
  information

Article

A Machine Learning Approach for the Tune Estimation
in the LHC

Leander Grech 1,2,∗ , Gianluca Valentino 1 and Diogo Alves 2

����������
�������

Citation: Grech, L.; Valentino, G.;

Alves, D. A Machine Learning

Approach for the Tune Estimation in

the LHC. Information 2021, 12, 197.

https://doi.org/10.3390/info12050197

Academic Editor: Giorgio Kaniadakis

Received: 23 March 2021

Accepted: 27 April 2021

Published: 29 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Communications and Computer Engineering, University of Malta, MSD 2080 Msida, Malta;
gianluca.valentino@um.edu.mt

2 Accelerator Systems Department, CERN, 1211 Geneva, Switzerland; diogo.alves@cern.ch
* Correspondence: leander.grech@cern.ch

Abstract: The betatron tune in the Large Hadron Collider (LHC) is measured using a Base-Band
Tune (BBQ) system. The processing of these BBQ signals is often perturbed by 50 Hz noise harmonics
present in the beam. This causes the tune measurement algorithm, currently based on peak detection,
to provide incorrect tune estimates during the acceleration cycle with values that oscillate between
neighbouring harmonics. The LHC tune feedback (QFB) cannot be used to its full extent in these
conditions as it relies on stable and reliable tune estimates. In this work, we propose new tune
estimation algorithms, designed to mitigate this problem through different techniques. As ground-
truth of the real tune measurement does not exist, we developed a surrogate model, which allowed
us to perform a comparative analysis of a simple weighted moving average, Gaussian Processes and
different deep learning techniques. The simulated dataset used to train the deep models was also
improved using a variant of Generative Adversarial Networks (GANs) called SimGAN. In addition,
we demonstrate how these methods perform with respect to the present tune estimation algorithm.

Keywords: LHC; betatron tune; deep learning; SimGANs

1. Introduction

The tune (Q) of a circular accelerator is defined as the number of betatron oscillations
per turn [1]. This is a critical parameter in the Large Hadron Collider (LHC), which has to
be monitored and corrected in order to ensure stable operations [2] and adequate beam
lifetime. The Base-Band Q (BBQ) system [3] in the LHC is used to measure the tune and
essentially consists of an electromagnetic pickup followed by a diode-based detection and
acquisition system. The diode detectors pick-up a small modulation caused by betatron
motion on the large beam intensity pulses and converts it to baseband, which for the LHC
is in the audible frequency range.

The BBQ system in the LHC is sensitive enough to not require that the beam be
externally excited in order to measure the tune. This normally results in a frequency
spectrum, such as the one shown in Figure 1, where the value of the betatron tune frequency
should, in principle, be the frequency position of the dominant peak [3,4]. The frequency
spectrum in the aforementioned figure was obtained in 2018 and is representative of the
spectra obtained during real operation. FLATTOP is a beam mode which occurs after the
LHC energy ramp and before collision optics are set [5].

Since the start of the LHC, spectral components at harmonics of the 50 Hz mains
frequency have been observed with several different diagnostic systems. Studies have
shown that these modulations are on the beam itself with the source of the error found to be
the main dipoles. Therefore, the harmonic perturbations are not a result of instrumentation
but are real beam excitations [6]. These harmonics are clearly visible in the BBQ system,
resulting in a frequency spectrum polluted with periodic spikes every 50 Hz. Since these
harmonics are also present around the betatron tune, they are a potential source of error
for the tune estimation algorithm in use until LHC Run 2 (herein referenced as the BQ

Information 2021, 12, 197. https://doi.org/10.3390/info12050197 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-4062-0787
https://doi.org/10.3390/info12050197
https://doi.org/10.3390/info12050197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12050197
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12050197?type=check_update&version=2


Information 2021, 12, 197 2 of 19

algorithm). The current tune estimation algorithm applies a series of filters and averaging
techniques which have been developed in order to mitigate the impact of the 50 Hz
harmonics on the final estimated value. However, it is not uncommon to have the estimated
tunes oscillate between neighbouring 50 Hz harmonics. The fact that the tune estimate
locks onto a particular 50 Hz harmonic is clearly not desirable. In addition, having the tune
jump from one harmonic to another affects the tune feedback (QFB) system, causing it to
switch off as a protective measure against unstable behaviour.

Figure 1. Example of 50 Hz harmonics present in the BBQ spectrum, obtained from LHC Fill 6890,
Beam 2, horizontal plane in the FLATTOP beam mode.

The work presented in this paper builds upon the progress made in designing alter-
native algorithms which are able to reliably estimate the tune from spectra polluted with
50 Hz harmonics [7]. Namely two alternative algorithms will be considered, one which
uses a Weighted Moving Average (WMA) and the other uses Gaussian Processes in order
to reconstruct the BBQ spectra without 50 Hz harmonics. The difference between the alter-
native algorithms and this work that now we take a Machine Learning (ML) approach to
solve the tune estimation problem. ML offers a set of useful tools that can be used to design
a mathematical model that attempts to solve a problem from experience, and automatically
improves its performance over time. The aim of this work is to use ML to train a predictor
function which can estimate the position of the tune directly from BBQ spectra.

We start by introducing the BQ algorithm, which obtained tune estimates from the
BBQ spectra until Run 2 of the LHC and the purpose of which in this work is purely
historical. We also briefly explain the alternative algorithms [7] that aim to improve the
estimates obtained from a BBQ spectrum. We then introduce a novel, albeit a simple
approach using Artificial Neural Networks (ANNs), and highlight its deficiencies and
limitations along with its potential room for improvement. Next we aim to improve upon
the simple approach by considering the inadequacy of simulated spectra to train an ANN
and consider a variant of Generative Adversarial Networks (GANs), called SimGAN as a
potential solution to this problem. Finally, we collate and discuss the results obtained from
the current and alternative algorithms, and all the ML approaches.

2. Tune Estimation Algorithms

The BBQ system is normally configured to provide a spectrum of 1024 frequency bins
at a rate of 6.25 Hz. Since the original signal is sampled at the LHC revolution frequency
of approximately 11.25 kHz, the spectral resolution is approximately 5.5 Hz. This defines



Information 2021, 12, 197 3 of 19

the frequency range and resolution available for any system that estimates the tune from
BBQ spectra.

We start by considering the BQ algorithm, where the set of sequential processing
blocks that form the present tune estimation algorithm is depicted in Figure 2. First, each
calculated spectrum update is passed through a bank of independent exponential moving
average filters. Each filter is applied to a single frequency bin with the aim of reducing
spectral noise. Median and average filters are subsequently applied to the latest spectrum
to increase its smoothness and mitigate the effect of the 50 Hz harmonics. At this stage the
frequency corresponding to the maximum value of the processed spectrum is taken. This
frequency is subsequently refined by going back to the output of the bank of exponential
moving averages and performing a Gaussian fit of the spectral region in its immediate
vicinity. This last step attempts to obtain a better estimate of the tune, beyond the frequency
resolution of the spectrum.

Median FIlter + 
Moving Average Filter

Find peak preliminary

Refine previous peak 
from EMA spectrum

3-point Gaussian fit 
centered on refined 

peak index

Time series data

FFT

Exponential Moving 
Average (EMA)

Data 
pre-processing

Present tune 
estimation algorithm

Figure 2. Present BQ tune estimation algorithm [7].

The development of an improved algorithm was prompted after the observation that
the tune estimates from the BQ algorithm sporadically jump to adjacent 50 Hz harmonic
peaks, thus providing incorrect tune estimates. This erratic estimate is used by the QFB,
which drives the currents in the quadrupole magnets in order to maintain a reference
tune. Unsurprisingly, the performance of the QFB is affected by the lack of stability and
accuracy in the tune estimates. The alternative algorithms try to improve the performance
of the tune estimation algorithm by taking into consideration the 50 Hz harmonics into the
estimation process [7].

As before, the tune value is assumed to be located at the maximum peak of the
spectrum obtained from the BBQ system, however this time, the frequency bins in the
immediate vicinity of the 50 Hz harmonics are removed from the spectrum. In this work,
a frequency range of 12 Hz with a harmonic frequency as the center was removed. This
results in a spectrum with gaps, where only approximately 2

3 of the frequency bins can be
used. The alternative algorithms can estimate the position of the maximum peak in the
presence of gaps in the spectrum. Analysis of the results show that the performance is
somewhat improved.

Figure 3 shows the distribution of the tune estimation errors obtained from simulated
spectra with artificially injected 50 Hz harmonics. This figure also shows the results of the
alternative algorithms when being used with specific parameters. Namely the Gaussian
Process (GP) fit was used with a Radial Basis Function (RBF) kernel having a length scale
of 70 while the Weighted Moving Average (WMA) used a window size of 30 [7].



Information 2021, 12, 197 4 of 19

20 15 10 5 0 5 10 15 20
Error [Hz]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ilit

y

fres

BQ
GP70
WMA30
WMA15

Figure 3. Probability density plot of the errors obtained by non-ML algorithms. The errors are the
difference of the respective tune estimates and the ground-truth resonance of he simulated data.
BQ is the algorithm used until the LHC Run 2; GP70 uses Gaussian Processes with a Radial Basis
Function kernel having a length scale of 70; WMA30 and WMA15 use a weighted moving average
with a half-window length of 30 and 15, respectively. GP and WMA were introduced in [7].

3. Simulations

Due to the nature of the tune estimation problem, any BBQ data that has been collected
thus far contains the spectra from the BBQ system and tune estimates from the BQ algorithm.
Thus when using logged data, it can not be assumed that the logged tune values are correct.
Due to this limitation another source of pairs of spectra and tune values had to be obtained,
which could be used to train and test the ML approaches. Previous work approached this
problem by considering that since the motion of a particle in a circular accelerator can be
described by a Hill’s type equation, we can approximate the shape of a frequency spectrum
obtained by the BBQ system by using a second order system simulation [7].

The first part of this work continues to use simulations, however this time in order to
generate a large dataset of spectra and tune value pairs which can be used to train neural
network models. Specifically, the frequency spectrum of a second order system is given by
the following formula:

G(ω) =
ω2

res√
(2ωωresζ)2 + (ω2

res −ω2)2
+N (0, σ), (1)

where we can obtain ωres by using the following:

ωtrue
res =

√
1− 2ζ2ωres. (2)

In Equation (1), N (0, σ) denotes an additive Gaussian noise term with zero mean
and σ standard deviation while ζ is the damping factor which controls the width of the
resonance peak obtained. In addition, a finite value of ζ also shifts the true position of the
resonance in G(ω) according to Equation (2).

All of the ML models considered in this work require a fixed length input, and can
only provide a fixed length output. For the models that estimate the tune from a frequency
spectrum, it would have been possible to feed the entire spectrum however this would
require a model with a large input length, implying a large number of parameters to train.
This approach is not necessary since in real operational conditions, the spectral region
inside which to find the tune frequency is generally well known.



Information 2021, 12, 197 5 of 19

In this work, the frequency window was chosen to be 100 frequency bins long, while
guaranteeing that the tune peak lies within this frequency window. This value was chosen
to be slightly larger than the frequency windows chosen during real machine operation
using the BQ algorithm. The average operational frequency window obtained from a
sample of parameters used in the BBQ system for the beam during FLATTOP is around
80 frequency bins long. It was empirically observed however that sometimes the dominant
peak lay close to the edges of the chosen window, which subsequently limits the perfor-
mance of the BQ algorithm. Figure 4 compares the new window length to that used in
operation and as it can be observed, the tune estimates around the 15 s mark are close to
edge of the operational window. This example also paints a clearer picture of the bounds
on the inputs used throughout this work where we see that in all the cases the input size
chosen will always be adequate and representative of real operation.

0 5 10 15 20 25 30
Time [s]

2800

3000

3200

3400

3600

Fr
eq

ue
nc

y[
Hz

]

Fill 6890 - Beam 1 - Plane h - Mode: FLATTOP

Operational Window
New Window
BQ tunes

Figure 4. An example of the operational frequency windowing used by the BQ algorithm during
the LHC Run 2 to the new window length used in this work. The tunes were obtained from LHC
fill 6890, horizontal plane of beam 1 in the FLATTOP beam mode. During FLATTOP the optics are
changed and thus the tune shifts to a new frequency.

It is important to note that the absolute magnitudes of the spectra are not needed. For
example in Figure 1 the vertical axis is in the range of 160 dB and this is calculated by the
BBQ system to be representative of the real power in each frequency bin. For training neural
networks it is imperative that we normalise the input data to be either in the range [0, 1] or
[−1, 1]. This is due to the type of activation functions that are used in between layers in a
neural network, which are designed to operate in normalised space. Due to this, the real
power of the spectra need not be generated by the simulator. Another important detail is
that the value of the tune, while equivalent to ωtrue

res , had to be normalised with respect to
the frequency window passed to the model. This is not detrimental to the operation of the
model as the choice of the frequency window is chosen by the operators, and the real value
of the tune can be easily transformed to Hertz.

By performing a Monte Carlo simulation of the ωtrue
res and ζ required by the second

order model as shown in Equation (1), we can explore a myriad of possible spectra, with
an exact value of the resonant frequency for each spectrum. ωtrue

res was sampled from the
bounds of the frequency window in radians and ζ was sampled from 10U (−2.5,−1.8) where
U is a uniform distribution. The normalised amplitude of the injected 50 Hz harmonics
was drawn from U (0.5, 2) and after adding the harmonics to the second order spectrum, a
simple linear digital filter of size 3 was passed forward and backward to the spectrum in
order to give width to the harmonics as can be observed in Figure 1. The spectrum is then
normalised again, and ωtrue

res is found in terms of the normalised frequency range. Hence



Information 2021, 12, 197 6 of 19

by using this generated dataset, we can expect the ANN to generalise well and provide a
robust tool which can reliably estimate the tune even from a BBQ spectrum directly.

Figure 5 illustrates a normalised real spectrum clipped to the relevant frequency win-
dow, along with a second order simulation. The procedure described above was iteratively
performed to locate suitable parameters for the simulated spectrum of norm(ωtrue

res ) = 0.76,
ζ = 10−2.6 and σ = 0.04. As can be observed, the shape of the simulated tune peak matches
with that observed in real BBQ spectra.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized frequency

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Po

we
r

norm( true
res ) = 0.76,

= 2.51e-03
Real spectrum
Simulated spectrum
Normalized tune

Figure 5. Second order simulation of a real spectrum obtained from the BBQ system.

4. Simple Approach

The simplest way to use ML tools to solve the tune estimation problem is by using an
Artificial Neural Network (ANN) that is trained to estimate the tune value from any BBQ
spectrum. The idea would be to first choose a sensible network architecture and then train
it using the real BBQ spectra as the input. The tune estimates obtained by the most reliable
algorithm mentioned in Section 2 would be used as the labels. However, when using
this approach the ANN can never predict better tune estimates than the algorithm that
produced the tune label. It is preferable to train the network with simulated second-order
system spectra, since the resonant frequency used to create the spectrum is known.

In the simple approach, the pairs of simulated spectra and normalised resonant
frequencies were generated according to the range of parameters described in Section 3.
The training dataset consisted of 20,000 batches of 32 samples each. Another 1000 samples
were generated and used as validation data. For all models described in this section, the
loss function used was the Mean Squared Error (MSE) and the gradient descent algorithm
was Stochastic Gradient Descent (SGD) with a learning rate of 0.01.

4.1. Fully-Connected Layers

The first network architecture that was considered was a 3-layer, fully-connected
network (also called a dense network). In all the models attempted, the input layer had a
size of 100 and the output layer had a size of 1. The activation function of all hidden layers
was the Rectified Linear Unit (ReLU) and the output layer was linear. The Glorot normal
initialiser was used for all layers.

Table 1 shows the parameters of the three model architectures attempted. Figure 6
shows the density plots of the errors of the tune estimates provided by each respective
model. Here it can be seen that ML#1 and ML#2 have the best performance, with the
highest accuracy and precision. It can also be noted that even though ML#2 has almost
triple the number of parameters of ML#1, the latter still performed as good. From Figure 6 it
can also be seen that unlike the BQ algorithm and the alternative algorithms proposed in [7]



Information 2021, 12, 197 7 of 19

(GP70, WMA30), the density plot of the three models drops to zero after approximately 2
frequency bins. This contrasts with the current and the alternative algorithms which show
a tail extending beyond the bounds of Figure 3.

20 15 10 5 0 5 10 15 20
Error [Hz]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Pr
ob

ab
ilit

y
fres

ML#0
ML#1
ML#2

Figure 6. Probability density of the errors obtained by fully-connected networks. The errors are the
differences between the predicted tunes and the resonances used to simulate the spectra.

Table 1. Model architectures presented for fully-connected networks.

Layer 1 Layer 2 Layer 3 # 1

ML#0 150 50 10 23,221
ML#1 300 100 20 62,441
ML#2 500 250 50 188,351

1 Number of trainable parameters.

4.2. Convolutional Layers

Convolutional layers were invented in order to more efficiently solve tasks whose
data is known to have a grid-like topology where spatial locality exists. They work on the
same principle as the visual cortex of mammals, which is to collect subsets of the input
(such as raw pixels in an image) and processing each subset independently of each other.
Convolutional layers can be used on the output of previous layers in order to capture more
complex features [8,9].

Convolutional layers use kernels (also called filters) to perform the convolution op-
eration, where a kernel is parametrised by a set of weights. Each kernel is convolved
with a small subset of the input to produce a feature which is then placed in a feature
map, all the while maintaining the spatial order of the features with respect to the original
data. When this operation is done, the kernel is then shifted to the next subset of the input
to produce a new feature. Note that the length of each shift of the kernel is also called
stride length. An important advantage of using convolutional layers is the significantly
reduced number of parameters needed to achieve the same performance as an equivalent
in function, fully-connected network [8].

Figure 7 illustrates a network architecture utilising three convolutional layers and
one dense layer to produce a scalar output. This architecture was trained under various
configurations of parameters to try and solve the tune estimation problem. The activation
function of all hidden layers was ReLU and the output layer was linear. Table 2 lists
the model architectures using convolutional layers. Similar to Figure 6, Figure 8 shows
the probability density of the errors obtained by the various convolutional network ar-
chitectures attempted. From this plot, it can be seen that the best convolutional model
is ML#5.



Information 2021, 12, 197 8 of 19

Figure 7. Network using convolutional layers.

Table 2. Model architectures presented for CNNs.

Layer 1 Layer 2 Layer 3

f 1 k 2 s 3 f k s f k s
Dense # 4

ML#3 32 3 3 16 3 3 8 3 3 20 2753
ML#4 32 3 1 16 3 1 8 3 1 20 18,113
ML#5 64 3 3 32 3 1 16 3 1 20 18,905
ML#6 128 3 3 64 3 3 16 3 3 20 29,561
ML#7 64 3 1 32 3 1 16 3 1 20 40,025

1 Number of filters. 2 Kernel size of convolution. 3 Stride length, shift size of kernel. 4 Number of trainable
parameters.

20 15 10 5 0 5 10 15 20
Error [Hz]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Pr
ob

ab
ilit

y

fres

ML#3
ML#4
ML#5
ML#6
ML#7

Figure 8. Probability density of the errors obtained by convolutional networks. The errors are the
differences between the predicted tunes and the resonances used to simulate the spectra.

4.3. Evaluation

A set of 5000 simulated spectra were used to evaluate and compare the performance
of ML#1 and ML#5 to that of BQ, WMA and GP. The tune estimates obtained from each
respective model and algorithm were subtracted from the ground-truth resonances used to
generate the spectra to obtain a set of errors per tune estimation system. Figure 9 shows
the probability density of these errors in log scale. The vertical dashed lines are centered
around 0 and are separated by the spectral resolution, fres. The vertical lines give an



Information 2021, 12, 197 9 of 19

indication of the scale of the errors with respect to the available resolution of the spectra.
Similar to the density plots shown in Figures 3, 6, 8 and 9 compares the accuracy and
precision of the best DNN model (ML#1), the best CNN model (ML#5), the WMA using
two different half-window lengths of 15 and 30, GP with an RBF kernel having a length
scale of 70 and the BQ algorithm.

60 40 20 0 20 40 60
Error [Hz]

10 3

10 2

10 1

Pr
ob

ab
ilit

y
BQ
GP70
WMA30
WMA15
ML#1
ML#5
fres

Figure 9. Error distribution of tune estimates of trained ML models and algorithmic approaches to
the ground-truth resonance. ML#1 and ML#5 are the best DNN and CNN respectively; BQ is the
algorithm used in the LHC until Run 2; GP70 uses Gaussian Processes with a RBF kernel having a
length scale of 70; WMA15 and WMA30 use a Weighted Moving Average with half window lengths
of 15 and 30 respectively.

From Figure 9 it can be observed that when using simulated spectra, the probability of
both ML models to obtain an absolute error larger than 3 fres is practically zero. In contrast,
all the other tune estimation algorithms presented exhibit a non-zero probability of having
an absolute error larger than 3 fres. In particular, the probability of the ML models obtaining
an error of approximately −2.5 fres, is one order of magnitude lower than all the other tune
estimation algorithms.

4.4. Limitations

Training a neural network to solve a supervised task requires a large set of correctly
labelled data. The problem of inaccurate tune estimates from real spectra was avoided by
simulating second-order system spectra, artificially injecting 50 Hz noise harmonics and
Gaussian noise in order to mimic what is observed in a BBQ spectrum. However it was
observed that regardless of the model architecture used, the performance of the model
trained on simulated spectra is sub-optimal in estimating the tune from a real spectrum
(Section 6 illustrates the sub-optimal tune estimates obtained by ML#1 and ML#5 when
using BBQ spectra instead of simulated spectra).

Figure 10 shows the training and validation losses of ML#1. Validation losses are
obtained by comparing the tune estimates in the validation dataset to the predicted tune



Information 2021, 12, 197 10 of 19

estimate of the network. The figure shows that the training loss and the validation loss are
very similar when using unseen simulated spectra for validation. This indicates that the
network is successfully learning to predict the tune values from a simulated spectrum.

The problem with the simple approach is exposed when using a validation dataset
composed of real spectra as inputs and tune estimates obtained from BQ, GP70 and WMA30,
respectively as the labels. A gap of approximately an order of magnitude between the
training and validation loss from BQ can be observed. Normally when training a neural
network, such a gap between the two losses is attributed to either over-fitting or under-
fitting of the model over the training data. However in this case, this discrepancy in the
losses was expected since it is known that the algorithms used to obtain the validation
labels are not reliable sources of tune estimates.

0 5000 10000 15000 20000
Steps

10 4

10 3

10 2

Lo
ss

Comparing validation losses
Validation loss - Simulated
Validation loss - GP70
Validation loss - WMA30
Training loss
Validation loss - BQ

Figure 10. Comparison of validation losses when using simulated and real spectra respectively. Note
that the dataset containing the real spectra was used to obtain tune estimates from BQ, GP70 and
WMA30, thus creating 3 separate validation datasets.

From Figure 3, the average error of the BQ algorithm can be estimated to be half a
frequency bin which implies that on a normalised frequency window, the average inherent
loss from the BQ tunes would be approximately 0.5 bin

100 bins ≈ 5× 10−3. This would explain
the size of the gap between the training and the BQ validation loss in Figure 10, however it
might not be the only contribution to producing said gap. Another possible contribution
could stem from the fact that the models trained so far are over-fit to some features only
present in simulated spectra, which would explain the sub-optimal performance on real
data. Following this hypothesis, another source of realistic training data was needed to
train a better ML model.

5. Improving the Dataset

A technique introduced in [10], called SimGAN, was considered a potential solution
to the above problem. SimGANs build upon the work done in [11], which introduced the
Generative Adversarial Network (GAN). The goal of the GAN architecture (Figure 11) is to
train a Generator Network (generator) to transform a random input, into an image which



Information 2021, 12, 197 11 of 19

looks similar to the Real Images dataset. Therefore the generator needs to capture the data
distribution of the Real Images dataset whilst the Discriminator Network (discriminator)
evaluates the probability that the image came from the Real Images dataset and not from the
generator (fake). During training, the discriminator loss is used to update the discriminator
via supervised learning where the input is either a real or a fake image and each label is
1 or 0 respectively. Both the generator loss and the discriminator loss are used to update
the parameters of the generator in the direction which maximises the probability of the
discriminator making a mistake in classifying its input.

Generator 
Network

Discriminator 
NetworkR

an
dom

 In
p

ut

R
eal Im

ages

Sample

Sample

Real/Fake

Discriminator 
Loss

Generator Loss

Figure 11. Overview of the Generative Adversarial Network architecture.

5.1. SimGAN

[H] SimGAN is a modified version of the GAN, where the goal is to refine a synthetic
or simulated image to look more realistic [10]. Since the role of the GAN generator is now
changed to refine an input synthetic image, SimGAN nomenclature refers to the generator
network as a Refiner Network (R). Figure 12 illustrates the architecture of the SimGAN used
in this work. Two notable differences which distinguish SimGANs from GANs are—the
input of the refiner is now coming from a simulator; the addition of a regularisation loss to
the refiner loss, which restricts the output of the network to remain similar to the input.
The discriminator is continuously trained to distinguish between refined and real spectra.
This ultimately helps the refiner to create more realistic spectra in an adversarial manner.

SimGANs were originally presented to work with images via 2D convolutional net-
works. Since the aim is to refine simulated spectra to look more like spectra obtained from
the BBQ system, all the networks in Figure 12 use 1D convolutional networks. The theory
presented below remains valid since the same losses are minimised, regardless of the input
shape and the network type.

The goal is to use a set of unlabelled real data, yi ∈ Y , to learn a refiner network, Rθ(x)
that refines simulated data x, with θ as the function parameters. Therefore we can define
refined data, x̃ as:

Figure 12. Overview of the SimGAN architecture.



Information 2021, 12, 197 12 of 19

x̃ := Rθ(x)

The key requirement is that x̃ should look similar in appearance to the real data in the
set Y , while still preserving the annotation information from the simulator. The training
procedure of θ involves the minimisation of a combination of two losses:

LR(θ) = ∑
i
`real(θ; xi,Y) + λ`reg(θ; xi), (3)

where xi is the ith simulated spectrum. `real adds realism and `reg regulates the preservation
of the annotation information of the input. `reg is scaled by a scalar λ > 0, which balances
the effect of regularisation over realism. Since a refiner makes it difficult to classify spectra
as real or refined, an adversarial discriminator Dφ is trained to classify spectra as real or
refined. Thus the output of the discriminator can be considered as the probability that the
input spectrum is real on a scale [0, 1]. The discriminator updates φ by minimising the
following cross-entropy loss:

LD(φ) = −∑
i

log(Dφ(x̃i)) − ∑
j

log(1− Dφ(yj)). (4)

Note that `real can be formed by using Dφ to update θ:

`real(θ; xi,Y) = −log
(
1− Dφ(Rθ(xi))

)
. (5)

By minimising Equation (5), θ is updated in the direction that makes Dφ classify refined
spectra as real, thus improving the performance of the refiner by using the discriminator as
a metric. Apart from this, `reg is introduced as a self-regularisation measure to preserve the
annotation information of the input:

`reg = ||ψ(x̃− x)||1,

where ψ(·) modifies how the regularisation loss is obtained. For example ψ could be an
identity matrix which maps the input to itself. In this work, ψ was configured to satisfy an
empirical observation that the 50 Hz noise harmonics in real spectra are always additive
artefacts and never manifest as dips. Due to this observation ψ(·) was designed as shown
in Equation (6) so that any artefacts introduced below the baseline have a higher cost on
the model for η > 1.

e , x̃− x

`reg = ∑
i

max(0, ei) + η ∑
i

max(0, −ei). (6)

5.2. Training SimGAN on Simulated and BBQ Spectra

The second-order spectrum simulator that was used to create the spectra to train the
models in the Simple Approach was modified to not inject the 50 Hz noise harmonics. In-
stead the simulator would now only create a spectrum from Equation (1) and add Gaussian
noise. Note that the effect of noise on the input is twofold: It helps the refiner to generalise
the refinement process, as in any update process utilising backward propagation [12]; It is
the only source of randomness which the refiner can use to generate somewhat different
artefacts in its output.

The real dataset, Y , used in Equation (4) was obtained from the BBQ data logged
during Fill 6890, Beam 1, horizontal plane, during FLATTOP. Since the input size of all
networks considered in this work was 100, each real spectrum was truncated by a frequency
window having a randomised position, while guaranteeing that the dominant peak of the
spectrum lies within said window. This was done to ensure that the discriminator does not
over-fit to the dominant peak always occurring at the same relative location with respect



Information 2021, 12, 197 13 of 19

to the frequency window. This ensures stabler and more generalised training of all the
constituent components of SimGAN.

The network architectures used for both the refiner and discriminator are a 1D version
of the networks used in [10]. All convolutional layers used were 1D and unless otherwise
specified, all stride lengths were 1. The refiner was a Residual Network (ResNet) with
an input size of 100 which was fed to a first convolutional layer having 64 filters and a
kernel size of 3. The output of this layer was fed to 4 ResNet blocks connected in sequence.
Each block consisted of two convolutional layers having 64 filters each with a kernel
size of 3 and a connection merging the input of the block with the output of the block’s
second convolutional layer. The output of the last ResNet block was then fed to a final
convolutional layer with 1 filter having a kernel size of 1, producing an output of size 100.
All hidden layers of the refiner used the ReLU activation function and the output was
linear. The discriminator was a 1D convolutional neural network with an input layer size
of 100 which was fed to a convolutional layer having 96 filters with a kernel size of 3 and a
stride length of 2, followed by another convolutional layer having 64 filters with a kernel
size of 3 and a stride length of 2. Following the second hidden layer, Max pooling was
applied with a pool size of 3. The output of the pooling was fed to a convolutional layer
having 32 filters, kernel size of 3 and a stride length of 3 followed by two convolutional
layers having 16 and 2 filters respectively and a kernel size of 1. All hidden layers of the
discriminator used the ReLU activation function and the last layer had an output size of 2
with the softmax activation function. The two outputs of the discriminator correspond to
the probabilities that the input spectrum is real or refined respectively. All layer weights
were initialised using the Glorot normal initialiser.

The initial value of η in Equation (6) was set to 5 and the initial value of λ in
Equation (3) was set to 1× 10−3.8. These values were found empirically to achieve the best
balance between realism and preservation of the annotation information from the simulated
spectra to the refined spectra. During the training of one SimGAN it was observed that it is
possible for a refiner to learn to add valid artefacts which are able to trick its respective
discriminator into classifying the refined spectra as real. However the ultimate goal is to
generate spectra with enough variety in their shapes to reliably train a tune estimation
model. Equation (3) only constrains the refiner network to make simulated spectra look
similar in appearance to spectra obtained from the BBQ system. An individual refiner is
not incentivised to learn different types of artefacts and in fact using one refiner to generate
realistic spectra caused the tune estimation model to over-fit to the type of artefacts that
one refiner produced. To overcome this problem, 500 SimGANs were trained while using
values of λ sampled from 10U (−4,−3.5) in order to obtain refiners which behave somewhat
differently from each other. In turn this allowed the tune estimation model to become
more generalised and perform better over the real spectra. Results from randomly selected
refiners can be seen in Figure 13. It can be seen that from a baseline simulated spectrum
(red), a trained refiner is able to add artefacts to create a refined spectrum (blue). The
refined spectra look similar to real BBQ spectra, such as the one shown in Figure 1. This set
of trained refiners was used to create a refined training dataset which was used to train a
new tune estimation model (ML-Refined) having the same architecture as ML#1.



Information 2021, 12, 197 14 of 19

0.0 0.2 0.4 0.6 0.8 1.0
Normalised Frequency

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d 
Am

pl
itu

de

0.0 0.2 0.4 0.6 0.8 1.0
Normalised Frequency

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d 
Am

pl
itu

de
0.0 0.2 0.4 0.6 0.8 1.0

Normalised Frequency

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d 
Am

pl
itu

de

0.0 0.2 0.4 0.6 0.8 1.0
Normalised Frequency

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d 
Am

pl
itu

de

0.0 0.2 0.4 0.6 0.8 1.0
Normalised Frequency

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d 
Am

pl
itu

de

0.0 0.2 0.4 0.6 0.8 1.0
Normalised Frequency

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ise

d 
Am

pl
itu

de

0.0 0.2 0.4 0.6 0.8 1.0
Normalised Frequency

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d 
Am

pl
itu

de

0.0 0.2 0.4 0.6 0.8 1.0
Normalised Frequency

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d 
Am

pl
itu

de

Synthetic Refined Resonance New BQ tune

Figure 13. Results from a trained SimGAN. The green line represents the tune estimate from BQ
algorithm on the refined spectrum.

6. Discussion

From real BBQ spectra it is difficult to show any objective difference between the
performance of the new ML tune estimation models and the various algorithmic approaches
(BQ, WMA and GP). The main reason is the absence of the tune ground-truth value in real
spectra. Therefore, the accuracy and precision of any tune estimation system can only be
assessed visually by superimposing the tune estimates over the real spectra.



Information 2021, 12, 197 15 of 19

Two sets of spectra obtained in the LHC Run 2 during the transition from PRERAMP
to RAMP and from RAMP to FLATTOP were used to evaluate the performance of the
tune estimation systems. It was made certain that the spectra used during evaluation
were not used during the SimGAN training in order to remove any bias. Specifically, BBQ
spectra from Fill 6768, Beam 1, horizontal plane were used. A tune evolution estimate was
calculated from each spectrum by BQ, GP70, WMA15, ML#1, ML#5 and ML-Refined. The
spectra were converted to heat maps by filtering out the 50 Hz harmonics and smoothing in
time and frequency axes. Moving averages (µ) and moving standard deviations (σ) of the
tune estimates were performed using a centered window. Subsequently the corresponding
µ and 3σ were superimposed on the heat maps to obtain Figures 14 and 15.

PRERAMP  RAMP PRERAMP  RAMP

PRERAMP  RAMP PRERAMP  RAMP

PRERAMP  RAMP PRERAMP RAMP

a) b)

c) d)

e) f)

Figure 14. (Background) Heat map obtained by post-processing BBQ spectra from LHC Fill 6768,
Beam 1, Horizontal plane, in the transition from PRERAMP to RAMP. (Foreground) Superimposed
is the mean, µ, and scaled standard deviation, 3σ, of the tune evolution as estimated by different
tune estimation algorithms and ML models. (a) The original algorithm used in the LHC until Run
2 (BQ) (b) Tune estimation using Gaussian Processes with an RBF kernel having a length scale of
70 (GP70) [7] (c) Tune estimation using a Weighted Moving Average with a window half length of
15 (WMA15) [7] (d) The best DNN model trained using simulated spectra (ML#1) (e) The best 1D
CNN model trained using simulated spectra (ML#5) (f) DNN model with the same architecture as
ML#1 and trained using spectra refined by SimGAN.



Information 2021, 12, 197 16 of 19

RAMP  FLATTOP RAMP  FLATTOP

RAMP  FLATTOP RAMP  FLATTOP

RAMP  FLATTOP RAMP  FLATTOP

a) b)

c) d)

e) f)

Figure 15. (Background) Heat map obtained by post-processing BBQ spectra from LHC Fill 6768,
Beam 1, Horizontal plane, in the transition from RAMP to FLATTOP. (Foreground) Superimposed
is the mean, µ, and scaled standard deviation, 3σ, of the tune evolution as estimated by different
tune estimation algorithms and ML models. Three regions of interest are also marked (dashed
white circles) (a) The original algorithm used in the LHC until Run 2 (BQ) (b) Tune estimation using
Gaussian Processes with an RBF kernel having a length scale of 70 (GP70) [7] (c) Tune estimation
using a Weighted Moving Average with a window half length of 15 (WMA15) [7] (d) The best DNN
model trained using simulated spectra (ML#1) (e) The best 1D CNN model trained using simulated
spectra (ML#5) (f) DNN model with the same architecture as ML#1 and trained using spectra refined
by SimGAN.



Information 2021, 12, 197 17 of 19

Figure 8 shows that ML#5 performed well over simulated data however, Figures 14e
and 15e show that the performance of ML#5 is worse than that of the BQ algorithm on real
spectra. Figure 14a,d show that ML#1 performs just as well as the BQ algorithm. From
Figure 14f it can be seen that ML-Refined produces the most stable tune estimates during
the transition from PRERAMP to RAMP. Three regions of interest have been marked in
Figure 15d (white dashed circles). In comparison with the same regions of Figure 15f, the
improvement of ML-Refined over ML#1 becomes evident.

As mentioned in the Introduction, the tune estimates are used in the QFB to control
the quadrupoles and correct the tune of the LHC. In order to ensure a stable operation, the
QFB measures the stability of the tune estimates with the following formulas:

∆qt = qt − qt−1

St = St−1 ∗ (1− α) + ∆qt ∗ α, (7)

where qt is the tune estimate at time t, α is the time constant of the exponential moving
average and St is the stability measure at time t. The evaluation of both the long and
short term tune estimate stability is done via two independent stability measures with a
different α. Each α corresponds to a fast (2 s) and slow (10 s) time constant. To ensure a
stable tune estimate, both stabilities are required be below a certain threshold, which is by
default 0.005.

The stability metric shown in Equation (7) was used to quantitatively assess the perfor-
mance of the trained models with regard to the requirements of the QFB. Figure 16 shows
the stability probability distribution of each model and algorithm used in this work. Tune
estimates were obtained from the unseen BBQ spectra of Fill 6768, beam 1, horizontal
plane, from PRERAMP to FLATTOP and amounting to a total of approximately 10,000 real
BBQ spectra. The blue and orange histograms correspond to the fast and slow stability
measurements, respectively. ML#5 is shown to provide the most unstable tune estimates.
GP70 and WMA15 exhibit a wide distribution of both fast and slow stabilities indicating
that in real operation the risk of the QFB switching off is high. ML#1 is shown to be
stabler, with only the fast stability exceeding the threshold. Surprisingly the BQ algorithm
is shown to be the second most stable algorithm. Upon examination of its tune estimates
it can be seen that the effect of the 50 Hz harmonics may have an impact due to the tune
estimates being stuck on the position of noise harmonics close to the tune peak. Finally
ML-Refined is shown to provide the most stable tune estimate with a zero probability of
the QFB switching off.



Information 2021, 12, 197 18 of 19

10 4

10 3

10 2

10 1
Threshold
BQ Fast
BQ Slow

Threshold
GP70 Fast
GP70 Slow

10 4

10 3

10 2

10 1
Threshold
WMA15 Fast
WMA15 Slow

Threshold
ML#1 Fast
ML#1 Slow

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

10 4

10 3

10 2

10 1
Threshold
ML#5 Fast
ML#5 Slow

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Threshold
ML-Refined Fast
ML-Refined Slow

Stability

Pr
ob

ab
ilit

y

Figure 16. Probability distribution of the tune estimation stability. Obtained from Fill 6768, beam 1,
horizontal plane using spectra from PRERAMP to FLATTOP. Slow and Fast correspond to stability
measures having time constants of 10 s and 2 s respectively (Equation (7)). The threshold was chosen
in the early design of the beam-based feedback systems and used in operation during the LHC Run
2. BQ was the original tune estimation algorithm used until the LHC Run 2; GP70 uses Gaussian
Processes with a RBF kernel of length scale 70; WMA15 uses a Weighted Moving Average with
a half-window length 15; ML#1 and ML#5 were the best performing DNN and CNN networks
respectively trained with simulated spectra; ML-Refined had the same architecture as ML#1 and
trained with refined spectra.

7. Conclusions

Several ML tools, namely DNNs, CNNs and SimGANs, were used to train tune
estimation models. Since the exact tune values for the BBQ spectra were not available,
simulated spectra from a second order system were used to realistically model the beam
response and to create a simulated dataset covering a wide range of tune peak positions
and shapes. Different model architectures were trained using this simulated data and the
best model architectures for tune estimation were chosen. Figures 6 and 8 were used to
choose the best DNN and CNN models.

It was found that when models were trained by a dataset comprised only of simulated
spectra, there was a discrepancy in their performance between simulated and real BBQ
spectra. As a solution to this problem, SimGANs were used to refine a simulated dataset,
by using real unlabelled data to help with the refinement training. A set of 500 SimGANs
were trained with random initial conditions which were then used to generate a refined
dataset of spectra with correctly labelled tune values. The refined dataset was then used



Information 2021, 12, 197 19 of 19

to train a DNN tune estimation model, having the same network architecture as the best
performing model trained by simulated spectra.

Finally, a sample of unseen real data was used to compare the performance of the
best performing tune estimation models and the classical algorithmic approaches. The
accuracy, precision and stability of all the tune estimation systems considered in this work
were analysed and compared by using Figures 14–16. It was shown that the model trained
by the refined dataset of simulated spectra obtained the best performance, which implies a
more reliable tune estimate source for the QFB.

Author Contributions: Conceptualisation, L.G., G.V.; methodology, L.G., G.V. and D.A.; software,
L.G.; validation, L.G., G.V. and D.A.; formal analysis, L.G.; investigation, L.G.; resources, L.G. and
G.V.; data curation, L.G.; writing—original draft preparation, L.G.; writing—review and editing, L.G.,
G.V. and D.A.; visualisation, L.G.; supervision, G.V. and D.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was carried out in association with CERN.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We would like to thank Thibaut Lefevre, Manuel Gonzalez Berges, Stephen
Jackson, Marek Gasior and Tom Levens for their contributions in acquiring resources and reviewing
the results obtained in this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Baird, S. Accelerators for Pedestrians; Technical Report AB-Note-2007-014. CERN-AB-Note-2007-014. PS-OP-Note-95-17-Rev-2.

CERN-PS-OP-Note-95-17-Rev-2; CERN: Meyrin, Switzerland, 2007.
2. Steinhagen, R.J. LHC Beam Stability and Feedback Control-Orbit and Energy. Ph.D. Thesis, RWTH Aachen University. 2007.

Available online: https://cds.cern.ch/record/1054826 (accessed on 29 April 2021).
3. Gasior, M.; Jones, R. High sensitivity tune measurement by direct diode detection. In Proceedings of the 7th European Workshop

on Beam Diagnostics and Instrumentation for Particle Accelerators (DIPAC 2005), Lyons, France, 6–8 June 2005; p. 4.
4. Gasior, M. Tuning the LHC. BE Newsletter 2012, 4, 5–6.
5. Alemany, R.; Lamont, M.; Page, S. Functional specification—LHC Modes; Technical Report LHC-OP-ES-0005; CERN: Meyrin,

Switzerland, 2007.
6. Kostoglou, S.; Arduini, G.; Papaphilippou, Y.; Sterbini, G.; Intelisano, L. Origin of the 50 Hz harmonics in the transverse beam

spectrum of the Large Hadron Collider. Phys. Rev. Accel. Beams 2021, 24, 034001. [CrossRef]
7. Grech, L.; Valentino, G.; Alves, D.; Gasior, M.; Jackson, S.; Jones, R.; Levens, T.; Wenninger, J. An Alternative Processing Algorithm

for the Tune Measurement System in the LHC. In Proceedings of the 9th International Beam Instrumentation Conference (IBIC
2020), Santos, Brazil, 14–18 September 2020.

8. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http:
//www.deeplearningbook.org (accessed on 29 April 2021).

9. Lindsay, G.W. Convolutional Neural Networks as a Model of the Visual System: Past, Present, and Future. J. Cogn. Neurosci.
2020, 1–15. [CrossRef] [PubMed]

10. Shrivastava, A.; Pfister, T.; Tuzel, O.; Susskind, J.; Wang, W.; Webb, R. Learning from simulated and unsupervised images through
adversarial training. In Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 2107–2116.

11. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Nets. In Proceedings of the Advances in Neural Information Processing Systems 27, Montreal, QC, Canada, 8–13 December 2014;
pp. 2672–2680.

12. Matsuoka, K. Noise injection into inputs in back-propagation learning. IEEE Trans. Syst. Man Cybern. 1992, 22, 436–440.
[CrossRef]

https://cds.cern.ch/record/1054826
http://doi.org/10.1103/PhysRevAccelBeams.24.034001
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1162/jocn_a_01544
http://www.ncbi.nlm.nih.gov/pubmed/32027584
http://dx.doi.org/10.1109/21.155944

	Introduction
	Tune Estimation Algorithms
	Simulations
	Simple Approach
	Fully-Connected Layers
	Convolutional Layers
	Evaluation
	Limitations

	Improving the Dataset
	SimGAN
	Training SimGAN on Simulated and BBQ Spectra

	Discussion
	Conclusions
	References

