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Abstract The exact immunopathophysiology of community-acquired pneumonia (CAP) caused

by SARS-CoV-2 (COVID-19) remains clouded by a general lack of relevant disease controls. The

scarcity of single-cell investigations in the broader population of patients with CAP renders it

difficult to distinguish immune features unique to COVID-19 from the common characteristics of a

dysregulated host response to pneumonia. We performed integrated single-cell transcriptomic and

proteomic analyses in peripheral blood mononuclear cells from a matched cohort of eight patients

with COVID-19, eight patients with CAP caused by Influenza A or other pathogens, and four non-

infectious control subjects. Using this balanced, multi-omics approach, we describe shared and

diverging transcriptional and phenotypic patterns—including increased levels of type I interferon-

stimulated natural killer cells in COVID-19, cytotoxic CD8 T EMRA cells in both COVID-19 and

influenza, and distinctive monocyte compositions between all groups—and thereby expand our

understanding of the peripheral immune response in different etiologies of pneumonia.

Introduction
The devastating impact of COVID-19 on both a global and interpersonal level is unprecedented in

living memory. Patients with severe COVID-19—caused by the SARS-CoV-2 virus—develop bilateral

pneumonia, profound systemic inflammation, and organ failure reminiscent of sepsis (Giamarellos-

Bourboulis et al., 2020; Huang et al., 2020; Richardson et al., 2020). Within 1 year of its discovery,

the world has seen hundreds of thousands excess deaths (Weinberger et al., 2020).

Progression to life-threatening disease is mediated by a dysfunctional and excessive host immune

response to SARS-CoV-2 (Wiersinga et al., 2020). Distinct patterns have emerged in the
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characteristics of this immune response in hospitalized patients: lymphopenia (Huang et al., 2020;

Zheng et al., 2019), a role for activated and exhausted T cells (Chen and John Wherry, 2020;

De Biasi et al., 2020; Stephenson et al., 2021), hyperinflammatory monocytes with reduced anti-

gen-presenting capacity (Merad and Martin, 2020; Ren et al., 2021; Schulte-Schrepping et al.,

2020), delayed or dysfunctional interferon responses (Lee et al., 2020; Wilk et al., 2020;

Zhang et al., 2020), and expansion of plasmablasts and suppressive immature neutrophils in severe

disease (Kuri-Cervantes et al., 2020a; Schulte-Schrepping et al., 2020; Stephenson et al., 2021).

Crucially, despite early observations that many of the immune disturbances, clinical symptoms,

and organ dysfunctions in COVID-19 can also occur in other infections (Giamarellos-

Bourboulis et al., 2020; van der Poll et al., 2017), most studies lack disease controls. The direct

comparison of COVID-19 with another, well-matched infectious disease state is urgently needed to

distinguish truly specific immune features from the common characteristics of a dysregulated host

response to infection. However, while several studies reported on the immunological response dur-

ing COVID-19 pneumonia at the single-cell level, such investigations are currently scarce for the

broader population of community-acquired pneumonia (CAP).

Here, we performed CITE-Seq—Cellular Indexing of Transcriptomes and Epitopes by Sequencing

(Stoeckius et al., 2017)—on peripheral blood mononuclear cells (PBMCs) from age-, sex-, and dis-

ease severity-matched patients with CAP caused by either SARS-CoV-2, Influenza A, or other patho-

gens admitted to a non-intensive care ward. By integrating single-cell RNA-sequencing with highly

multiplexed surface protein marker detection—akin to classical flow cytometry—we create a high-

resolution snapshot of cellular phenotypes and functional states, offering insight into the peripheral

immune features of different etiologies of pneumonia.

Materials and methods

Subjects and sample collection
All individual subject data such as age, sex, and comorbidities can be found in Supplementary file

1. This study was part of the ELDER-BIOME project (clinicaltrials.gov identifier NCT02928367)

approved by the medical ethical committee of the Amsterdam UMC—location AMC. Written

informed consent was obtained from all participants or their legal representatives. In the context of

the ELDER-BIOME project, trained research physicians screened patients older than 18 years admit-

ted between October 2018 and June 2020 to the Amsterdam UMC, Flevohospital, or BovenIJ hospi-

tal in the Netherlands. Patients were included if they were admitted to the ward and met all of the

following criteria: clinical suspicion of an acute infection of the respiratory tract, defined as the pres-

ence of at least one respiratory symptom (new cough or sputum production, chest pain, dyspnea,

tachypnea, abnormal lung examination, or respiratory failure) and one systemic symptom (docu-

mented fever or hypothermia, leukocytosis or leukopenia), and an evident new or progressive infil-

trate, consolidation or pleural effusion on chest X-ray or computed tomography scan. Patients were

excluded if there was a clinical suspicion of aspiration pneumonia or hospital-associated pneumonia,

or if CAP was not the main reason for admission. Patients were excluded from this study if they were

severely immunocompromised by either disease or medication. All COVID-19 patients had reverse

transcription (RT-PCR)-confirmed SARS-CoV-2 infection, in combination with a CORADS CT-score of

5 (De Smet et al., 2021). Heparin anticoagulated blood was obtained within 48 hr of hospital admis-

sion. Age- and sex-matched subjects without an infection were included as controls.

PBMC isolation and storage
For all patients and controls, heparin anticoagulated whole-blood was processed within 4 hr of sam-

pling. PBMCs were separated by density gradient centrifugation using Ficoll-Paque Plus medium

(GE Healthcare Life sciences, Little Chalfont, UK) and washed twice, first with cold phosphate-buff-

ered saline (PBS) and then with cold PBS supplemented with 0.5% sterile endotoxin-free bovine

serum albumin (BSA) (Divbio Science Europe, Breda, the Netherlands). PBMCs were resuspended in

PBS containing 0.5% BSA and 2 mM EDTA and the number of PBMCs was determined using a Coul-

ter Counter (Beckman Coulter, Woerden, the Netherlands). PBMCs were resuspended in Iscove’s

modified Dulbecco’s medium containing 20% filter-sterilized fetal calf serum and pen/strep, after

which an equal part of the same medium containing 20% dimethyl sulfoxide was slowly added while
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continuously stirring and working on ice. 3–5 million PBMCs were viably stored in 1.8 ml cryogenic

vials (Corning #430388), which were slowly brought to �80˚C. After 24–72 hr, the cells were trans-

ferred to liquid nitrogen storage until further analysis.

Sorting and staining
After PBMCs were thawed, the Fixable Viability Dye Kit (eBioscience, San Diego, CA) was used to

assess cell viability by FACS analysis (>90% in all samples). 500,000 viable singlet-events were sorted

per sample using a Sony SH800 Cell Sorter (Sony Biotechnology, San Jose, CA). The sorted cells

were incubated with Fc blocker (CD16/CD32, eBioscience) for 10 min, after which each sample was

incubated with TotalSeq Hashtag antibody tags to enable multiplexing and subsequent deconvolut-

ing. After Hashtag staining, the cells were pooled into four pools of five samples, each sample con-

tributing equally to their respective pool. The cells were counted manually by light microscopy and

Neubauer chambers. Each pooled sample was then incubated for 30 min with our TotalSeq oligo-

conjugated antibody panel for later surface protein marker quantification. An overview of all anti-

bodies that were used in the study is shown in Supplementary file 2.

Single-cell library generation
Libraries were generated using the Chromium Single Cell 50 Library and Gel Bead Kit v1.1 (10x

Genomics, Pleasanton, CA) following the manufacturer’s instructions. In short, pooled cells were

loaded aiming the capture of 10,000 cells per pool. Libraries were generated according to standard

protocol (Chromium Next GEM Single Cell V(D)J Reagent Kits v1.1 rev E). The amplified mRNA and

antibody-derived tags were divided by size and sequenced separately.

Sequencing
Samples were sequenced using a Hiseq4000 150PE mode. Each position from the 10� chip was

loaded into 1 HiSeq 4000 lane. All the four antibody-derived libraries were pooled together and

sequenced in 1 HiSeq4000 lane.

mRNA, hashtags, and antibody alignment
All the libraries were aligned using CellRanger 3.1 (10x Genomics). For the hashtags and antibody

tags, we inputted their sequences as provided by BioLegend (San Diego, CA) and tag structure as

informed on the Cellranger website.

Cell deconvolution
To deconvolute the cells belonging to each sample we used the R package Seurat (v3) (Stuart et al.,

2019). The outputs derived from CellRanger were used to create two separate objects (one with the

transcriptome alignment and one with the antibody plus hashtags [HTO] alignment). Initial objects

were created using the function ‘Read10X’. We filtered both objects based on the cell barcode to

keep only cells that were identified in both the transcriptome and in the antibody alignments. After

this cell filtering, we used the function ‘CreateSeuratObject’ to create a transcriptome-based Seurat

object. The antibody-derived data was filtered to maintain only the hashtag counts; later it was

appended as a specific assay using the ‘CreateAssayObject’ function. Antibody reads were normal-

ized using the CLR method. For cell demultiplexing, we used the function ‘HTODemux’ with the

parameters ‘init=9’, ‘nsamples=10,000’, and ‘positivie quantile’ ranging between 0.999 and

0.9999999 per each sample, in order to maximize the number of singlets detected. Individual single

cells were finally filtered based on their assigned ‘HTO_classification.global’=‘Singlet’.

Antibody quantification and normalization
Antibody data was normalized using the Seurat function ‘NormalizeData’ with the parameters ‘nor-

malization.method’=‘CLR’ and ‘margin’=‘2’, to indicate a normalization across cells.

Quality control
The cells were filtered based on number of features (nfeature_RNA), number of genes

(nCount_RNA), and percentage of mitochondrial reads (percent.mt) using Seurat ‘subset(object,
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subset=nCount_RNA>1000 and nCount_RNA<10,000 and nFeature_RNA>200 and percent.mt<20)’.

An overview of the median number of genes per sample is depicted in Supplementary file 3.

Data scaling, normalization, and cell cycle correction
We calculated cell cycle scores as following (‘CellCycleScoring(Healthy_object_Cycle), s.features=s.

genes, g2m.features=g2m.genes, set.ident=TRUE’) using a list of S phase and G2M phase genes

preloaded in Seurat. The cells were then scaled and normalized using the function ‘SCTransform

(object, vars.to.regress=c(‘nCount_RNA’, ‘percent.mt’, ‘S.Score’, ‘G2M.Score’)).

Clustering and visualization
Principal components for each set of cells as shown in individual figures were identified using the

‘RunPCA’ function. Cells were then further processed for clustering and visualization using the Seurat

functions ‘FindNeighbors’, ‘FindClusters’, and ‘RunUMAP’. The number of principal components

used as input was determined by using the ‘ElbowPlot’ function and identifying the number of the

PCs which explain most of the data variance.

Differential expression analysis
Differential expression analysis was performed using the functions ‘FindAllMarkers’ or ‘FindMarkers’

and the following parameters: ‘min.pct=0.25, logfc.threshold=0.25, assay=‘SCT’’.

List of software used
CellRanger 3.1; R version 3.6.3 (2020-02-29), FlowJo V10.7, the R packages: Seurat v3, corrplot,

dplyr, Matrix, cowplot, rstatix, ggplot2; Adobe Illustrator 2021.

Quantification and statistical analysis
All statistical analyses were performed using R version 3.6.3. Enrichment analysis was done by first

generating contingency tables with the cell distributions per cluster. Chi-squares for the contingency

tables were calculated (‘chisq<-chisq.test(table)’, the residuals rounded ‘round(chisq$residuals,

4)’) and correlation plots generated ‘corrplot(chisq$residuals, is.cor=FALSE, col=rev(brewer.pal(n=8,

name=‘RdBu’)), tl.cex=1, cl.pos=‘r’, cl.ratio=1, cl.length=10)’ with the graphical parameters shown

adjusted per cluster. Comparisons with more than two residuals of difference at least were consid-

ered biologically relevant. In the box and whisker plots data was represented with a median line and

a box indicating the interquartile range, with individual data points shown (Figures 1h, 2h, and 4h).

Significance was defined as p<0.05. Statistical significance was determined using either the two-

sided Wilcoxon rank-sum test (Figure 1h) or the two-sided Kruskal-Wallis test with post hoc pairwise

Dunn’s test with Benjamini-Hochberg (BH) p-value adjustment (Figures 2h and 4h). All gene expres-

sion analyses were corrected for multiple testing using the BH method, with significance defined as

an adjusted p<0.05.

Results

Patient characteristics and clinical outcomes
We profiled PBMCs from eight patients hospitalized for CAP caused by SARS-CoV-2 (henceforth

referred to as COVID-19), eight patients hospitalized for CAP caused by either Influenza A or other

pathogens (all sampled before the start of the COVID-19 pandemic), and four non-infectious control

subjects visiting the outpatient clinic without signs of acute infection (Table 1 for summary data,

Supplementary file 1 for individual patient data). We matched the groups for age, sex, and—the

patients—for disease severity using the Modified Early Warning Score (Churpek et al., 2017;

Subbe et al., 2001). Samples from patients were obtained within 48 hr of admission to the general

hospital ward, none of the patients received systemic corticosteroid therapy prior to sampling.

Patients with COVID-19 reported a longer duration of symptoms prior to hospital admission. Lym-

phocyte counts were reduced in both patient groups but not significantly different, whereas neutro-

phil counts were significantly higher in patients with non-COVID-19 CAP. All patients classified as

COVID-19 had a positive PCR for SARS-CoV-2. In the patients without COVID-19, three had a posi-

tive PCR for Influenza A—one of whom also had a positive blood culture for Streptococcus
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Figure 1. The immune response in COVID-19 is characterized by an expansion of CD8 EMRA-like T cells and type I interferon-stimulated NK cells, both

demonstrating high cytotoxic potential. (a) Experimental overview: PBMCs from a matched cohort of hospitalized patients with CAP caused by SARS-

CoV-2 (COVID-19), CAP caused by Influenza A or other pathogens, and non-infectious controls, were isolated and stained with a panel of

oligonucleotide-tagged antibodies. Single-cell mRNA and surface protein expression were subsequently measured on a 10x Genomics platform. (b, c)

Figure 1 continued on next page
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pneumoniae—and one patient had a positive sputum culture for Haemophilus influenzae. In subse-

quent analyses, we refer to the three patients infected with Influenza A as CAP-flu, and the remain-

ing five patients as CAP-other. None of the patients were admitted to the intensive care unit

(ICU) during their hospital stay, one patient with COVID-19 died in the hospital as a result of the

disease.

Highly cytotoxic CD8 EMRA-like T cells and type I interferon-stimulated
NK cells characterize COVID-19 patients
An overview of the experimental setup is depicted in Figure 1a. Post quality control, we analyzed

16,192 cells from all profiled samples. Throughout this study, we infer disease-specific effects in part

by examining the transcriptional states of cell clusters that are proportionally expanded within a dis-

ease group. We evaluated proportional differences in cell clusters between groups with the Pear-

son’s residual of the chi-squared test, in which comparisons with more than two residuals of

difference were considered biologically relevant. All gene expression analyses were corrected for

multiple testing using the BH method, with significance defined throughout as an adjusted p<0.05.

We first explored the peripheral blood immune response of patients with COVID-19 pneumonia

and non-infectious controls. Uniform Manifold Approximation and Projection (UMAP) dimensionality

reduction of the transcriptome of all individual cells from these subjects identified 13 clusters of mye-

loid and lymphoid immune cells (Figure 1b,c). The top differentially expressed genes (DEGs)

between these clusters can be found in Figure 1—figure supplement 1a. Cell surface protein

expression levels of classical lineage-defining markers (e.g., CD3, CD4, CD8, CD14, and CD19) were

consistent with the transcriptome-based clusters (Figure 1—figure supplement 1b and c).

When compared with age- and sex-matched non-infectious control subjects, patients with

COVID-19 exhibited stark differences in the proportional composition of cell clusters, including a

decrease in monocytes and memory B cells, and an increase in naive B cells (Figure 1c,d). While

some lymphocyte clusters were relatively decreased, we found a striking proportional increase in a

specific T cell cluster and NK cells in patients with COVID-19. This expanded T cell cluster mainly

expressed low levels of surface CD27 and variable levels of CD45RA (Figure 1—figure supplement

1d), resembling the terminally differentiated effector memory re-expressing CD45RA (EMRA) pheno-

type as defined by classical flow cytometry (CCR7�CD27�CD45RA+; Martin and Badovinac, 2018).

In fact, these cells (that we will henceforth refer to as CD8 EMRA-like T cells) formed a cluster almost

entirely composed of cells from patients with COVID-19 (Figure 1c and Figure 1—figure supple-

ment 1e). As the CD8 EMRA-like T cell and NK cell clusters showed the most prominent

Figure 1 continued

UMAPs depicting the clusters identified by the single-cell transcriptomic analysis of PBMCs from control subjects and patients with COVID-19, each dot

representing a single cell. In the first UMAP (b), cells are colored by cell type cluster, whereas in the second UMAP (c), cells are colored by donor group.

See also Figure 1—figure supplement 1. (d) Correlation plot depicting cluster enrichment in controls and COVID-19 patients. Dot size proportional to

Pearson’s residual of the chi-squared test (i.e., reflecting the difference between the observed and expected proportion), while the color represents the

degree of association from Pearson’s chi-squared residuals (red means a positive association, blue means a negative association). (e) Heatmap showing

the expression of canonical genes and the top differentially expressed genes (DEGs) derived from comparing the CD8 EM and CD8 EMRA-like cell

clusters (adjusted p<0.05). The heatmap also shows the expression of these genes in the other identified T and NK cell clusters. See also Figure 1—

figure supplement 2. (f) Graph depicting the DEGs identified when comparing cells from COVID-19 patients and controls within the NK cell cluster.

The X-axis depicts the average log fold change and the Y-axis depicts the percentage point difference between the proportion of cells expressing the

gene in the COVID-19 group minus the proportion of cells expressing the gene in the control group. All depicted DEGs are statistically significant after

adjusting for multiple testing (Benjamini-Hochberg). (g) Bar plot showing Gene Ontology pathway analysis of genes upregulated in NK cells from

patients with COVID-19 (relative to controls) identified in the analysis in panel (g). The X-axis shows the Benjamini-Hochberg adjusted �log10 p-value

from the enrichment score analysis. (h) Box and whisker plots showing the enrichment of the type I interferon pathway in all cell subsets, split between

COVID-19 patients and controls. The Y-axis depicts the enrichment score. Statistical significance was determined using the two-sided Wilcoxon rank-

sum test: *p<0.05, **p<0.01. CAP, community-acquired pneumonia; NK, natural killer; PBMC, peripheral blood mononuclear cell; UMAP, Uniform

Manifold Approximation and Projection.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. mRNA, surface protein expression, and cell cluster distribution of patients with COVID-19 and non-infectious controls.

Figure supplement 2. Comprehensive gene expression profile of T and NK cells in patients with COVID-19 compared with non-infectious controls.
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Figure 2. The peripheral immune features of T cells, NK cells, and monocytes vary between CAP-flu and CAP-other. (a, b) UMAPs depicting the clusters

identified by the single-cell transcriptomic analysis of PBMCs from controls, CAP-flu, and CAP-other patients, where each dot represents a single cell. In

the first UMAP (a), cells are colored by cell type cluster, whereas in the second UMAP (b), cells are colored by donor group. See also Figure 2—figure

supplement 1. (c) Correlation plot depicting cluster enrichment in controls, CAP-flu, and CAP-other patients. Dot size proportional to Pearson’s

Figure 2 continued on next page
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proportional increase in COVID-19 when compared with non-infectious controls (Figure 1D), we

next sought to uncover the identity and transcriptional state of these clusters.

In all T and NK cell clusters, we examined the expression of canonical genes and the top DEGs

derived from comparing the CD8 EMRA-like and CD8 EM (effector memory) clusters (Figure 1e for

selected genes, Figure 1—figure supplement 2a for the full list of DEGs). At the transcript level,

the EMRA-like T cells expressed low levels of the canonical markers IL7R (encoding for CD127) and

CCR7. The CD8 EMRA-like T cells exhibited remarkably high expression of genes related to cytotox-

icity and killing—seemingly on par with NK cells—such as GZMB, GZMH, PRF1, and NKG7. These

cells were also marked by the high expression of ITGB1 (CD29), which has recently been described

as a marker of T cells with increased cytotoxicity (Nicolet et al., 2020).

We next examined the top DEGs between the CD8 EMRA-like T cell and NK cell clusters. The NK

cell cluster was enriched in genes corresponding to type I and, to a lesser extent, type II interferon

signaling pathways (Figure 1—figure supplement 2b,c). We then compared the expression levels of

genes within the NK cell cluster between patients with COVID-19 and control subjects (Figure 1f)

and discovered marked upregulation of pathways related to a type I interferon response and other

antiviral responses in patients with COVID-19 (Biological Process Gene Ontology pathway analysis;

Figure 1g). Transposing this NK cell cluster-derived type I interferon response signature to the other

cell clusters revealed a broad pattern of type I interferon responses across all clusters, statistically

significant in several clusters, including NK cells (two-sided Wilcoxon rank-sum test p<0.05;

Figure 1h). Taken together, when compared with matched non-infectious controls, patients with

COVID-19 exhibited a marked proportional increase in CD8 EMRA-like T cells and type I interferon-

stimulated NK cells, both with high cytotoxic potential.

Differential composition of lymphoid cells in patients with CAP-flu and
patients with CAP-other
We next investigated the immune features of patients with CAP caused by Influenza A (CAP-flu) or

other pathogens (CAP-other), as compared with matched non-infectious controls. UMAP dimension-

ality reduction revealed 13 clusters of cells (Figure 2a,c; and Figure 2—figure supplement 1a–c for

top DEGs and surface protein expression). Akin to what we observed in patients with COVID-19,

patients with CAP-flu showed a proportional increase of CD8 EMRA-like T cell and NK cell clusters

(Figure 2b,c; cluster distribution per subject in Figure 2—figure supplement 1d). Patients with

CAP-other had higher levels of the CD8 EM and naı̈ve T cell clusters (Figure 2c). Both CAP-flu and

CAP-other patients showed a decrease in memory B cells when compared with control subjects

(Figure 2c).

Figure 2 continued

residual of the chi-squared test (i.e., reflecting the difference between the observed and expected proportion), while the color represents the degree of

association from Pearson’s chi-squared residuals (red means a positive association, blue means a negative association). (c) Heatmap showing the

expression of canonical genes and the top differentially expressed genes (DEGs) derived from comparing the CD8 EM and CD8 EMRA-like cell clusters

(adjusted p<0.05). The heatmap also shows the expression of these genes in the other identified T and NK cell clusters. See also Figure 2—figure

supplement 2. (e) Density plots showing the surface protein expression of CD38, CD33, CD11b, and CD11c per myeloid cell cluster. (f) Graph

depicting the DEGs in the classical monocyte cluster when comparing CAP-flu patients versus controls. The X-axis depicts the average log fold change

and the Y-axis depicts the percentage point difference between the proportion of cells expressing the gene in the CAP-flu group minus the proportion

of cells expressing the gene in the control group. All depicted DEGs are statistically significant after adjusting for multiple testing (Benjamini-

Hochberg [BH]). (g) Bar plot showing Gene Ontology pathway analysis of downregulated genes identified in the analysis in panel (g). The X-axis shows

the BH adjusted �log10 p-value from the enrichment score analysis. (h) Boxplots depicting the downregulation of the MHC class II protein complex

transcriptional pathway in naive B cells, memory B cells, classical monocytes, and non-classical monocytes clusters, split between controls, CAP-flu, and

CAP-other patients. Statistical significance was determined using the two-sided Kruskal-Wallis test with post hoc pairwise Dunn’s test: *BH-adjusted

p<0.05. (i) Density plot showing the normalized surface protein expression of HLA-DR on cells in naive B cells, memory B cells, classical monocytes, and

non-classical monocytes clusters, split between controls, CAP-flu, and CAP-other patients. CAP, community-acquired pneumonia; NK, natural killer;

PBMC, peripheral blood mononuclear cell; UMAP, Uniform Manifold Approximation and Projection.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. mRNA, surface protein expression, and cell cluster distribution of controls, patients with CAP-flu, and patients with CAP-other.

Figure supplement 2. Differentially expressed genes of T cell, NK cell, and monocyte clusters between patients with CAP-flu, CAP-other, and control
subjects.

Schuurman, Reijnders, et al. eLife 2021;10:e69661. DOI: https://doi.org/10.7554/eLife.69661 8 of 21

Research article Immunology and Inflammation Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.69661


Table 1. Clinical characteristics and disease course.

ACE = angiotensin-converting enzyme; AT-II = angiotensin II; CAP = community-acquired pneumo-

nia; CURB-65 = confusion, blood urea nitrogen, respiratory rate, blood pressure, age 65 or older;

COPD = chronic obstructive pulmonary disease; qSOFA = quick sequential organ failure assessment

score.

COVID-19
(n=8)

CAP*

(n=8) Controls (n=4)

Demographics

Age (years) 66.9 (9.4) 70.9 (14.3) 72.2 (1.7)

Sex (male) 5 5 2

Body mass index 32.8 (6.5) 23.8 (7.6) 25.7 (4.9)

Race (white/black) 4/4 7/1 4/0

Chronic comorbidities

COPD 0 3 0

Asthma 0 2 0

Hypertension 4 3 1

History of myocardial infarction 0 2 0

History of stroke 1 0 1

Diabetes mellitus, type 2 3 1 1

Chronic kidney disease 0 1 1

Chronic medications

Inhaled corticosteroids 0 2 0

Low-dose oral corticosteroids† 0 1 0

ACE-inhibitor/AT-II antagonist 4 3 1

Statins 3 1 3

Platelet aggregation inhibitors 2 1 2

Laboratory tests

Platelets (�109/L) 284 (112) 294 (85)

Leukocytes (�109/L) 5.7 [2.6, 7.2] 13.9 [6.0, 19.5]

Neutrophils (�109/L) 4.4 [1.5, 5.8] 11.7 [5.3, 17.9]

Lymphocytes (�109/L) 0.8 [0.4, 1.5] 1.1 [0.5, 3.1]

Severity scores‡

Modified Early Warning Score 3.5 [1.0, 5.0] 3.5 [2.0, 6.0]

Pneumonia Severity Index 3.0 [2.0, 4.0] 3.5 [1.0, 5.0]

CURB-65 1.0 [0.0, 2.0] 1.0 [0.0, 3.0]

qSOFA 1.0 [0.0, 1.0] 1.0 [0.0, 1.0]

Disease course

Symptoms to admission (days) 10.0 [2.0, 14.0] 3.5 [2.0, 9.0]

Hospital length of stay (days) 3.5 [1.0, 6.0] 3.0 [2.0, 8.0]

28 day mortality 1 0

Continuous data are presented as mean (standard deviation) or median (range). Categorical data are presented as

counts.
* Caused by either Influenza A, bacterial, or unknown pathogens.
† Corticosteroids<7.5mg prednisolone/day.
‡ Measured upon presentation to the emergency department.
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To elucidate the transcriptional states of the differentially expanded T cell subsets between CAP-

flu and CAP-other patients, we examined the top DEGs between CD8 EM T and CD8 EMRA-like

cells (Figure 2d): among the top upregulated genes in the CD8 EM-cluster, we identified GZMK and

genes related to MHC class II (HLD-DRB1 and CD74). CD8 EMRA-like T cells were characterized by

genes related to cytotoxicity and activation signals, such as GNLY, GZMB, TYROBP, and FGFBP,

which were also highly expressed by NK cells. We observed few specific gene differences in EMRA-

like T cells and NK cells from patients with CAP-flu and CAP-other when compared with controls

(Figure 2—figure supplement 2a–d). Thus, patients with CAP-flu harbored higher proportions of

activated and cytotoxic CD8 EMRA-like T cells and NK cells, while the lymphocyte composition in

patients with CAP was characterized by higher proportions of the CD8 EM and naı̈ve T cell clusters.

Classical monocytes from patients with CAP-flu show concurrent signs
of inflammation and immune suppression
We next focused on monocytes, because specific clusters were positively associated with either

CAP-flu or CAP-other. Patients with CAP-flu exhibited a clear increase in classical monocytes when

compared with patients with CAP-other and control subjects (Figure 2b,c). The proportional

increase in the intermediate monocyte cluster in CAP-flu is unlikely to represent a disease-specific

process, as these cells were almost entirely derived from one patient (Figure 2—figure supplement

1d). Patients with CAP-other demonstrated a clear increase in non-classical monocytes, contributing

nearly all cells in this cluster (Figure 2b and Figure 2—figure supplement 1d). Low absolute den-

dritic cell (DC) counts precluded a valid comparison between disease states.

To further explore the myeloid cell clusters that were differentially expanded between CAP-flu

and CAP-other, we assessed the surface marker expression of CD14 and CD16 (Figure 2—figure

supplement 2e). In line with their transcriptome, classical monocytes were mostly CD14+ and

CD16�, whereas non-classical monocytes were CD14dim and CD16+. Intermediate monocytes and

DCs showed variable CD14 expression, and mostly low CD16 expression (Figure 2—figure supple-

ment 2e). Analysis of protein expression identified differential expression patterns of CD11b,

CD11c, and CD33, which further consolidated the identity of these clusters (Figure 2e;

Sampath et al., 2018). Differential gene expression analysis directly comparing classical with non-

classical monocytes and Gene Ontology pathways corresponding to the upregulated genes are

depicted in Figure 2—figure supplement 2f–h.

As cell numbers within the classical monocyte cluster were higher among patients with CAP-flu

(Figure 2c), we examined DEGs within this cluster between CAP-flu and control subjects (Figure 2f).

Classical monocytes from patients with CAP-flu displayed upregulation of a variety of genes involved

in pro-inflammatory processes, such as EGR-1 (Pang et al., 2020), FKB5 (Zannas et al., 2019), and

AREG (Zaiss et al., 2015). Classical monocytes also transcribed several genes encoding for the S100

protein family, such as S100A4, S100A8, S100A9, and S100A12, which were recently implicated in

COVID-19 (Ren et al., 2021). Strikingly, we observed a concurrent substantially reduced expression

of genes related to MHC class II (Figure 2f), a quintessential feature of sepsis-induced immune sup-

pression that has been associated with secondary infections and long-term mortality

(Hotchkiss et al., 2013; Venet and Monneret, 2018). Gene Ontology enrichment of these downre-

gulated genes confirmed downregulation of pathways related to antigen presentation (Figure 2g)

and this pattern was also visible—albeit to a lesser extent and not statistically significant—in non-

classical monocytes from patients with CAP-flu and classical monocytes from patients with CAP-

other (two-sided Kruskal-Wallis test with post hoc Dunn’s test BH-adjusted p<0.05 for CAP-flu vs.

control in classical monocytes; Figure 2h). Reduced HLA-DR expression on the cell surface of classi-

cal monocytes in patients with CAP-flu confirmed this transcriptional pattern at the protein level

(Figure 2i). Taken together, we report clearly diverging monocyte compositions in patients with

CAP-flu and CAP-other, with classical monocytes in CAP-flu expressing pro-inflammatory genes

while simultaneously showing immune suppressive features.

Divergent composition of major immune cell types in patients with
COVID-19, CAP-flu, and CAP-other
Next, we directly compared COVID-19, CAP-flu, and CAP-other to delineate the shared and unique

immune features between these disease groups. UMAP dimensionality reduction of all cells of these
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groups revealed 15 clusters of myeloid and lymphoid cells (the full UMAP of all identified clusters,

the distribution per individual patient, and the DEGs and proteins between all clusters are depicted

in Figure 3—figure supplements 1 and 2). To create an overview of the differences in immune com-

position between disease states, we first grouped these clusters into metaclusters representing the

major cell types: T cells, NK cells, B cells, monocytes, and platelets (Figure 3a–c; canonical genes

and lineage-defining surface markers in Figure 3d and e, respectively). Comparing the proportional

composition of immune cells between diseases revealed a significant expansion of NK cells in

COVID-19, an expansion of monocytes in CAP-flu, and an overall expansion of T cells in CAP-other

(Figure 3c). Proportions of B cells were comparable between the groups. As we previously noted

reduced HLA-DR surface protein expression in classical monocytes of patients with CAP-flu, we com-

pared the expression of this protein in all monocytes between the three disease states (Figure 3f).

Overall monocyte HLA-DR surface protein expression in COVID-19 was on par with CAP-flu, and

lower than in CAP-other.

Differences in transcriptional signature between COVID-19 and CAP-flu
in T and NK cells
To ascertain differences in the T and NK cell compositions between COVID-19, CAP-flu, and CAP-

other, we further examined clusters within these metaclusters (Figure 4a; see Figure 3—figure sup-

plement 1a for full UMAP of all identified clusters, and Figure 3—figure supplement 1b for clusters

per individual patient). We observed fewer cells in the naive CD4/CD8 T cell cluster in COVID-19

and CAP-flu as compared with CAP-other, whereas the CD8 EMRA-like 2 T cell cluster was clearly

expanded in CAP-flu (Figure 4b; see Figure 3—figure supplement 1c for the correlation plot of all

identified clusters). Patients with CAP-other exhibited a proportional increase of CD8 EM T cells and

had the most naive T cells.

To infer functional differences in T cell subsets, we looked at the top DEGs between the two

EMRA-like T cell clusters (Figure 4c). We noted increased expression of genes related to cytotoxic-

ity, activation and inflammation—such as GZMB, GNLY, TYROBP, HOPX, and CCL5—in the CD8

EMRA-like two cluster that was expanded in CAP-flu. The contrast in expression levels of these

genes was especially apparent in comparison with the CD8 EM T cell cluster predominant in CAP-

other, indicating that patients with a known viral infection harbor more activated CD8 T cells.

In line with high GNLY expression in the EMRA-like 2 T cell cluster expanded in CAP-flu, we found

a higher proportion of granulysin+ NK cells in CAP-flu, whereas the other (granulysin negative) NK

cell cluster was highest in COVID-19 (Figure 4b,c). Interestingly, the NK cell cluster expanded in

COVID-19 expressed higher levels of the interferon-stimulated gene IFITM3 (Figure 4d) than the

cluster expanded in CAP-flu. This high expression was even more apparent when comparing cells

within the granulysin+ NK cell cluster between patients with COVID-19 and CAP-flu (Figure 4d).

Gene Ontology enrichment of the genes upregulated in granulysin+ NK cells from patients with

COVID-19 exposed a clear type I interferon response (Figure 4f). When comparing this pathway

between disease groups in all T and NK cell clusters, we found this pronounced type I interferon sig-

nature among virtually all clusters in patients with COVID-19, particularly in the EMRA-like T cell clus-

ters and both NK cell clusters (Figure 4g,h, statistically significant in the CD8 EMRA-like 2 and

granulysin+ NK cell clusters, two-sided Kruskal-Wallis test with post hoc Dunn’s test BH-adjusted

p<0.05). To summarize, while both groups of patients with known viral infections exhibited high pro-

portions of circulating NK cells and activated (EMRA-like) CD8 T cells when compared with CAP-

other, COVID-19 was distinguished from other etiologies of CAP by a pronounced type I interferon

signaling transcriptional signature.

Distinctive monocyte subsets from patients with COVID-19, CAP-flu,
and CAP-other
Next, we focused on the differences in monocyte clusters between COVID-19, CAP-flu, and CAP-

other (Figure 5a; Figure 3—figure supplement 1a–c). Classical monocytes were proportionally

expanded in both CAP groups, albeit primarily in patients with CAP-flu (Figure 5b). The intermedi-

ate monocyte cluster was prominently expanded in patients with COVID-19, whereas the non-classi-

cal monocyte cluster showed a clear expansion in the CAP-other patients.
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Figure 3. Divergent composition of major immune cell types in patients with COVID-19, CAP-flu, and CAP-other. (a, b) UMAPs depicting the

metaclusters identified by the single-cell transcriptomic analysis of PBMCs from controls, COVID-19, CAP-flu, and CAP-other patients, where each dot

represents a single cell. In the first UMAP (a), cells are colored by cell type cluster, whereas in the second UMAP (b), cells are colored by donor group.

(c) Correlation plot depicting metacluster enrichment in COVID-19, CAP-flu, or CAP-other patients. Dot size proportional to Pearson’s residual of the

chi-squared test (i.e., reflecting the difference between the observed and expected proportion), while the color represents the degree of association

from Pearson’s chi-squared residuals (red means a positive association, blue means a negative association). (d) Dot plot showing canonical genes per

identified metacluster. Color indicates the normalized level of expression, while the dot size is proportional to the percentage of cells per cluster

expressing the canonical gene. (e) Heatmap showing the expression of lineage-defining protein surface markers per metacluster. (f) Density plot

showing the normalized surface protein expression of HLA-DR on the monocyte lineage, split between COVID-19, CAP-flu, and CAP-other

patients. CAP, community-acquired pneumonia; UMAP, Uniform Manifold Approximation and Projection.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Cell clusters in individual samples from COVID-19, CAP-flu, and CAP-other.

Figure supplement 2. Differential mRNA and surface protein expression between COVID-19, CAP-flu, and CAP-other patients.
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Figure 4. CAP-flu is characterized by expansion of T cells and NK cells expressing granulysin, while COVID-19 T and NK cells exhibit a clear type I

interferon signature. (a) UMAP depicting the T and NK cell clusters identified by the single-cell transcriptomic analysis of PBMCs from COVID-19, CAP-

flu, and CAP-other patients, where each dot represents a single cell with each color corresponding to a specific cell type cluster. The full UMAP of all

identified clusters, the distribution per individual patient, and the differentially expressed genes and proteins between all clusters are depicted in

Figure 4 continued on next page
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To explore the transcriptional states of the diverging monocyte compositions in disease states,

we looked at the top DEGs between the monocyte clusters, and the pathways related to the upregu-

lated genes within each cluster (Figure 5c–f). In classical monocytes (proportionally higher in

patients with CAP-flu) the majority of upregulated genes was related to ribosomes and viral tran-

scription (Figure 5c,d). The intermediate monocytes (consistently present in COVID-19) were charac-

terized by a pronounced antiviral, interferon-driven response, as illustrated by the upregulation of

both interferon-inducible and stimulated genes (IFI6, IFI27, IFI44L, and ISG15, SIGLEC1; Figure 5c,

e). The high expression of APOBEC3A and MX1, involved in restricting viral activity in monocytes

through RNA editing (Sharma et al., 2015; Verhelst et al., 2012), underlined this increased antiviral

potential. The upregulated DEGs of the non-classical monocyte cluster (predominantly present in

CAP-other) were more heterogeneous: they expressed genes involved in MHC class II antigen-pre-

senting, Fc receptors (FCGR3A and FCER1G), the complement system (C1QA and CFD), and multi-

ple genes associated with cell activation (AIF1, LST1, and SMIM25; Figure 5c,f).

An overview of NK cell, T cell, and monocyte differences between COVID-19, CAP-flu, and CAP-

other is shown in Table 2.

Discussion
We performed single-cell transcriptomic and proteomic analyses in PBMCs from a matched cohort

of non-infectious control subjects, patients with CAP caused by SARS-CoV-2 (COVID-19), Influenza

A, or other pathogens. All patient samples were collected within 48 hr of admission to a non-inten-

sive care hospital ward.

Despite overall lymphopenia in our population of patients with COVID-19, consistently described

in earlier studies (Wiersinga et al., 2020), we report a proportional increase in cells that resemble

CD8 EMRA T cells with a pronounced cytotoxic transcriptional signature. Importantly, CAP-flu—but

not CAP-other—was associated with a similar CD8 EMRA T cell response, suggesting that this is

induced by viral infection in general rather than by SARS-CoV-2 specifically. CD8 EMRA T cells effec-

tively kill virus-infected cells, have a varying proliferation capacity, and (together with CD8 EM T

cells) represent the predominant phenotype in circulating CD8 T cells specific for respiratory viruses

in adults (Martin and Badovinac, 2018; Schmidt and Varga, 2018; Verma et al., 2017). Other stud-

ies in COVID-19 similarly reported CD8 T cells that were highly activated (De Biasi et al., 2020;

Kuri-Cervantes et al., 2020b; Mathew et al., 2020; Zhang et al., 2020) had increased cytotoxic

potential (Kuri-Cervantes et al., 2020b; Zhang et al., 2020) and exhibited characteristics of EMRA

(or sometimes EM) cells (De Biasi et al., 2020; Mathew et al., 2020; Neidleman et al., 2020;

Weiskopf et al., 2020). These T cells may be clonally expanded in moderate, but not severe, disease

(Liao et al., 2020; Zhang et al., 2020). Taken together, these findings indicate an important role for

cytotoxic T cells with EMRA-like features in controlling the virus both in influenza and COVID-19

pneumonia, although it would be informative to contrast these findings with the T cell response in

Figure 4 continued

Figure 3—figure supplements 1 and 2. (b) Correlation plot depicting T and NK cell cluster enrichment in COVID-19, CAP-flu, and CAP-other. Dot size

proportional to Pearson’s residual of the chi-squared test (i.e., reflecting the difference between the observed and expected proportion), while the

color represents the degree of association from Pearson’s chi-squared residuals (red means a positive association, blue means a negative association).

See also Figure 3—figure supplement 1c for the correlation plot of all identified clusters. (c) Violin plots showing the expression of the top DEGs

derived from comparing the two identified EMRA-like T cell clusters (adjusted p<0.05). The expression of these genes in other T cell clusters is also

depicted. See also Figure 3—figure supplement 2 for the top DEGs and surface protein expression differences between all identified cell clusters. (d)

Violin plots showing the expression of the top DEGs between the two identified NK cell clusters (adjusted p<0.05). (e) Graph depicting the DEGs

identified when comparing COVID-19 cells and CAP-flu cells in the granulysin+ NK cell cluster. The X-axis depicts the average log fold change and the

Y-axis depicts the percentage point difference between the proportion of cells expressing the gene in the COVID-19 group minus the proportion of

cells expressing the gene in the CAP-flu group. All depicted DEGs are statistically significant after adjusting for multiple testing (Benjamini-

Hochberg [BH]). (f) Bar plot showing Gene Ontology pathway analysis of the genes upregulated in granulysin+ NK cells from patients with COVID-19.

The X-axis shows the BH adjusted �log10 p-value from the enrichment score analysis. (g) Heatmap showing the expression of genes in the type I

interferon signaling pathway in all T and NK cell subsets, split between COVID-19, CAP-flu, and CAP-other patients. (h) Box and whisker plots depicting

the upregulation of the type I interferon signaling pathway in all T and NK cell subsets, split between COVID-19, CAP-flu, and CAP-other patients.

Statistical significance was determined using the two-sided Kruskal-Wallis test with post hoc pairwise Dunn’s test: *BH-adjusted p<0.05. CAP,

community-acquired pneumonia; DEG, differentially expressed gene; NK, natural killer; UMAP, Uniform Manifold Approximation and Projection.
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infections that do not require hospitalization. Similarly, it would be valuable to compare these data

with patients that have a more complicated outcome, such as ICU admission, to further separate

immunopathology from a homeostatic immune response.
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Figure 5. Distinctive subset compositions and transcriptional profiles in monocytes from patients with COVID-19, CAP-flu, and CAP-other. (a) UMAP

depicting the monocyte cell clusters identified by the single-cell transcriptomic analysis of PBMCs from COVID-19, CAP-flu, and CAP-other patients,

where each dot represents a single cell with each color corresponding to a specific cell type cluster. The full UMAP of all identified clusters and the

distribution per individual patient is depicted in Figure 3—figure supplement 1a,b. (b) Correlation plot depicting cluster enrichment in COVID-19,

CAP, and CAP-flu patients. Dot size proportional to Pearson’s residual of the chi-squared test (i.e., reflecting the difference between the observed and

expected proportion), while the color represents the degree of association from Pearson’s chi-squared residuals (red means a positive association, blue

means a negative association). (c) Heatmap showing the expression of the top DEGs (adjusted p<0.05) between all three monocyte clusters. (d) Gene

Ontology pathway analysis of the upregulated DEGs in classical monocytes, (e) intermediate monocytes, and (f) non-classical monocytes. The X-axis

shows the Benjamini-Hochberg adjusted �log10 p-value from the enrichment score analysis. CAP, community-acquired pneumonia; DEG, differentially

expressed gene; UMAP, Uniform Manifold Approximation and Projection.
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Whereas T cell lymphopenia has been a ubiquitous finding, the effect of COVID-19 on NK cell

numbers is more ambiguous, with cytopenia often limited to the most severe cases (Kuri-

Cervantes et al., 2020b; Laing et al., 2020; Wilk et al., 2020; Zhang et al., 2020). We report a

proportional increase in highly cytotoxic NK cells with a type I interferon transcriptional signature in

COVID-19. Patients with CAP-flu—but not with CAP-other—also displayed an expansion of NK cells

when compared with non-infectious control subjects, but this was less pronounced when compared

directly with COVID-19. While the cytotoxic and interferon-responsive transcriptional features are in

line with earlier findings, an expansion of NK cells has not been described in previous COVID-19 sin-

gle-cell reports (Wilk et al., 2020; Zhang et al., 2020; Zhu et al., 2020). However, Wilk et al.

reported that CD56dim NK cells—key in the cytotoxic antiviral response—were maintained in moder-

ate disease, whereas the CD56bright NK cells (prone to produce pro-inflammatory cytokines such as

IFN-g ) were depleted in both moderate and severe diseases (Wilk et al., 2020). COVID-19 has been

hypothesized to either induce hyperresponsive NK cells that exacerbate lung-destructive inflamma-

tion through the production of IFN-g; or to hamper effective viral clearance by NK cells, such as

through suppressing type I interferon responses and reducing circulating cell numbers

(Market et al., 2020). In influenza, depletion of NK cells has been implicated only in severe disease,

with normal or even increased NK cell counts after mild disease or vaccination (Fox et al., 2012;

Jost et al., 2011). While our results partly deviate from previous reports, they could indicate a rela-

tively adequate NK cell response in this population of non-ICU patients with COVID-19 and CAP-flu.

Overall, the proportional expansion and activation of CD8 T and NK cells, together with a potent

interferon response could be indicative of a homeostatic response to a viral infection. While in this

regard it would be of interest to compare patients with different disease outcomes, we deemed the

number of patients with a complicated outcome in our cohort too small to justify such an analysis.

Monocytes are key players in the innate immune response to pathogens and have been reported

to respond divergently to different types of RNA viruses (de Marcken et al., 2019). We found strik-

ing proportional and transcriptional differences in monocyte subsets between the disease groups: in

COVID-19, intermediate monocytes were expanded with a clear antiviral and type I interferon signa-

ture, while in CAP-flu, classical monocytes predominated and were characterized by ribosomal trans-

lational activity. An enhanced type I interferon response in monocytes of patients with COVID-19 has

previously been reported (Schulte-Schrepping et al., 2020; Zhang et al., 2020), but interestingly

CAP-flu did not provoke such a strong antiviral response in the expanded monocyte subset. Inter-

feron evasion and hijacking of the host’s ribosomal translational machinery are hallmarks of active

viral replication (Chen et al., 2018; Garcı́a-Sastre, 2011; Walsh and Mohr, 2011). While both Influ-

enza and SARS-CoV-2 can infect human monocytes (Hoeve et al., 2012; Pontelli et al., 2020;

Ren et al., 2021), the clear transcriptomic difference in our population could indicate that mono-

cytes in patients with CAP-flu—but not COVID-19—harbored intracellular viruses. Furthermore, we

found a profound decrease of HLA-DR—which can be indicative of immune suppression—in classical

monocytes both in COVID-19 and CAP-flu, when compared with the CAP-other group. Due to our

limited sample size, and as decreased expression of HLA-DR is a hallmark of sepsis in patients with

CAP, these relatively low levels of HLA-DR in monocytes from patients with viral CAP should be

interpreted with caution (Venet et al., 2020). In CAP-other, non-classical monocytes preponderated,

characterized by enhanced expression of genes involved in MHC-II signaling. This, together with the

Table 2. Overview of proportionally increased cell clusters and transcriptional characteristics in the direct comparison between

COVID-19, CAP-flu, and CAP-other.

COVID-19 CAP-flu CAP-other

NK cells Granulysin+ NK cells " higher type I interferon response
than CAP-flu
NK cells high IFITM3 expression

Granulysin+ NK cells "" higher AREG
expression than COVID-19

Low numbers of NK cells

T cells CD8 EMRA-like 2 " cytotoxicity, activation and
inflammation

CD8 EMRA-like 2 "" cytotoxicity, activation
and inflammation

Naive CD4/CD8
not activated
CD8 EM less activated than EMRA-
like 1 and 2 clusters

Monocytes Intermediate monocytes high type I interferon response,
increased antiviral potential

Classical monocytes ribosomal and viral
transcription genes

Non-classical monocytes
heterogenous gene expression
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differential lymphocyte responses discussed above, clearly suggests that the peripheral immune

response in CAP depends at least in part on the type of causative pathogen.

In the NK cells and (to a lesser extent) non-classical monocytes of patients with COVID-19, we

found remarkably high expression of interferon-induced transmembrane protein 3 (IFITM3). IFITM3

plays an essential role in restricting viral replication in CAP-flu (Yánez et al., 2020), as mice lacking

IFITM3 developed severe pulmonary inflammation when infected with an influenza virus of limited

virulence (Everitt et al., 2012). Our results underline a potential role of IFITM3 in COVID-19,

although mechanistic evidence will be decisive.

Strengths of this study include the application of the novel CITE-seq technique, directly integrat-

ing proteomic surface marker and transcriptomic data on a single-cell level. This enabled us to read-

ily validate transcriptome-derived clusters and certain disease-related transcriptional patterns at the

protein level. Furthermore, the design of this study (in terms of matching and sampling within 48 hr

after hospital admission) and the inclusion of disease controls strengthen the observations. Our

investigation has several limitations. Experimentally, the total number of analyzed cells was at the

lower end of standard practice, which was mainly due to our multiplexed and integrated design. Fur-

thermore, our study had a limited sample size as viable PBMC samples from severity matched, non-

COVID-19 CAP patients are scarce. Differences in patient characteristics, such as body mass index

and duration of symptoms prior to admission, were largely representative of expected differences

between the patient populations (Wiersinga et al., 2020). The difference in duration of symptoms

prior to hospital admission can be considered a limitation, as time likely influences the composition

of immune cell subsets and transcriptional states. We were also unable to take into account the influ-

ence of virological features, such as the level of viral load and/or presence of viremia, as these data

were not available. The causative organism in CAP is typically only identified in approximately 50%

of patients (Jain et al., 2015; Welte et al., 2012). While in this respect our (non-COVID-19) CAP

cohort is representative of a general CAP population, patients with CAP-other likely are a more het-

erogeneous group than patients with pneumonia caused by one pathogen. Finally, one subject in

our cohort was co-infected with both Influenza A and S. pneumoniae. We nevertheless decided to

include this patient to create a realistic representation of patients with CAP-flu, as up to 30% of lab-

oratory-confirmed pneumonia cases can involve viral and bacterial co-infections (most commonly

influenza and S. pneumoniae) (Gupta et al., 2008; Jain et al., 2015).

Collectively, this investigation provides insight into the peripheral immune features of CAP,

including COVID-19, at the single-cell level in patients admitted to a general hospital ward. By con-

trasting multiple commonly encountered forms of CAP, we provide a framework for the roles of T

cells, NK cells, and monocytes in the immunopathophysiology of CAP. This knowledge could guide

future mechanistic studies seeking pathogen-specific interventions.
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