in Sec. V we draw our conclusions.
Detailed formulas supporting the main text are collected
in the four appendices.

II. MODEL

We consider an optical cavity of length L formed by
perfectly reflecting end mirrors and two identical vibrat-
ing dielectric membranes, which are placed inside the
cavity (see. Fig. 1). Each of these membranes has
reflectivity r, mass m, and mechanical frequency ωm.
Furthermore, they are bounded by a harmonic potential
mω2

mq̂2i /2, with q̂i being the position operator.
One is able to find the electromagnetic field inside the

cavity by solving the Helmholtz equation and setting the
proper boundary conditions [26]. However, the electric
susceptibility inside the full cavity has to be modeled in
order to incorporate both membranes [13]. In order to
make the canonical quantization of such a system possi-
ble, Ref. [27] has assumed a nonbirefringent membrane,
i.e, refractive index r does not depend on the polariza-
tion and propagation direction of the field, and also a
nondispersive one, i.e, electric susceptibility of the mem-
brane does not depend on the field’s frequency. Now,
based on the single membrane approach of Ref. [27] we
consider an identical second membrane. We assume that
the two membranes have independent suspensions and
therefore the second membrane is modeled as an addi-

FIG. 1: Schematic representation of the system. Two movable
dielectric membranes are placed inside a Fabry–Pérot cavity.
Further details about the scheme are in the text.

tive contribution to the Hamiltonian of Ref. [27]. If the
harmonic potentials bound both dielectric membranes
about their rest positions such that the average position
operator〈q̂i〉, (i = 1, 2) is small compared to the wave-
lengths of the field, then the linear approximation of
field-membrane couplings is valid and the Hamiltonian
reads

Ĥ =
∑

j

~ωj â
†
j âj +

2
∑

i=1

q̂i
∑

j,k

gijk

(

â†j â
†
k + â†j âk + h.c.

)

+

2
∑

i=1

[

p̂2i
2m

+
mω2

mq̂
2
i

2

]

. (1)

where âj (â†j) is the annihilation (creation) operator of
the jth field mode with frequency ωj , which is obtained
in the case when both membranes are in rest. Similarly,
the coupling constants gijk are [27]:

gijk =
∂ωj(q)

∂q

∣

∣

q=q
(0)
i

δj,k + Jijk, (2)

where δj,k is the Kronecker delta and q
(0)
i s (i = 1, 2) are

the rest positions of the membranes in the absence of
the electromagnetic field. Jijk is the coupling strength of
photon emission and absorption processes, which occur
between field modes j and k and are mediated by the ith
membrane. We have also the following property: Jijj = 0
for all i and j.
In this paper, we are interested in two different se-

tups, in which differences are marked by the reflectivity
of the membranes. When the reflectivity is high, one can
use the so-called coupled-cavities (CC) model, for which
three different modes are localized in the spacings be-
tween membranes and end mirrors. On the other hand,
when the reflectivity is low we consider the electromag-
netic field mode to be delocalized in the cavity. We dub
this model the Transmissive regime (TR). Both CC and
TR models have been largely investigated in literature
[12, 13, 28] and represent the two most pursued effec-
tive models for multiple optomechanical systems. Our
goal is to show the differences and analogies during an
estimation process.



3

A. Dissipative dynamics

Membranes interact with the surrounding gas atoms
and are also coupled to the environment through the
suspensions. Their dynamics are slow compared to the
correlation times of the environments. This is the char-
acteristic case of quantum Brownian motion and without
loss of generality, we consider this as the only dissipative
mechanism of the membranes, though, loss of mechanical
excitations is a rich phenomenon. [29]. Quantum Brown-
ian motion in a harmonic potential mω2

mq̂
2/2 is described

by the following Heisenberg equations of motion

˙̂q =
p̂

m
, (3)

˙̂p = −mω2
mq̂ − γp̂+ ξ̂.

where γ is the strength of the friction force. The operator

ξ̂ represents the quantum Brownian noise and we consider
that the environment was initially in a thermal equilib-
rium state with temperature T . In the high-temperature
limit, which is valid at room temperatures, the two-time

correlation function of ξ̂(t) reads [30]:

〈ξ̂(t)ξ̂(t′)〉 = 2mγkBTδ(t− t′).

Any mode of the field inside the optical cavity is sub-
ject to photon leakage through mirrors and membranes,
which couple the inside field with the continuum of the
outside field modes. The dynamic of any optical cav-
ity mode is well described by the Heisenberg-Langevin
equation [31]. Based on the input-output formalism this
equation is given by the time evolution of the single mode
field operator â subject to decay κ and affected by noise,
which appears explicitly as the input field âin. This equa-
tion reads

dâ

dt
= −κ

2
â+

√
κâin, (4)

where we have omitted, for now, the full Hamiltonian
evolution of the system. The input operator âin asso-
ciated with the vacuum fluctuations of the continuum
of modes outside the cavity is delta correlated in the
vacuum state 〈0|[âin(t), â†in(t′)]|0〉 = δ(t − t′). This is
because the field modes have optical frequencies and
thus the average number of thermal photons for these
frequencies at room temperature is approximately zero.
Furthermore, we can use the same input-output theory
to describe the losses induced by the manufacturing er-
rors of the membranes. As a result, in the CC model,
each subcavity can experience a different decay rate κj

(j ∈ {1, 2, 3}). In the case of the TR model, we consider
only one decay rate for the single mode field.

B. Coupled-cavities (CC)

When two membranes are placed inside an optical cav-
ity, then there are three spacing or inner cavities between

the membranes and the mirrors. We denote the length of
each inner cavity by L/3 and thus the difference between

the rest positions of the membranes q
(0)
2 − q

(0)
1 = L/3.

If the reflectivity of the membranes is one, i.e., r = 1,
and they are resting, the optical cavity consists simply of
three uncoupled inner cavities with eigenfrequencies

ωn =
3nπc

L
, (5)

where n is a positive integer and c is the speed of light.
Provided that the reflectivity is slightly smaller than one
then the three inner cavities become coupled. Further-
more, we consider that in each inner cavity only one field
mode is dominant with frequency ωc. This condition can
be achieved by driving the system with a laser such that
only these selected modes are enhanced [13]. Therefore,
we consider a laser with frequency ωL and intensity ε
driving the first inner cavity (j = 1) having a mirror for
the left and a membrane for the right boundary. Now,
if in (1) we neglect scattering processes between domi-
nant and non-dominant modes and also the two-photon
processes, we obtain

HCC =

3
∑

j=2

~∆0â
†
jâj + i~ε(â†1 − â1)

+

2
∑

i=1

[

~gq̂i(â
†
i âi − â†i+1âi+1) (6)

+
p̂2i
2m

+
mω2

mq̂
2
i

2
+ ~Jâ†i+1âi + ~Jâ†i âi+1

]

,

where ∆0 = ωc − ωL, g = g111 = g122 = g222 = g233 and
J = g112 = g121 = g223 = g232, see Eq. (2). Note that
Hamiltonian (6) is already expressed in a rotating-frame
of all three modes of the field with frequency ωL [29].
The ith and (i + 1)th modes are located at the left

and right of the ith (i ∈ {1, 2}) membrane respectively
and therefore they exert an opposite light pressure on
this membrane, which is reflected on the different signs
of the coupling between the mechanical motion of the
membrane and the two adjacent single mode fields. The
electromagnetic field either passes through or pushes the
membranes, where these effects are characterized by the
hopping rate J and uniform optomechanical coupling g.
Both processes influence the motion of the membranes
and thus the Hamiltonian can describe rich physics,
though, due to the number of assumptions involved is
still a “minimal”-model. In fact, the optical hopping be-
tween the inner cavities accounts for the non-perfect re-
flectivity of the membranes, and for example, a classical
understanding of the hopping rate with the method of the
transfer matrix yields the relation J = ωc

√

2(1− r) [12].
A standard procedure consists of linearizing the dy-

namics by expanding the Hamiltonian around the steady-
state [29], which is reached due to decoherence and ex-
citation losses in the system, see Sec. II A for further
details. This procedure is defined through the transfor-
mations âj → αj + âj and q̂i → qi + q̂i, where αj and
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qi represent the steady state solutions for the jth field
mode and the ith membrane respectively. The transfor-
mation is applied to the dynamics of the system, (see
Appendix A), and doesn’t affect the momentum opera-
tors p̂i [24]. The new operators describe the fluctuations
around the steady-state and second-order terms in the
transformed Hamiltonian are neglected. Finally, we can
find the Hamiltonian that rules the dynamics of the fluc-
tuation operators, which reads

HCC,quad =

3
∑

j=1

~∆j â
†
j âj +

2
∑

i=1

(

~Jâ†i+1âi + ~Jâ†i âi+1

+~gq̂i(αiâ
†
i − αi+1â

†
i+1 + ᾱiâi − ᾱi+1âi+1)

+
p̂2i
2m

+
mω2

mq̂
2
i

2

)

, (7)

where the detunings ∆j and the steady-state amplitudes
αj for the jth (j ∈ {1, 2, 3}) inner cavity can be obtained
as a function of parameters of the Hamiltonian and loss
mechanisms. We denoted ᾱ as the complex conjugate of
α. We use this quadratic Hamiltonian to calculate the
dynamics of the fluctuations and estimate the disorder in
the positions of the membranes.

C. Transmissive regime (TR)

We now consider a different situation, where only one
mode is present in the whole cavity and interacts with
each of the membranes. This can be realized in what
is called the transmissive regime [14] of the membrane
stack. In general, for any value r of a Nm membranes
system, one can find Nm+1 selected lengths L/(Nm+1)
of the inner cavities, such that the global reflectivity of
the whole membrane set drops to zero. Thus, the field
sees the membrane stack as a single membrane with low
reflectivity, regardless of the original value of r. An an-
alytical expression for the different optomechanical cou-
pling strengths can also be obtained by using the trans-
fer matrix method [22, 28]. This is our starting point,
where we consider a single mode field with frequency ωc

in the whole optical cavity. A laser with frequency ωL

and intensity ε is also driving this mode. Now, we obtain
another subcase of (1), which reads

HTR = ~

(

∆0 +

2
∑

i=1

giq̂i

)

â†â

+

2
∑

i=1

(

p̂2i
2m

+
mω2

mq̂
2
i

2

)

+i~ε(â† − â), (8)

where ∆0 = ωc − ωL, g1 = g111, and g2 = g211, see
Eq. (2). We immediately went to the rotating-frame
of the field mode with frequency ωL and assumed the
disorder-free optomechanical coupling strengths of both
membranes are equal.

The Hamiltonian which describes the dynamics in
terms of the fluctuation is immediate. Based on the ar-
guments of Sec. II B this Hamiltonian in the transmissive
regime reads

HTR,quad = ~

[

∆â†â+

2
∑

i=1

giq̂i(αâ
† + ᾱâ)

]

+

2
∑

i=1

(

p̂2i
2m

+
mω2

mq̂
2
i

2

)

, (9)

where the equations yielding the detuning ∆ and the
steady-state amplitude α are found in Appendix B.

D. Heisenberg-Langevin equations

In the following, we present a general formalism that
applies to both quadratic Hamiltonians in (7) and (9).
We collect the operators of both dynamics into vectors
of operators

c(CC) = (X̂1, Ŷ1, X̂2, Ŷ2, X̂3, Ŷ3, p̂1, p̂2, q̂1, q̂2)
T , (10)

c(TR) = (X̂, Ŷ , p̂1, p̂2, q̂1, q̂2)
T , (11)

where the superscript T denotes the transposition and
we have introduced the quadratures X̂ = (â† + â)/

√
2

and Ŷ = i(â† − â)/
√
2. We write the corresponding

Heisenberg-Langevin equation as

d

dt
c(m) = A(m)c(m) + η(m), m ∈ {CC,TR},

(12)

where η(m) is the vector of all noise operators:

η(CC) = (
√
κ1X̂

in
1 , . . . ,

√
κ3Ŷ

in
3 , ξ̂, ξ̂, 0, 0)T ,

η(TR) = (
√
κX̂ in,

√
κŶ in, ξ̂, ξ̂, 0, 0)T .

The dynamical matrices A(CC) and A(TR) contain terms
obtained from the quadratic Hamiltonians and their ex-
plicit forms can be found in Appendices A and B. Finally,
the formal solution of (12) reads

c(m)(t) = exp
[

A(m)t
]

c(m)(0) (13)

+

∫ t

0

dt′ exp
[

A(m)(t− t′)
]

η(m)(t′).

The quadratic Hamiltonians in (7) and (9) together
with the loss mechanisms ensure that the state of the
fluctuations is Gaussian [32]. As the fluctuations around
the steady-state have zero means, it is immediate that
this Gaussian state is fully described by the symmetric
auto-correlation matrix

σ(t, t′) =
1

2
〈c(t)c(t′)T + c(t′)c(t)T 〉. (14)
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We use the solutions of the quantum Langevin equa-
tions (13) to find σ(t, t) in the stationary limit t → ∞.
Provided that the both systems are stable, where condi-
tions are derived by using the Routh-Hurwitz criterion
[33], σ = limt→∞ σ(t, t) fulfills the following Lyapunov
equation [24].

Aσ + σAT = −D, (15)

where

D =

∫ ∞

0

dτ [M(τ) exp(AT τ) + exp(Aτ)M(τ)], (16)

and

M(t− t′) =
1

2
〈η(t)η(t′)T + η(t′)η(t)T 〉 (17)

is noise correlation matrix. In particular, the matrix en-
tries are:

[M ]
X̂iX̂j

(t− t′) = [M ]
ŶiŶj

(t− t′) =
κi

2
δi,jδ(t− t′)

[M ]p̂ip̂j
(t− t′) = 2mγkBTδi,jδ(t− t′).

Any experiment seeking to infer one or more parame-
ters of this system has to perform measurements on the
cavity output field. With the help of the input-output
relations and considering that the output field possesses
the same correlation functions as the optical input field,
we have

âout =
√
κâ− âin, (18)

from which we can find the output correlation matrix
σout.

As the measurement is performed in a finite time inter-
val τ , only some frequencies are accessible to a detector.
Hence, we can define the filter function gl(t) [34], which
accounts for a finite period of detection and is

gl(t) =
θ(t) − θ(t− τ)√

τ
e−iΩlt, (19)

with Ωi − Ωj = 2π
τ
n and n ∈ N. The latter condition

allows us to define N independent output modes

aoutl (t) =

∫ t

−∞
dsgl(t− s)âout(s), l = 1, . . . , N, (20)

which are centered at the frequency Ωl and with band-
width 1/τ . Following our previous results in [24, 35],
one can obtain the entries of the 2× 2 correlation matrix

σout
l as

σout
l,XX =

1

2
κτsinc2

(

Ωlτ

2

)

[(σXX − σY Y ) cos(Ωlτ)

+ σXX + 2σXY sin(Ωlτ) + σY Y ] +
1

2
(21)

σout
l,XY =

1

2
κτsinc

(

Ωlτ

2

)2

[(σY Y − σXX) sin(Ωkτ)

+ 2σXY cos(Ωlτ)] (22)

σout
l,Y Y =

1

2
κτsinc2

(

Ωlτ

2

)

[(σY Y − σXX) cos(Ωlτ)

+ σXX − 2σXY sin(Ωlτ) + σY Y ] +
1

2
, (23)

where σAB =
〈

ÂB̂
〉

(A,B ∈ {X,Y }) are the entries

of matrix σ and sinc(x) is the unnormalized sinc func-
tion sinc(x) = sin(x)/x. In the TR model, σXX , σXY ,
and σY Y are obtained directly from (15), because there
is only one mode of the field. The situation in the CC
model is different, the output field will leak from the last
(j = 3) inner cavity and after solving the correspond-
ing Lyapunov equation σX3X3 , σX3Y3 , and σY3Y3 have to
substituted into Eqs. (21), (22), and (23) to obtain σout

l .

Thus, the state of output field fluctuations is given by
the Gaussian Wigner function

W (ξ) =
1

2π
√

det(σout
l )

e−
1
2R

T [σout
l ]−1

R, (24)

where R = (Xout
l , Y out

l )T .

E. Effects of disorder in the positions of the
membranes

In the following, we are going to present effective
versions of both models by assuming that the shift of

the equilibrium position from q
(0)
i to qi = q

(0)
i + δqi

(i ∈ {1, 2}) affects only two main parameters, the fre-
quencies of the field modes and the optomechanical cou-
plings. Provided that δqi ≪ L, the resonance frequency
ωc of all three inner cavities in the CC model changes as
[11]

ωj ≈ ωc [1− 3 (δqj − δqj−1) /L] ,

where j ∈ {1, 2, 3} and δq0 = δq3 = 0, because the end
mirrors are assumed to not change their positions. There
is only one field mode in the case of the TR model, which
changes according to the following function [22]

ωc(q1, q2) =
nπc

L
+(−1)n

c

L
arcsin [F (q1, q2)]−

c

L
θ(q1, q2),

(25)
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where

F (q1, q2) =
2
√
r cos [k(q1 + q2)] sin [k(q2 − q1)]
√

1 + r2 − 2r cos [2k(q2 − q1)]
,

θ(q1, q2) = arcsin

[ √
r sin [2k(q2 − q1)]

√

1 + r2 − 2r cos [2k(q2 − q1)]

]

,

k = nπ/L and n is fixed such that the above formula
yields the cavity mode with frequency ωc when δq1 =
δq2 = 0. It is worth noting that the phase related to the
reflection of the membranes is set here to zero [22].
The optomechanical couplings strength is the deriva-

tive of the optical mode frequencies at the position of
the ith membrane qi, see Eq. (2). In the case of the CC
model, the optomechanical couplings of both membranes
are changed to [11]

gi(qi) =
nπc

L2

√
r sin (2kqi)

√

1− r cos2 (2kqi)
, i ∈ {1, 2},

where g1(q
(0)
1 ) = g2(q

(0)
2 ) = g and we have assumed that

the disorder in the position of one of the membranes on
the optomechanical coupling strength of the other mem-
brane is negligible. Furthermore, we consider that the
mode functions of each field mode in the three cavities
are not changed significantly and thus the membrane in-
duced coupling J also remains unaffected [27]. Finally,
in the TR model using Eq. (25) the new optomechanical
couplings are

gi =
∂ωc(q1, q2)

∂qi

∣

∣

qi=q
(0)
i +δqi

, i ∈ {1, 2},

and when δq1 = δq2 = 0 then we reobtain the optome-
chanical couplings g1 and g2.
Therefore, in both models the steady state solutions

will also depend on δq1 and δq2, which have to also be
taken into account in the dynamical matrices A(CC) and
A(TR), see Appendices A and B.

III. ESTIMATION

In this section, we employ an estimation strategy con-
cerning the inference of the disorders δq1 and δq2. Our
starting point is the family of Wigner functions W (δq)
with δq = (δq1, δq2)

T in Eq. (24) that describes the pos-
sible states of the output field. In general, estimation
aims to produce estimates of the unknown disorders from
repeated measurements. These measurements are con-
strained by current technologies, which from the mathe-
matical point of view means that we have access only to
a subset of all possible positive-operator valued measures
(POVM). A lower bound on the variance of any unbiased
estimator is given by the Cramér-Rao inequality for both
classical and quantum systems. Best-unbiased estimators
are those, who can attain this bound. Finding the best-
unbiased estimator, which might not even exist, is not an

easy task, nonetheless when we also include the reduced
number of implementable measurements, i.e., the case of
our investigation. Therefore, given a set of measurements
with tunable parameters, the best-unbiased estimators
will be then those whose covariance matrix in a properly
chosen norm gets close to the Cramér-Rao lower bound.
An outline of our view on the estimation approach is

the following:

• An output field of the cavity is subject to bal-
anced homodyne photodetection (BHD). Based on
our theoretical model these measurements provide
us a probability density function (PDF), which is
functionally dependent on δq.

• Then, we investigate the circumstances, where the
classical Fisher information is the closest to its up-
per bound or benchmark value, i.e., the quantum
Fisher information. This step will set the values
of the experimentally tunable parameters and thus
providing the best PDF.

• After obtaining the best PDF out of BHD, one has
to do classical postprocessing of measurement data.
As soon as the PDF is known and the measurement
data is available, a standard decision-making pro-
cess of finding the best classical estimator is carried
out.

In our two-parameter estimation scenario, the covari-
ance matrix C(δq) of the estimates δq = (δq1, δq2)

T ful-
fills [7]

C(δq) ≥ F−1 ≥ H−1, (26)

in terms of matrix inequalities, where F and H are the
classical and quantum Fisher information matrices, re-
spectively. In this sense the difference matrix F−1−H−1

is always non-negative definite.
The quantum Fisher information matrix (QFIM) de-

pends only on the family of states ρ(δq) and its compo-
nents are

Hij =
1

2
Tr
[

ρ̂(δq){L̂δqi , L̂δqj}
]

, i, j ∈ {1, 2}, (27)

where {, } denotes the anticommutator and L̂δqi is the
symmetric logarithmic derivative (SLD) operator,

∂

∂δqi
ρ̂(δq) =

1

2

{

ρ̂(δq), L̂δqi

}

. (28)

We have already obtained the phase space represen-
tation W (δq) of the density matrix ρ̂(δq) and therefore
similarly to our approach in Ref. [24], we derive the QFIM
from the Gaussian Wigner function in Eq. (24). We ne-
glect the subscripts of σout

l in the subsequent discussion
because we focus on the only mode of the electromag-
netic field that is subject to detection, i.e., σ = σout

l .
Furthermore, we also write R = (Xout

l , Y out
l )T = (x, y)T .
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The Weyl transform of the 2 SLD operators Lδqi is
quadratic and can be written as

Li(x, y) = RTΦiR− νi, (29)

with Φi = −∂δqi(σ
−1)/2 and νi = Tr[Φiσ]. Conse-

quently, we find the Weyl transform L
(2)
ij (x, y) of the

operator 1
2{L̂δqi , L̂δqj }, see the details in Appendix C.

Now, we can calculate the elements of QFIM by using
the phase space representation as

Hij =

∫

dx dy L
(2)
ij (x, y)W (x, y). (30)

Finally, we obtain

Hij = 3Tr[(ΦiσΦjσ)] − νiνj (31)

+

(

detσ − 1

2

)

(Φi
11Φ

j
22 +Φj

11Φ
i
22 − 2Φi

12Φ
j
12).

It is worth mentioning that in the case of i = j (31)
reduces to Eq. (37) of Ref.[24].
On the other hand, the CFIM F depends on the PDF

of the measurements. The entries are

Fij =

∫

dkP (k; δq) [∂δqi lnP (k; δq)]
[

∂δqj lnP (k; δq)
]

,

(32)
where i, j ∈ {1, 2} and P (k; δq) is the PDF parameter-
ized by the unknown δq, which describes the probability
of observing the outcome k. As we have already out-
lined, we consider BHD measurements, which has been
proved in Ref. [24] to be an optimal measurement for
the inference of the optomechanical coupling strength in
a standard moving-end mirror setup. The Weyl trans-
form of the BHD POVM is

Πη
k(x, y) =

√

2η

π(1− η)
exp

[

−
2η(k − x cos θ+y sin θ√

2
)2

1− η

]

.

(33)
where k is an outcome of the measurement, η is the de-
tector efficiency and θ is the measured phase quadra-
ture. This formula is usually obtained by considering an
intense coherent local oscillator that interferes with the
single mode field state to be measured at a 50/50 beam
splitter. Then, the two modes emerging from the beam
splitter are measured by two photodetectors and the dif-
ference of the photon numbers n12 is retained. These
considerations yield k = n12/(2η|αLO|) where |αLO|2 is
the mean photon number of the local oscillator’s state.
The PDF P (k; δq) is obtained by integrating the prod-

uct of the phase space representation of BHD in Eq. (33)
and the Wigner function,

P (k; δq) =

√

rηθ (σ)

2π
exp

[

−rηθ (σ)k
2/2
]

, (34)

where we have introduced the function

rηθ (σ) =
4η

1− η + 2ηRT
θ σRθ

with Rθ = (cos θ, sin θ)T . Now, we employ Eq. (32) to
find the entries of matrix F and get

Fij =















2η2
(RT

θ ∂δqi
σRθ)(RT

θ ∂δqj
σRθ)

(1−η+2ηRT
θ
σRθ)

2 , if i 6= j

2η2
(

RT
θ ∂δqi

σRθ

1−η+2ηRT
θ
σRθ

)2

, if i = j
(35)

To search for conditions under which the remoteness
between CFIM and QFIM is as small as possible we em-
ploy the trace norm to quantity this distance by

d = ‖H − F‖1. (36)

This norm distance d is a function of all parameters of
the model and the measurement scenario as well. In the
multiparameter estimation scenarios usually, there is no
optimal measurement to reach equality H = F [36]. In
addition, we are only dealing with the subspace of all
possible POVMs and our strategy will be to find the min-
imum of d within the experimentally available parameter
space.
Finally, we are going to show how classical estimation

is going to work on the obtained data. Based on the
PDF in Eq. (34) an experiment can obtain a finite sam-
ple k = {k1, , k2, . . . kN}. After observing k, we shall
want to estimate the values of δq. We denote this esti-
mate in vector notation as δq̃(k), which is the estimator
applied on the data space. We assume that all obser-
vations are effectively independent because the values of
the integrated photocurrents in BHD are recorded per
pulse [37]. Then,

P (k; δq) =

N
∏

i=1

√

rηθ (σ)

2π
exp

[

−rηθ (σ)k
2
i /2
]

. (37)

It is straightforward to check that
∫

dkP (k; δq) [∂δqi lnP (k; δq)] = 0, ∀δqi (38)

with i ∈ {1, 2}. Therefore, an unbiased estimator δq̃(k)
attains the Cramér-Rao lower bound if and only if [8]

∂ lnP (k; δq)

∂δq
= I(δq) [δq̃(k)− δq] , (39)

where I is some 2× 2 matrix. The left-hand side of (39)
reads

∂ lnP (k; δq)

∂δq
=

[

∂ lnP (k;δq)
∂δq1

∂ lnP (k;δq)
∂δq2

]

(40)

=





ηRT
θ ∂δq1

σRθ

1−η+2ηRT
θ
σRθ

(

4η
∑N

i=1 k2
i

1−η+2ηRT
θ
σRθ

−N
)

ηRT
θ ∂δq2

σRθ

1−η+2ηRT
θ
σRθ

(

4η
∑N

i=1 k2
i

1−η+2ηRT
θ
σRθ

−N
)



 .

We observe that this vector cannot be written in the form
required by (39)

[

I11(δq) I12(δq)
I21(δq) I22(δq)

] [

δq̃1(k)− δq1
δq̃2(k)− δq2

]

, (41)
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and therefore, an efficient unbiased estimator does not
exist. However, one can still look for minimum variance
unbiased estimators by using the concept of complete suf-
ficient statistics and the Rao-Blackwell-Lehmann-Scheffe
theorem [38, 39]. By examining the PDF one can realize
that

T (k) =

[

N
∑

i=i

k2i ,

N
∑

i=i

k2i

]T

. (42)

is a sufficient statistic for δq1 and δq2. Taking the expec-
tation value produces

∫

dkP (k; δq)T (k) =

[

N
1−η+2ηRT

θ σRθ

4η

N
1−η+2ηRT

θ σRθ

4η

]

. (43)

The task is to find two functions f1 and f2 such that

∫

dkP (k; δq)fi [T (k)] = δqi, i ∈ {1, 2}. (44)

However, this turns out to be difficult because σ is the
solution of the Lyapunov equation (15) where A contains
δq1 and δq2. In fact, σ is a function of the eigenvalues
and eigenvectors of A, which depend on the parameters
to be estimated. As A is either a 6 or 10 dimensional
matrix in our models (TR and CC) and the fact that
finding analytical roots to general polynomial equations
of degree five or higher is not possible shows that the two
functions f1 and f2 cannot be determined analytically.
We have seen so far that the above two attempts

fail analytically and the complete sufficient statistic ap-
proach may work with a considerable numerical effort. As
next, the maximum likelihood approach could be tried,
if P (k; δq), the likelihood function, can be maximized ei-
ther analytically or numerically. The likelihood equations
are

∂ lnP (k; δq)

∂δqi

∣

∣

∣

∣

δq=δq̃(k)

= 0, i ∈ {1, 2}, (45)

which yield two equations. These equations differ only
in a non-zero factor and because on the right-hand side
stays zero, we get only one equation to be solved

RT
θ σ
(

δq̃1(k), δq̃2(k)
)

Rθ =
2

N

N
∑

i=i

k2i −
1− η

2η
. (46)

This equation has to be solved numerically for a given
sample k including the second partial derivative test
with the Hessian matrix of P (k; δq), which assures that
we have found the maximum of the likelihood function.
This approach guarantees estimates which are efficient
asymptotically, i.e., N → ∞. If one cannot succeed with
the maximum likelihood approach then there is still the
method of moments, however, these estimators are not
optimal, and extracting the estimates of δq1 and δq2 out
of σ can only be solved numerically.

IV. RESULTS

In this section, we numerically investigate the norm
distance d between CFIM and QFIM for an experimen-
tally feasible situation. In Sec. III we have discussed the
strategy of the estimation and argued that the estima-
tors of the disorders can be found numerically from the
measurement data. Therefore, we aim to minimize d for
the experimentally tunable parameters so that the post-
processing of the measurement data results in estimators
with variance close to the benchmark value defined by
QFIM. We are going to analyze both the CC and TR
models presented in Sec. II.
For our numerical analysis, we take the experimental

values from [22], where the optomechanical interaction
has been studied for different input powers of the driving
field. The cavity intensity decay rate κ/2π was found to
be 83 kHz. We consider the CC model to possess equal
decay rates κ1 = κ3 = κ for the first and third inner
cavities. Furthermore, we also assume that the middle
inner cavity decay rate κ2 ≪ κ, because the two mem-
branes may absorb photons or scatter them out of the
cavity, but this loss is negligible compared to the photon
leakage at the end mirrors. In the TR model, there is
only one decay rate. Photodetectors are considered to
stay on for a temporal window of length τ = 1/κ. Inten-

sity ε of the driving field is equal to
√

2κP/~ωL, where
P is the power of the laser. The largest optomechani-
cal coupling strength g/2π = 0.30 Hz was obtained for
low power, i.e, P = 130 µW, with γ/2π = 1.64 Hz and
ωm/2π = 235.81 MHz. Both membranes have the same
masses m = 0.72 ng and reflectivities r = 0.33, while the
experiment was performed at room temperature T = 300
K. The low reflectivity of the membranes indicates that
this experiment corresponds more to the TR model.
In order to address the CC model as well, we need to

assume that the same experiment can be carried out with
different membranes yielding much larger reflectivity val-
ues. In this context, the hopping rate J which couples
the modes of the CC model is obtained by setting the
three inner cavity mode amplitudes to be approximately
the same. An application of a driving laser from the left
populates the mode of the left inner cavity, and without
a sufficient large hopping rate there is a risk of leaving
the mode of the right inner cavity very low populated or
empty, and thus making impossible the detection proce-
dure. A proper choice of the hopping constant, in our
case a value J ≈ 200kHz, prevents this to happen. With
the formula J = ωc

√

2(1− r) [12], we can find the reflec-
tivity of our membrane, yielding r ≈ 1, which makes the
CC model suitable to describe the system.
Our aim is to investigate the CFIM and the QFIM

around these experimental values. The CFIM depends
also on the detectors efficiency η and the phase θ of the
BHD. We assume η = 1, as existing detectors are already
close to ideals [40] and the destructive effects of non-ideal
detection efficiency are known [24]. Taking the inverse of
CFIM and investigating the diagonal elements, which are
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FIG. 2: Semi-logarithmic plot of quantum and classical lower
bounds of the variance V ar(δq1) expressed in m2 as a function
of Ωl/ωm. a) CC model. b) TR model. The experimental
values are taken from [22].

the lower bounds of the variances of the estimators δq̃1
and δq̃2 in this BHD scenario, one can understand the
dependence on the phase θ. We have retrieved minimum
values at θ̃(CC) = 0, and θ̃(TR) = π/2, both with a pe-
riod of π. Those values can be obtained numerically and
depend strongly on the experimental values considered.

Once we have optimized for the detector’s phase, we
need to understand which central frequency Ωl of the fil-
ter function gives us the best accuracy on the estimation
of the disorders. Therefore, one has to calculate the in-
verse of QFIM and investigate both diagonal elements of
H−1, which are the smallest lower bounds of the vari-
ances of the estimators δq̃1 and δq̃2. Fig. 2 shows that
the minimum variance is obtained at Ωl = 0, i.e. in cor-
respondence of the frequency of the driving laser. This
result is valid for both the CC and the TR models.

Beside this similarity, the two models don’t share the
same features. In fact, whereas for the TR model the
BHD appears to be an optimal measurement, as the clas-
sical and quantum lower bounds for the variance coincide,
for the CC model this measurement scenario is far from
saturating inequality (26) as both the diagonal compo-
nents of the inverse of classical and quantum Fisher infor-
mation matrix differ of many orders of magnitude. How-
ever, it is worth to notice that when the CC model is
considered, BHD is able to offer estimates of disorders in
the positions of the two membranes with extreme accu-

FIG. 3: Semi-logarithmic plot of distance d in trace norm
as a function of Ωl/ωm. a) CC model. b) TR model. The
experimental values are taken from [22].

racy, i.e., V ar(δq̃1) and V ar(δq̃2) ∼ 10−10 − 10−16m2.
Fig. 3 shows the distance d in trace norm as a func-

tion of the filter frequency Ωl. For the CC model, the
CFIM and the QFIM are far from each other, as d is
very large, suggesting the BHD is not the optimal mea-
surement. However, we can be relieved by the fact the
variances at Ωl = 0 are very small (see Fig. 2). This
is different in the TR model, where under optimal con-
ditions (η = 1, θ = θ̃(TR)), we have found that d goes
to zero when Ωl = 0. We notice that d is very small
also for other values of Ωl, but on those points, the lower
bound of the variance is larger (see Fig.2). This results
in a poor estimation of the membrane position, with an
uncertainty larger than the size of the cavity itself. This
condition can easily be overcome by taking enough num-
ber N of identical and independent measurements, which
ultimately decreases the lower bound by a factor of 1/N .
Our analysis shows that in the TR model little informa-
tion about the position of the membranes is contained in
the state of the output field. Therefore, one has to tune
the system parameters such that d and the lower bound
of the variance are getting close to a minimum.

The true values of the disorders largely modify the
value of d. In Fig. 4 we plot the resulting distance d
in trace norm for the TR model, calculated as a func-
tion of δq1, keeping δq2 = 0. For a possible value of the
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FIG. 4: a) Semi-logarithmic plots of distance d in trace norm
as a function of the disorder δq1. b) The cavity frequency ob-
tained by varying the prepared position of the first membrane
with the disorder δq1 and keeping δq2 = 0. In b) the hori-
zontal line refers to the cavity natural frequency in absence
of membranes. Both figures belong to the TR model.

disorder δq1 ∼ 0.5µm, the distance between CFIM and
QFIM is further reduced and the estimation gets closer
to the optimal. Analogous results are obtained when we
keep δq1 fixed and we vary the disorder for the other
membrane. We notice that d has the same period of the
cavity frequency as expressed in Eq. (25), and its min-
ima are reached when ωc is at maximum. Fig. 5 shows
how the variances lower bounds decreases with increasing
temperature. The reason for this unexpected result has
to be searched in the noise matrix D of Eq. (16), from
which we derive the correlation matrix σ, that has terms
proportional to T . The off-diagonal component of the in-
verse matrix H−1 decreases, as the increase of tempera-
ture lowers the correlations between the two membranes.

Finally, we consider only the TR model and we check
the results when we change the reflectivity of the two
membranes. Whereas the CC model is defined only for a
high reflectivity r ≈ 1 membrane, the TR model can be
used for any value of r. Fig. 6 shows the lower bounds
of the variance increases with the reflectivity r of the
membrane, where we found it varies as the inverse of
n̄2 = |α|4, squared mean photon number in the cavity.
The high reflectivity screens the radiation from passing
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FIG. 5: Log-log plots of the quantum lower bounds of the
variances expressed in m2 as a function of the temperature T .
a) CC model. b) TR model. H−1

12
gives information on the

correlation of the data used for estimating the two disorders
δq1 and δq2.

through the membranes and lowers the rate of photons
leaving the cavity, which results in an increased lower
bound of the variance.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have investigated an optomechani-
cal setup with a driven cavity containing two oscillating
membranes. We have considered two possible theoretical
models for the description of this system. The CC model
focuses on a case, where three coupled single modes of
the electromagnetic field are present in the inner cavities
defined by the two membranes and the mirrors of the cav-
ity. In the TR model, it is assumed that a global single
mode of the radiation field is present in the whole cav-
ity. Range of applicability of these models strongly de-
pends on the reflectivity of the membranes. Our models
consider also high-temperature quantum Brownian mo-
tions of the membranes, photon losses of the cavity fields,
and the input-output formalism for the description of
the output field escaping the cavity. In typical cavity
optomechanical experiments, the estimation of parame-
ters like the optomechanical coupling is done by detect-
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FIG. 6: a) Log-log plot of the quantum lower bounds of the
variances in m2 as a function of the reflectivity r. b) Log-log
plot of the mean photon number n̄ in the cavity as a function
of the reflectivity r. Both figures belong to the TR model.

ing the light transmitted by the cavity, which is similar
to our theoretical approach presented here. Within the
CC and TR models, we have considered estimations of
disorders in the positions of the membranes. For these
estimations, the data is obtained via BHD of the escap-
ing field and thus the estimators of disorders mapping the
data into estimates have accuracies related to the CFIM.
The quantum optimal accuracies are obtained from the
QFIM. Without solving, in particular, the attainability of
the CFIM related bounds by some unbiased estimators,
we have focused from a purely theoretical point of view
on the attainability of QFIM by CFIM. It is indeed true
that most of the estimators even during classical post-
processing of data are unable to attain the Cramér-Rao
bound [38], but there is still a well-understood decision-
making process in estimator selection. In this view, our
analysis serves the purpose of characterizing the chosen
measurement setup for a certain estimation case, here the
estimation of the disorders.
A comparison of CFIM and QFIM shows that the

phase θ of the local oscillator in the BHD results in spe-
cific angles for an optimal estimation. In the unit de-
tector efficiency limit we have obtained θ = 0, i.e, mea-
suring the distribution of quadrature X of the output
field, for the CC and θ = π/2, i.e, measuring the distri-
bution of quadrature P of the output field, for the TR
model. This marked contrast could be an important help

for experimental setups with different reflectivities of the
membranes. With respect to the frequency of the filter-
ing function used in input-output relations, both models
deliver different optimal frequencies for the distance of
QFIM and CFIM. However, it still seems when the fre-
quency of the filter function matches the frequency of the
driving laser a good enough accuracy can be obtained.
Actually, there is an interesting effect, namely for certain
values of parameters the CFIM might saturate QFIM,
however, the related accuracies of the estimation could
be very bad. Whenever is this the case we have indi-
cated it, because we need not only to obtain saturation,
but we have also to make sure that the related estimation
precisions are good enough. This applies also to the ef-
fects of temperature, where the distance between CFIM
and QFIM is increasing with the increase of the temper-
ature, predictable behavior of the system. However, the
accuracies of the estimators are getting better with the
increase in temperature. This means that warmer baths
of the membranes result in better precisions, a similar
effect found by Ref. [41], but on the other hand, reach-
ing the quantum optimal limit becomes more and more
distant.
We have seen very different results whenever the con-

sidered model is the CC or the TR model. The two
scenarios have shown lower bounds of variances of es-
timators with very different scales. Our choice for the
hopping rate value J has led the mean photon numbers
in the three cavities of the CC model to be very different
from the optical amplitude of the delocalized mode of the
TR model. Furthermore, the two models are character-
ized by different expressions for the cavity frequency and
consequently for the optomechanical coupling strength.
It’s worth to notice that the CC model offers a better
description of the physics of some optomechanical lat-
tice systems [42, 43], and the TR model is more suited
when one optical mode is coupled to multiple membranes.
We believe that our implementable theoretical approach
may serve the aim of realizing enhanced optomechani-
cal performances [44–46], the main objective of current
experimental efforts.
Given the models considered here or in our previous

work [24] we can conclude that the probability density
function of the data is always Gaussian, whose variance
depends only on the parameters to be estimated, but un-
fortunately in a complicated matter. In this paper we
have described several approaches, which suggest numer-
ical approaches for finding minimum variance unbiased
estimators. Therefore, a future goal may be to address
this estimator selection issue analytically for this family
of probability density functions.
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Appendix A: Steady-state amplitudes and the dynamical matrix in the CC model

In the Heisenberg picture, the Hamiltonian in (6) together with the dissipative dynamics explained in II C yield

˙̂a1 = −i∆0â1 − igâ1q̂1 + ε− iJâ2 −
κ1

2
â1 +

√
κ1âin,1, (A1)

˙̂a2 = −i∆0â2 − igâ2(q̂2 − q̂1)− iJ (â1 + â3)−
κ2

2
â2 +

√
κ2âin,2, (A2)

˙̂a3 = −i∆0â3 + igâ3q̂2 − iJâ2 −
κ3

2
â3 +

√
κ3âin,3, (A3)

˙̂p1 = −mω2
mq̂1 − γp̂1 − ~g

(

â†1â1 − â†2â2

)

+ ξ̂, (A4)

˙̂p2 = −mω2
mq̂2 − γp̂2 − ~g

(

â†2â2 − â†3â3

)

+ ξ̂, (A5)

˙̂q1 =
p̂1
m

, ˙̂q2 =
p̂2
m

, (A6)

and the dynamics of the hermitian conjugates of â1, â2, and â3. We introduce the following transformations p̂i →
pi+ p̂i, q̂i → qi+ q̂i, and âj → αj+âj , which can also be viewed as an application of different displacement operators to
the master equation. In this case, one has to consider the dissipation of the field modes to be governed by the optical
master equation [30], whereas the membranes follow the Caldeira-Leggett master equation [47]. In the steady-state,
we obtain the following system of equations

0 = −i∆0α1 − igα1q1 + ε− iJα2 −
κ1

2
α1, (A7)

0 = −i∆0α2 − igα2(q2 − q1)− iJ (α1 + α3)−
κ2

2
α2, (A8)

0 = −i∆0α3 + igα3q2 − iJα2 −
κ3

2
α3, (A9)

0 = −mω2
mq1 − γp1 − ~g

(

|α1|2 − |α2|2
)

, (A10)

0 = −mω2
mq2 − γp2 − ~g

(

|α2|2 − |α3|2
)

, (A11)

0 =
p1
m

, 0 =
p2
m

. (A12)

It is immediate that

q1 =
~g

mω2
m

(

|α2|2 − |α1|2
)

, p1 = 0, (A13)

q2 =
~g

mω2
m

(

|α3|2 − |α2|2
)

, p2 = 0. (A14)

We can only find numerical solutions for the amplitudes α1, α2, and α3. Next, we introduce the quadratures X̂ =
(â† + â)/

√
2 and Ŷ = i(â† − â)/

√
2 of the field operators. Then, we have the dynamical matrix

A(CC) =

(

A11 A12

A21 A22

)

, (A15)
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acting on the vector of operators (X̂1, Ŷ1, X̂2, Ŷ2, X̂3, Ŷ3, p̂1, p̂2, q̂1, q̂2)
T with

A11 =















−κ1

2 ∆1 0 J 0 0
−∆1 −κ1

2 −J 0 0 0
0 J −κ2

2 ∆2 0 J
−J 0 −∆2 −κ2

2 −J 0
0 0 0 J −κ3

2 ∆3

0 0 −J 0 −∆3 −κ3

2















, (A16)

∆1 = ∆0 + gq1, ∆2 = ∆0 + g (q2 − q1) , ∆3 = ∆0 − gq2, (A17)

A12 =

















0 0
√
2gIm[α1] 0

0 0 −
√
2gRe[α1] 0

0 0 −
√
2gIm[α2]

√
2gIm[α2]

0 0
√
2gRe[α2] −

√
2gRe[α2]

0 0 0 −
√
2gIm[α3]

0 0 0
√
2gRe[α3]

















, (A18)

A21 =









−
√
2~gRe[α1] −

√
2~gIm[α1]

√
2~gRe[α2]

√
2~gIm[α2] 0 0

0 0 −
√
2~gRe[α2] −

√
2~gIm[α2]

√
2~gRe[α3]

√
2~gIm[α3]

0 0 0 0 0 0
0 0 0 0 0 0









, (A19)

A22 =









−γ 0 −mω2
m 0

0 −γ 0 −mω2
m

1
m

0 0 0
0 1

m
0 0









. (A20)

One has to analyze the stability of the dynamical matrix, checking that each eigenvalue of A(CC) has a negative real
part. This condition is necessary to express the steady-state as a Gaussian state. In our numerical simulations this
condition is always satisfied.

Appendix B: Steady-state amplitudes and the dynamical matrix in the TR model

The linearization of the dynamics involving Hamiltonian in (8) follows the same principles we saw for the CC
model in Appendix A. Nevertheless, the corresponding equations are different as only one mode interacts with the
mechanical oscillation of the membranes. In the Heisenberg picture, the resulting differential equations are

˙̂a = −i∆0â− iâ (g1q̂1 + g2q̂2) + ε− κ

2
â+

√
κâin, (B1)

˙̂p1 = −mω2
mq̂1 − γp̂1 − ~g1â

†â+ ξ̂, (B2)

˙̂p2 = −mω2
mq̂2 − γp̂2 − ~g2â

†â+ ξ̂, (B3)

˙̂q1 =
p̂1
m

, ˙̂q2 =
p̂2
m

, (B4)

and the dynamics of the hermitian conjugates of â. In the steady-state, after performing the transformations shown
in Appendix A we obtain the following system of equations

0 = −i∆0α− iα (g1q1 + g2q2) + ε− κ

2
α, (B5)

0 = −mω2
mq1 − γp1 − ~g1|α|2, (B6)

0 = −mω2
mq2 − γp2 − ~g2|α|2, (B7)

0 =
p1
m

, 0 =
p2
m

. (B8)

Then, we have

q1 =
~g1
mω2

m

|α|2, q2 =
~g2
mω2

m

|α|2, p1 = p2 = 0, (B9)

ε = α

(

i∆0 + i~
g21 + g22
mω2

m

|α|2 − κ

2

)

, (B10)
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which can be solve analytically to obtain q1, q2, and α. Then, we have the dynamical matrix

A(TR) =

















−κ
2 ∆ 0 0

√
2g1Im[α]

√
2g2Im[α]

−∆ −κ
2 0 0 −

√
2g1Re[α] −

√
2g2Re[α]

−
√
2~g1Re[α] −

√
2~g1Im[α] −γ 0 −mω2

m 0

−
√
2~g2Re[α] −

√
2~g2Im[α] 0 −γ 0 −mω2

m

0 0 1
m

0 0 0
0 0 0 1

m
0 0

















(B11)

acting on the vector of operators (X̂, Ŷ , p̂1, p̂2, q̂1, q̂2)
T with ∆ = ∆0 + ~

g2
1+g2

2

mω2
m
|α|2. In our numerical simulations the

stability of A(TR) is always satisfied.

Appendix C: Weyl transform of the SLD

In the main text, we have used the phase space formalism which relies on the Weyl transform [48], a map from

bounded operators to functions on the phase space. The Weyl transform A(x, y) of an operator Â is defined by

A(x, y) =

∫

dξe−iyξ〈x+
ξ

2
|Â|x− ξ

2
〉. (C1)

This approach is very useful for the calculation of the QFI for a Gaussian state [24], where the Weyl transform or

Wigner function of a density operator ρ̂ is a Gaussian function. The SLD operator L̂i satisfies the relation (28) and
for a Gaussian state its Weyl transform corresponds to the expression in eq. (29), or explicitly

Li(x, y) = Φi
11x

2 +Φi
22y

2 + 2Φi
12xy − νi. (C2)

The inverse transformation of this function yields the following operator

L̂i = Φi
11x̂

2 +Φi
22ŷ

2 +Φi
12(x̂ŷ + ŷx̂)− νi1, (C3)

where one has to use the Weyl-ordering.
Now, the Weyl transform (C1) is applied on the operator L̂iL̂j yielding

L
(2)
ij (x, y) = Φi

11Φ
j
11x

4 + 2(Φi
11Φ

j
12 +Φj

11Φ
i
12)x

3y + (Φi
11Φ

j
22 +Φj

11Φ
i
22 + 4Φi

12Φ
j
12)x

2y2

+ 2(Φi
22Φ

j
12 +Φj

22Φ
i
12)xy

3 +Φi
22Φ

j
22y

4 − (Φi
11ν

j +Φj
11ν

i)x2 − (Φi
22ν

j +Φj
22ν

i)y2

− 1

2
(Φi

11Φ
j
22 +Φi

22Φ
j
11 − 2Φi

12Φ
j
12) + νiνj . (C4)

The QFI matrix entries are the mean values of the above set of functions with i, j ∈ {1, 2}, which are calculated by
integrating them with the Gaussian Wigner function W (x, p). This leads to eq. (31).


