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Abstract

Emerging evidence indicates that among the various pregnancy complications, 
pre-eclampsia and gestational diabetes mellitus (GDM) seem to have, at least in 
part, shared underlying ethiologies. Apart from sharing numerous risk factors, it 
has been shown that the rate of pre-eclampsia is influenced by the presence and 
severity of GDM, with hyperglycemia due to insulin resistance and the biochemical 
changes this brings about (angiogenic imbalance, oxidative stress and inflamma-
tion), playing some role in the pathogenesis of endothelial dysfunction leading to 
the development of pre-eclampsia. However, so far the biochemical mechanisms 
underlying and linking these two conditions is still not properly understood. The 
altered physiological parameters, dysregulation of potential protein biomarkers and 
DNA-related changes (mutations, methylations, miRNAs) will be combined in this 
review to explore possible underlying mechanisms.
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insulin resistance, angiogenic factors, oxidative stress, inflammation

Key points

• A combination of maternal risk factors appears to contribute to the similar 
biochemical dysregulation present in both pre-eclampsia and GDM.

• The common biochemical characteristics underlying these conditions include 
endothelial dysfunction, angiogenic imbalance, insulin resistance, oxidative 
stress, inflammation and dyslipidemia.

• Detailed evaluation of pre-pregnancy characteristics and clearer distinction 
between the different disease statuses is required to better understand the 
shared and separate biochemical pathways.

1. Pathophysiology of pre-eclampsia and gestational diabetes mellitus

Pre-eclampsia is a multisystem, pregnancy-specific disorder, presenting new-
onset hypertension and proteinuria after 20 weeks of gestation. It is a leading cause 
of maternal and foetal morbidity and mortality, with delivery being the only known 



Prediction of Maternal and Fetal Syndrome of Preeclampsia

2

cure. Pre-eclampsia complicates 2–5% of pregnancies in Europe and America and 
can reach up to 10% of pregnancies in developing countries [1].

Pre-eclampsia is characterised by a first, asymptomatic stage involving impaired 
trophoblastic penetration of the decidua (both into the superficial myometrium at 
14–16 weeks and into the deep myometrium at 18–20 weeks), limiting the remodel-
ling of the maternal uterine spiral arteries for uteroplacental blood perfusion and 
producing local placental hypoxia and oxidative stress, which consequently leads 
to insufficient blood perfusion, inflammation, apoptosis, and structural damage. 
In the second stage, placental factors released into the maternal circulation from 
the poorly perfused placenta, together with the aberrant expression of pro-inflam-
matory, anti-angiogenic, and angiogenic factors, eventually cause the endothelial 
dysfunction that leads to the main clinical symptoms of pre-eclampsia [1].

This disorder can have an early onset (before 34 weeks of gestation) or a late 
onset (after 34 weeks of gestation), with the placentas of women with early onset 
pre-eclampsia presenting hypoplasia (small placental size) and a significantly 
higher number of placental vascular lesions compared to those with late onset PE, 
which present hyperplasia (increased placental size) and histological evidence of 
placental inflammation, with absence of vascular insufficiency, suggesting that 
pre-eclampsia might be more than a single condition [2].

Gestational diabetes mellitus (GDM) is defined as hyperglycemia that is first 
diagnosed during pregnancy. This definition of GDM does not preclude the possible 
existence of unrecognised pre-pregnancy diabetes. The prevalence of GDM ranges 
from 2 to 10% of all pregnancies in developed countries [3] and is associated with 
birth complications, including macrosomia and operative delivery. GDM develops 
from a dysfunction of the pancreatic Beta cells such that the insulin supply is inad-
equate to meet tissue demands for normal blood glucose regulation. This insulin 
resistance leads to increased levels of glucose production and free fatty acids, with 
subsequent increased blood glucose levels [4].

All forms of diabetes (GDM, type 1 diabetes - T1D and type 2 diabetes mellitus -  
T2DM) increase the risk of pre-eclampsia, with GDM being an independent risk 
factor for the development of pre-eclampsia [5, 6], and pre-existing diabetes being 
a risk factor for both early- and late-onset pre-eclampsia [7]. The incidence of pre-
eclampsia increases from 2–7% of pregnancies in non-diabetic women to 15–20% in 
women with T1D and 10–14% in women with T2DM [8].

Pre-eclampsia and GDM share a number of risk factors, including advanced 
maternal age, nulliparity, multifetal pregnancies, non-white ethnicity, and pre-
pregnancy obesity [5, 9]. Both pre-eclampsia and GDM also have long-term health 
implications, with pre-eclampsia increasing the risk of future cardiovascular dis-
ease, stroke, kidney disease, ophthalmic disease and development of T2DM (even 
without GDM), while GDM increases the risk of cardiovascular disease and T2DM 
for both mother and child [8].

Although the exact pathophysiology is still unknown, it would seem that a 
combination of maternal risk factors contribute to the similar biochemical dys-
regulation present in both pre-eclampsia and GDM, compared to healthy pregnan-
cies, including endothelial dysfunction, angiogenic imbalance, insulin resistance, 
oxidative stress, inflammation and dyslipidemia [8] suggests shared etiological 
pathways underlying these conditions. Such biochemical changes might result from 
a common aetiology, have a common trigger (such as insulin resistance during preg-
nancy [10]) or be similar responses to different underlying disease processes that 
existed prior to pregnancy [11]. Similarly, genetic and/or environmental factors that 
contribute to pre-eclampsia could also increase the risk of diabetic complications 
later in life or it could be just as possible that pre-eclampsia causes lasting damage 
that leads to diabetic complications years after pregnancy [8].
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2. Endothelial dysfunction

Within the placenta, limited remodelling of the maternal uterine spiral arteries 
may cause hypoxia [12] or repeated ischemia–reperfusion injury [13], such that the 
damaged placenta then releases factors into the maternal circulation that contribute 
to vascular dysfunction [12]. These include the anti-angiogenic proteins soluble 
vascular endothelial growth factor receptor 1 (sVEGFR-1; or more commonly 
known as soluble fms-like tyrosine kinase 1 - sFlt-1) and soluble endoglin (sEng) 
[14, 15]. Excess of these anti-angiogenic proteins contributes to systemic maternal 
endothelial dysfunction in women with pre-eclampsia [16].

The sFlt-1 protein is a truncated form of VEGF receptor 1, composed of six 
immunoglobulin-like domains from the ligand-binding, extracellular domain [1]. 
Once secreted, sFlt-1 binds to the pro-angiogenic ligands vascular endothelial growth 
factor (VEGF) and placental growth factor (PlGF), acting as a as a non-signalling 
decoy, reducing their bio-availability and enhancing endothelial dysfunction [16–18].

The sEng protein is composed of the extracellular domain of Endoglin, follow-
ing proteolytic cleavage by metalloproteinase (MMP)-14. It binds to Transforming 
Growth Factor-b1 (TGF-β1), inhibiting binding to Endoglin (a TGF-β1 co-recep-
tor), preventing the activation of endothelial Nitric Oxide Synthase (NOS) and 
subsequent vasodilation [15].

The levels of sFlt-1 and sEng were found to be proportional to the severity of pre-
eclampsia [19–21], with maternal plasma concentrations of sFlt-1 and sEng increas-
ing before pre-eclampsia was diagnosed, making them potential biomarkers for the 
disease [1, 22–29]. Concomitantly, the increase of sFlt-1 brings about a decrease in 
maternal plasma concentration of PlGF [18, 30–32]. However, the relative change 
in sFlt1 and sEng concentrations between two consecutive visits (first and second 
trimester) seems more useful as a predictive marker for developing pre-eclampsia 
among both low- and high-risk women that the absolute concentrations [30, 33].

The relationship between anti-angiogenic factors and pre-eclampsia in women 
with GDM has been explored only in a handful of studies. Women with GDM 
were found to have higher serum sFlt-1, Placental Protein 13 (PP13), Pentraxin 3 
(PTX3), myostatin and follistatin levels early in the second trimester, with sFlt-1 
and PTX3 having potential predictive value [34]. Quantitative proteomics of syn-
cytiotrophoblasts from women with GDM and pre-eclampsia identified 11 upregu-
lated and 12 downregulated proteins including increased Flt-1 [35]. Moreover, 
high sEng, high sFlt-1, low PlGF and high sFlt-1/PlGF ratio increased the odds of 
developing pre-eclampsia among women with pre-existing diabetes [30].

Further vascular dysfunction results from the inhibition of NOS. Asymmetric 
dimethylarginine (ADMA) is an analogue of L-arginine and endogenous competi-
tive inhibitor of NOS, resulting in reduced NO synthesis from L-arginine and 
higher superoxide generation. NO is important in maintaining endothelial homeo-
stasis and elevated ADMA levels are associated with inflammation, insulin resis-
tance, dyslipidemia, obesity, and cardiovascular disease. Numerous studies have 
measured ADMA levels in women with pre-eclampsia and normotensive women 
but discrepant findings have been observed. Nevertheless, some reported elevated 
ADMA levels prior to the development of clinical symptoms of PE, which suggests 
that ADMA may contribute to the pathophysiology of pre-eclampsia [1, 29].

Poor placentation, oxidative stress, endothelial cell dysfunction and altered 
glucose metabolism among others generate Damage-Associated Molecular Patterns 
(DAMPs) including Heat Shock Proteins (HSPs), TNF-α, fetal DNA, hyaluronan, 
oxidised low-density lipoprotein (LDL) and long pentraxin-3 [36]. HSP70 (and its 
post-translational modifications) has been shown to be elevated in the placentas and 
sera of women with PE, reflecting systemic inflammation and oxidative stress, with 
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HSP70 initially protecting against placental oxidative stress but its overexpression 
may lead to intervillous endothelial dysfunction and may play a role in the pathogene-
sis of pre-eclampsia [1, 29]. TLR-4 protein expression, which recognises such DAMPs 
at the feto-maternal interface, is increased in women with pre-eclampsia [37].

3. Insulin resistance

Insulin resistance or hyperinsulinemia is an impaired response to insulin, char-
acteristic of normal pregnancy, which results in increased insulin secretion by the 
pancreatic β-cells or relative insulin deficiency due to the pancreatic β-cell deteriora-
tion. Insulin resistance is due to an overall decreased expression of the insulin recep-
tor substrate (IRS)-1/2 protein, decreased IRS-1/2 tyrosine phosphorylation and 
increased IRS-1/2 serine phosphorylation, resulting in reduced glucose transport 
activity, which was found to be even more pronounced in women with pre-eclampsia 
and GDM, which might also underlie the future risk for developing T2DM [38].

Insulin resistance via the inhibition of IRS1/2 results in impaired activation of 
the phosphoinositide 3-kinase (PI3K) and Ak strain transforming (Akt)-dependent 
signalling pathway, and increased activity of the mammalian target of rapamycin 
(mTOR) resulting from lower activity of the mitogen activated protein kinase 
(MAPK) pathway. The reduced Akt activity leads to a decreased production of nitric 
oxide (NO) (a vasodilator) and increase of endothelin (ET)-1 (a vasoconstrictor) 
[39], linking endothelial dysfunction and increased risk of pre-eclampsia with GDM.

Compared to normotesive women, women who develop pre-eclampsia are more 
insulin resistant prior to pregnancy [40], in the first and second trimesters [41], and 
years after pregnancy [42], and in fact a number of pre-eclampsia risk factors are 
also associated with insulin resistance [40, 41]. The same was found in women that 
developed GDM, presenting chronic insulin resistance and chronic β-cell function 
prior to pregnancy [4, 43]. Women with GDM are then unable to increase insulin 
production to compensate for the increased insulin resistance and destruction, as 
happens in normal pregnancy [44]. The metabolic changes observed in GDM are 
the same as those found in the pre-diabetic stages of T2DM, where pre-diabetes may 
include patients with metabolic syndrome, GDM, and impaired glucose tolerance.

4. Oxidative stress and mitochondrial dysfunction

During normal pregnancy generation of reactive oxygen species (ROS) is known to 
be increased and necessary for proper physiology [45]. However, both pre-eclampsia 
and GDM present a reduced antioxidant status when compared to normal pregnancies, 
with increased levels of protein and lipid oxidation products [46]. Free radicals react 
with nucleic acids, proteins and lipids, bring about post-translational modification of 
proteins [47] and cause structural and functional damage [46]. The changes in a wide 
variety of oxidative stress metabolites (such as NO, superoxide and peroxynitrile) as 
well as antioxidant enzymes and compounds (such as catalase, superoxide dismutase 
(SOD) and vitamin E) have been analysed in relation to pre-eclampsia and GDM 
compared to normal pregnancies but there is still no consensus since their levels were 
found to be variable (the same, higher or lower) depending on the cohort studied 
[48–50]. Although supplementation with antioxidants such as vitamin C, vitamin E or 
n-acetylcysteine have been found to be ineffective in reducing the risk of pre-eclamp-
sia, calcium and vitamin D supplementation could lower risk of pre-eclampsia [50, 51].

In the case of hyperglycemia, it is known to stimulate ROS production by 
four major sources, namely glucose auto-oxidation, mitochondrial superoxide 
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production, endothelial NOS uncoupling and advanced glycation end product 
(AGE)-dependent NADPH oxidase activation, with glucose auto-oxidation and 
mitochondrial superoxide likely being the initial contributors to ROS-mediated 
dysfunction caused by hyperglycemia [52, 53]. Advanced glycation end products 
are of particular interest as these were found to be able to promote TNF-α mRNA 
expression and secretion as well as bringing about a significant decrease in eNOS 
mRNA expression and protein levels via serine phosphorylation [54, 55].

The serum levels of AGEs were higher in women with both early- and late-onset 
pre-eclampsia and in women with severe pre-eclampsia positively correlated with 
serum levels of TNF-α and VCAM-1, indicating AGEs are important mediators in 
regulating the inflammatory pathways of pre-eclampsia [56–58]. Furthermore, 
treatment with AGEs increased intracellular ROS generation and over-expression 
of sFlt-1 in an extravillous trophoblast cell line, suggesting that AGEs may be 
important mediators in the regulation of angiogenic pathways, with accumulation 
of AGEs possibly contributing to pre-eclampsia by promoting sFlt-1 production via 
the activation of a RAGE/NADPH oxidase dependent pathway [59].

In women with PE, oxidative markers were significantly higher, while anti-
oxidative markers were significantly lower, indicating gradual oxidative damage 
of the placenta, even before the onset of clinical symptoms [60]. Similarly, women 
with GDM had higher serum malondialdehyde levels and significantly lower serum 
glutathione peroxidase activity in the first trimester, with negative correlation in the 
second and third trimester [61].

Looking directly at the mitochondria, women with early-onset pre-eclampsia 
showed increased mitochondrial activation, with up-regulation of optic atrophy, 
type 1 (OPA-1), increased placental mitochondrial DNA copy number, and mito-
chondrial transcription factor A down-regulation, while both early- and late-onset 
pre-eclampsia were associated with an elevated phosphate/oxygen ratio [62]. 
Moreover, a comparative proteomics analysis of placental mitochondria in women 
with pre-eclampsia compared to healthy pregnancies identified up-regulation of 4 
proteins and down-regulation of 22 proteins involved in ROS generation, apoptosis, 
fatty acid oxidation, respiratory chain function, and the tricarboxylic acid cycle [63].

5. Inflammation

5.1 Cytokines

After ischemia and reperfusion injury, together with oxidative stress, the placenta 
mounts an inflammatory response releasing cytokines and other inflammatory factors 
such as Tumour Necrosis Factor-alpha (TNF-α), Interleukin (IL)-6, and C-reactive 
protein (CRP), and damaging levels of ROS, which are a characteristic of pre-eclamp-
sia [64] and the altered levels of inflammatory cytokines in both early and late-onset 
pre-eclampsia correlated with the type of histopathologic changes in the placenta [65].

The proposed mechanism linking insulin resistance and inflammatory pathways 
involves a reduction in Akt activity, which also reduces NO generation. Reduced Akt 
activity and reduced plasma level of adiponectin reduce adenosine monophosphate 
protein kinase (AMPK) activity, such that mTOR activation is facilitated. The 
increased mTOR-activated signalling and increased extracellular level of leptin 
and TNF-α result in c-Jun N-terminal kinase (JNK) activation, inhibiting IRS1/2 
and reducing insulin signalling. Thus hyperinsulinemia activates a feedback loop of 
increased vascular inflammation and insulin resistance [39].

In women who later developed GDM, increased leukocyte counts were observed 
since the first trimester, indicating that inflammation is associated with the 
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development of GDM [66]. Women with GDM had higher serum levels of TNF-α in the 
third trimester and TNF-α and IL-6 at term, compared to women with normoglycemia 
during pregnancy, and TNF-α levels were inversely correlated with insulin sensitivity 
[67–69]. Moreover, the increase of TNF-α concentration from pregravid to the third 
trimester was the best predictor of insulin resistance in pregnancy when compared with 
leptin, cortisol, and other pregnancy-derived hormones independent of fat mass [67]. 
Years after pregnancy, women with GDM were still found to have higher circulating 
levels of the inflammatory mediators CRP, Plasminogen Activator Inhibitor-1 (PAI-1), 
fibrinogen and IL-6, and lower levels of adiponectin, compared to non-diabetic women, 
increasing the risk for future development of inflammatory-related conditions [70].

5.2 Adipokines

Adipokines (proteins secreted from adipocytes) are involved in a wide range of 
physiological processes including haemostasis, lipid metabolism, atherosclerosis, 
blood pressure regulation, insulin sensitivity, angiogenesis, immunity and inflam-
mation, and have been shown to play a role in normal pregnancy [71].

In both pre-eclampsia and GDM, various adipokines are dysregulated, and could 
be involved in the pathophysiology of these conditions, especially since obesity is a 
known risk factor for both [72–74]. The most well-studied are adiponectin and leptin. 
Adiponectin is considered an insulin-sensitising, anti-inflammatory and anti-ath-
erogenic adipokine, which stimulates glucose uptake in skeletal muscle and reduces 
hepatic glucose production through AMP-activated protein kinase [75]. Leptin plays a 
key role in the regulation of energy intake and energy expenditure (increasing insulin 
sensitivity by influencing insulin secretion, glucose utilisation, glycogen synthesis 
and fatty acid metabolism) and is involved in a number of physiological processes 
including regulation of gonadotrophin-releasing hormone (GnRH) secretion, 
inflammation, immune response, reproduction and angiogenesis [76].

Increased concentrations of adiponectin were found in women with pre-eclamp-
sia [77–80], which could be a mechanism to counter the inflammatory response 
and improve insulin sensitivity and vascular function [81]. Inversely, decreased 
concentrations of adiponectin, and up-regulated expression of its receptor adipo-
nectin receptor-1 (ADIPOR1), were found in women with GDM [82–85], possibly 
suppressed by TNF-α, other proinflammatory mediators and insulin [38], which 
might further aggravate insulin resistance since adiponectin has insulin-sensitising 
effects. Adiponectin levels during pregnancy were also found to predict post-
partum insulin sensitivity and ß-cell function, even among non-obese women [86].

High levels of leptin were found both in women with pre-eclampsia [77, 87–89], 
even before the clinical onset of the disease [90–93] (suggesting a pathophysiological 
role), and women with GDM [69, 94–96]. In pre-eclampsia pregnancies increased 
leptin concentrations affect metabolic, immune, and angiogenic responses, regulat-
ing placental growth (potentially resulting in placental hypertrophy), stimulating 
angiogenesis and increased blood supply to the placenta as well as regulating pla-
cental nutrient transport, use, and storage of lipids and amino acids, possibly as a 
compensatory mechanism to increase nutrient delivery to the underperfused placenta 
[97]. In GDM pregnancies leptin acts as a pro-inflammatory adipokine, being associ-
ated with increased production of pro-inflammatory cytokines (IL-6 and TNF-α), 
stimulating the production of CC-chemokine ligands (CCL3, CCL4 and CCL5), 
production of ROS and promoting cell proliferation and migratory responses [98].

5.3 Peroxisome proliferator-activated receptors

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated 
transcription factors that form part of the nuclear hormone receptor 
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superfamily, that regulate genes involved in metabolic, anti-inflammatory and 
developmental processes. There are three mammalian types of PPARs namely 
PPARα, PPARβ/δ, and PPARγ. PPARs perform functions throughout pregnancy 
including implantation, trophoblast differentiation and placental function, and 
are also involved in embryonic and fetal development. The regulation of meta-
bolic and anti-inflammatory pathways by the PPAR system is considered crucial 
in the development of GDM [99].

During normal pregnancy, PPARγ activators such as specific prostanoids or 
fatty acid derivatives are upregulated in maternal serum [100]. In women with PE, 
circulating PPARγ ligands have been shown to be suppressed even before clinical 
presentation [101]. Animal models have shown that administration of a PPARγ 
antagonist early during gestational results in PE-like symptoms (such as elevated 
blood pressure, proteinuria, endothelial dysfunction, and increased platelet aggre-
gation) [102], while treatment with a PPARγ agonist improves pregnancy outcome 
in animals with pre-eclampsia by reducing oxidative stress in a heme oxygenase 
(HO)-1-dependent pathway [103]. Another study found that while the placentas of 
women with pre-eclampsia did not present any changes PPAR protein expression or 
DNA binding activity, those from women with GDM presented decreased PPARγ 
and PPARα protein concentrations and decreased concentrations of RXRα (the 
heterodimer partner of PPARγ) [104].

6. Genetic and epigenetic influences

6.1 Genetics

Besides the finding that women having their first baby with a family history 
of pre-eclampsia increases two- to five-fold the risk of developing PE, the genetic 
predisposition to pre-eclampsia has been studied to various degrees, with genetic 
factors possibly playing a role in increased sFlt-1 production and placental size, 
imprinted genes possibly involved in the maternal contribution to develop pre-
eclampsia and a number of genetic disorders being associated with pre-eclampsia 
(trisomy 13, angiotensinogen gene variant T235, eNOS, genes causing throm-
bophilia, and a number of SNPs) despite little significance [105]. pre-eclampsia 
is an extremely complex spectrum disorder with gene clusters falling into four 
categories, those involved in (i) hormone secretion, response to hypoxia, and 
response to nutrient levels; (ii) immune and inflammatory responses (includ-
ing cytokine/interferon signalling); (iii) metabolism, cell proliferation and cell 
cycle as well as stress response and DNA damage; (iv) hormone secretion and 
ion channel activity, and nervous system development or neurological system 
processes [106].

A few studied have looked into the genetics of GDM and its genetic relationship 
with T2DM with the major genes being MTNR1B, TCF7L2, IRS1, IGF2BP2, TNF-α 
and PPARG [107, 108]. Genes linked to GDM participate in cell functions involving 
cell activation, immune response, organ development, and regulation of cell death 
[109], but do not shed light on the underlying cause of the disorder.

6.2 DNA methylation

The effects of pre-eclampsia and GDM on the intrauterine environment also 
bring about epigenetic modifications including DNA methylation [110]. Although 
the placenta is known to be hypomethylated relative to other tissues [111], stud-
ies measuring CpG island methylation in the RefSeq genes (i.e. mainly promoter 
methylation, covering about 1.5% of total genomic CpGs) found a predominance of 
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hypermethylation at methylation variable positions in the placentas of women with 
pre-eclampsia or GDM, with dysregulation of metabolic pathways, signalling path-
ways and immune response pathways [112–120]. When interrogating global placen-
tal DNA methylation, a preliminary study showed a negative association between 
the degree of methylation and both pre-eclampsia and GDM [121]. However, a 
much larger study later found increased placental global DNA hypermethylation in 
GDM women, independent of other risk factors [122].

One driver for DNA hypermethylation in the placenta might be oxidative stress, 
since both pre-eclampsia and GDM are associated with increased oxidative stress 
and it has been shown in a T2DM rat model that this condition brings about global 
DNA hypermethylation in the liver, and that DNA hypermethylation can be reduced 
by polyphenols that act as antioxidants [123–125].

6.3 Regulatory microRNAs

The miRNA expression pattern in the placenta (predominantly in the tropho-
blast) changes throughout pregnancy due to the involvement of miRNAs in regulat-
ing different aspects of trophoblast biology [126]. Such changes are also detectable 
in the maternal plasma [127, 128].

A number of studies have identified over 100 differentially expressed miRNAs 
in the placenta or sera of women with pre-eclampsia compared to normotensive 
controls. Among these are miRNAs involved in cellular proliferation, cellular migra-
tion, inflammation, signal transduction, vascular remodelling and mitochondrial 
function [126, 129–134]. Increased plasma levels of miR-210 were associated with 
the severity of pre-eclampsia [135].

The studies focusing on miRNAs in the sera of women with GDM are fewer 
as are the identified miRNAs (around 50 in total). The processes that seem to be 
mostly targeted by miRNAs in GDM are insulin/IGF1 signalling (IRS-1, IRS-2, 
SOS-1, MAPK-1, Insig1, PCK2), adipogenesis, endothelial function, inflammation 
(TGF-β signalling pathway), and energy balance (EGFR/PI3K/Akt/mTOR signal-
ling pathway) [136–139]. Moreover, 9 miRNAs were found to be shared among 
T1D, T2DM and GDM, with an additional 19 miRNAs specific to GDM, indicating 
that GDM leads to changes that differ from those of the other forms of diabetes 
[140]. Interestingly, the histone methyltransferase enhancer of zester homologue 2 
isoform beta (EZH2-β) has been linked to GDM via miRNA control [141].

7. Insight from metformin

Metformin (1,1-Dimethylbiguanide) is a small molecule that can readily cross 
the placental barrier [142]. It is the treatment of choice for GDM due to its efficacy 
and safety for the unborn child compared to insulin [143]. Metformin acts through 
the mitochondria, by inhibiting complex I of the electron transport chain, activat-
ing AMPK that controls cellular energy homeostasis and thus reduces gluconeo-
genesis and enhanced insulin suppression of endogenous glucose production by 
the liver [144].

Metformin was shown to be superior to insulin in reducing the frequency of 
gestational hypertension and possibly pre-eclampsia [145–147], by reducing ROS 
production, reducing endothelial dysfunction (by reducing sFlt-1 and sEng secretion 
regulated through the mitochondria), reducing inflammation (by reducing VCAM-1 
mRNA expression induced by TNF–α), enhancing vasodilation and inducing angio-
genesis [47, 148]. This suggests that there are similar perturbations in the cellular 
energy balance of patients with pre-eclampsia and GDM.
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8. Conclusions

Much of the biochemical dysregulation that is common to both GDM and pre-
eclampsia suggests overlapping pathophysiology (Figure 1). However, the available 
data does not clearly outline a common etiologic pathway, mainly due to limited 
analysis power to compare the different patient groups. Detailed evaluation of 
pre-pregnancy characteristics and clearer distinction between the different disease 

Figure 1. 
Overview of the interactions between biochemical pathways common to pre-eclampsia and GDM.
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