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Abstract: We implement hidden Markov models (HMMs) and hidden semi-Markov models (HSMMs)
on Bitcoin/US dollar (BTC/USD) with the aim of market phase detection. We make analogous
comparisons to Standard and Poor’s 500 (S and P 500), a benchmark traditional stock index and
a protagonist of several studies in finance. Popular labels given to market phases are “bull”, “bear”,
“correction”, and “rally”. In the first part, we fit HMMs and HSMMs and look at the evolution of
hidden state parameters and state persistence parameters over time to ensure that states are correctly
classified in terms of market phase labels. We conclude that our modelling approaches yield positive
results in both BTC/USD and the S and P 500, and both are best modelled via four-state HSMMs.
However, the two assets show different regime volatility and persistence patterns—BTC/USD has
volatile bull and bear states and generally weak state persistence, while the S and P 500 shows lower
volatility on the bull states and stronger state persistence. In the second part, we put our models
to the test of detecting different market phases by devising investment strategies that aim to be
more profitable on unseen data in comparison to a buy-and-hold approach. In both cases, for select
investment strategies, four-state HSMMs are also the most profitable and significantly outperform
the buy-and-hold strategy.

Keywords: hidden Markov models; hidden semi-Markov models; cryptocurrencies; filtering; nowcasting

1. Introduction

This article extends the results given in the conference paper in [1], where we present the
best-fitting hidden semi-Markov model (HSMM) model (four-state in both cases) for both Bitcoin/US
dollar (BTC/USD) and Standard and Poor’s 500 (S and P 500) from a number of hidden Markov
models (HMMs) and HSMMs considered. In the latter, we also interpret the different states for both
series in terms of market phases, and we introduce a number of investment strategies, some of which
we find to be significantly profitable when using four-state HSMMs. In addition to the conference
paper, this article presents the following new findings and further material: (i) optimal HMM model
outputs for BTC/USD and S and P 500 series are also presented; (ii) more detailed statistical properties
of the models are given in terms of bootstrap confidence intervals for optimal HMMs and HSMMs of
both series; (iii) the evolution of state and persistence parameters across time in the test set for both
HMMs and HSMMs is looked into for both BTC/USD and S and P500, motivating further the decision
of how HSMM states are labelled in terms of market phases; (iv) an additional strategy (Strategy 4) is
proposed in Section 4 related to investment strategies, and its performance is also assessed; (v) for all
strategies, results for all grid points ε considered in Strategies 3 and 4 are presented (whereas in [1],
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only Strategy 3 was presented, and only for optimal ε); (vi) plots are presented showing when buy and
sell actions were suggested by our optimal model/strategy combination for both BTC/USD and the S
and P 500 (in [1], only return on investment (ROI) at the end of the testing period is shown, whereas
these figures demonstrate both instances when buy/sell strategies led to profit and instances that
led to loss).

We start by giving a brief background on cryptocurrencies. Following the publishing of the Bitcoin
white paper by Satoshi Nakamoto (see [2]) in November 2008, the first Bitcoin transaction was made in
January 2009, with other cryptocurrencies following in subsequent years. Since then, a number of key
events led to an increase in their importance; however, cryptocurrencies mostly received hype and
widespread public recognition in 2017. The history of Bitcoin and other cryptocurrencies is filled with
numerous events that have drastically affected their value, and scholarly literature, official reports, and
media in general, are full of discussion regarding their price dynamics and volatility. The following
are some of the most given reasons for why intense volatility is experienced by cryptocurrencies:
(i) cryptocurrency investor bases are smaller than traditional stock markets with large holders and
these can severely sway the markets through their actions (see, e.g., [3]); (ii) due to considerably
polarised views about cryptocurrencies in the general public, media and social media can greatly
affect their value (see, e.g., [4–6]); and (iii) cryptocurrencies are highly subject to speculation (see,
e.g., [3,4,6–8]). In recent history, while 2017 was generally a bull year for cryptocurrencies, 2018 saw
great decline in their value, and some cryptocurrencies have been wiped out. Currently, however,
the value of one Bitcoin has more than doubled its price since its 2019 low. Meanwhile, while
cryptocurrencies are unregulated by central banking systems, regulatory action (both for and against)
by many jurisdictions has been taken.

The aim of this paper is that of identifying market regime patterns of cryptocurrencies through
the use of HMMs and HSMMs, where we assume that each state follows a Gaussian distribution with
both parameters dependent on the states. Furthermore, we look into the evolution of the parameters of
each distribution across time on a chosen test set. To test our models, we implement mock investment
strategies on test data and compare this to a buy-and-hold approach to determine how well these
regimes are identified. It is customary to say that when prices are on the rise for a relatively long
period of time, the market condition is a bull market, and when prices fall steeply with respect to recent
highs, the market condition is a bear market. Two other phases that may be found in the process are
corrections and rallies, with the former being a period of steady decrease amid a bull market and the
latter being a period of slow increase within a bull or bear market. It is possible that HMMs and
HSMMs may struggle to distinguish between these two states due to the fact that neither is associated
with a steep change. Due to a high correlation between movements of various cryptocurrencies, we
focus on the daily closing prices of BTC/USD, the most mature cryptocurrency, for the dates ranging
from 1 January 2016 to 28 January 2019, for a total of 1124 trading days. Bitcoin is around 50% of the
cryptocurrency market. Since traditionally, positive trends with low volatility and negative trends
with high volatility have respectively been labelled as bull and bear markets, we compare and contrast
our findings with a de facto standard stock market—the S and P 500, where the dates considered are 1
January 2000–28 January 2019. This can be invested in collectively via the S and P 500 Index Fund.

The following is a review of existing literature related to cryptocurrencies and the use of HMMs
and HSMMs to model financial assets. Starting with the former, Reference [9] fit various parametric
distributions on cryptocurrency returns. Furthermore [10–14] fit GARCH models and its variants in
their single-regime form. Reference [15] looks at the application of Markov switching autoregressive
models to Bitcoin. Recent publications that involve the modelling of Bitcoin volatility dynamics at
multiple regimes are [16,17]—though different approaches were used for modelling in these papers
with slightly varying results, in all cases, multiregime dynamics within a heteroscedastic framework
were detected. Other literature in a different direction includes Reference [18], which proposes
a time-varying parameter VAR model that incorporates Bayesian shrinkage priors for the purpose of
introducing regularisation in the model framework, and Reference [19], which performs a Bayesian
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change-point analysis of Bitcoin. The following, on the other hand, are examples of literature using
HMMs and HSMMs to model different phases of financial asset price movements. Reference [20]
shows that a normal HMM is capable of reproducing most of the stylised facts for daily S and P
500 return series established by [21]. However, they only allow the standard deviations to vary by
the state, while the means are fixed at zero. Recently, Reference [22] applied a four-state HMM for
stock trading by predicting monthly closing prices of the S and P 500, showing that the HMM is
superior to the buy-and-hold strategy as it yields larger percentage profits under different training and
testing periods. Modelling literature on financial time series using HSMMs is, however, quite limited.
Reference [23] compared HMMs and HSMMs when modelling the daily returns of 18 pan-European
industry portfolios. They concluded that the HSMM with a negative binomial dwell-time distribution is
a better alternative than the geometric distribution for HMMs. Reference [24] implemented a three-state
HSMM to describe the dynamics of the Chinese Stock Index 300 (CSI 300) returns. The authors assumed
normal state-dependent distributions with logarithmic dwell-time distributions and also implemented
a profitable trading strategy.

In this paper, what we aim to do over and above the cited literature is to assess how the HMM
and HSMM methodology for market phase detection performs within the cryptocurrency context
by looking at BTC/USD and also drawing comparisons with benchmark stock such as the S and P
500. Furthermore, apart from implementation on Chinese stock in [24], the implementation of HSMM
methodology on the S and P 500 or other traditional stocks has not been encountered in other literature
we have reviewed. In the next section, we discuss the modelling approach implemented in this paper.

2. General Methodology

The daily adjusted close prices of BTC/USD and the S and P 500 were obtained for suitably
chosen time periods, not equal in length, that encapsulate the swings the financial instrument
goes through. Log returns of the daily adjusted close prices were taken, and the HMM and HSMM
models were then fitted on the log returns. Mathematically, an m-state HMM consists of two
processes: (i) an unobserved (hidden) discrete-time m-state Markov chain, (Zn)n∈N, taking values in
a finite state-space, S := {1, 2, . . . , m}, and (ii) a state-dependent process, (Yn)n∈N, whose outcomes
(observations) are assumed to be generated by one of m distributions corresponding to the current
state of the underlying discrete-time Markov chain (DTMC). The distribution of Yn is assumed to
be conditionally independent of previous observations and states, given the current state Zn. Such
dynamics can be represented by the probabilities aij = P(Zn = j|Zn−1 = i), n ≥ 2, i, j ∈ S and the
mass/density function f (yn|Zn = j), n ∈ N, the latter depending on the nature of the observations.
For stationary HMMs, we denote by δi the resulting stationary probabilities of the underlying DTMC.
For a thorough review of HMMs, refer to [25].

One drawback of basic HMMs is due to the one time lag memory of the underlying first order
DTMC, which is inherently geometric. This means that the probability mass function of the dwell-time
(i.e., the time spent) in state i, denoted by di, is given by di(r) = (1− aii)ar−1

ii , r ∈ N. One possible
way to circumvent this problem is to consider general state (not necessarily geometric) dwell-time
distributions, leading to the HSMM framework. Thus, HSMMs generalise HMMs by explicitly
modelling state persistence and state switches separately. This is achieved by considering a DTSMC,
(Sn)n∈N with state-space S . The state-dependent process for HSMMs is defined in the same way as the
HMM case. Thus, the only difference between HMMs and HSMMs lies in the hidden state process.
In this case, we define qij = P(Sn = j|Sn−1 = i, Sn 6= i), qii = 0, and let di(r) be any discrete
non-negative probability mass function. Finally, we denote by δi(1) the initial probabilities of the
DTSMC. For a thorough account of HSMMs, refer to [23] and references therein. Since the log returns
take values in the real space R, we assume the state-dependent process to be distributed as normal
with mean µi and standard deviation σi), where the µis and σis are the means and standard deviations
for each state, for both HMMs and HSMMs. Moreover, the HSMM specification assumes that di(r)
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is distributed as a negative binomial with parameters vi, pi, where the vis and pis are the negative
binomial parameters for each state.

Parameter estimation of HMMs can be carried out by either direct numerical maximisation (DNM)
of the likelihood via Newton-type methods or by the expectation maximisation (EM) algorithm. Both
methods are described in [25]. HSMMs are usually fitted via the EM algorithm as described in [26].
For HMMs, the parameters we estimate are the aijs, the µis, and the σis, while the δis are a direct
consequence of the transition probabilities aij (refer to Tables 2 and 5). For HSMMs, the parameters we
estimate are the qij’s, the vis, the pis, the µis, the σis, and the δi(1)s (refer to Tables 3 and 6). For HMMs,
the Viterbi algorithm in [27] can be applied for both HMMs and HSMMs to obtain a sequence of most
likely hidden states. In other words, the aim of the Viterbi algorithm is to seek the particular sequence
of states z1, .., zN that maximise the conditional probability P(Z1 = i1, . . . , ZN = iN |y1, . . . , yN), where
N is the length of the series considered and in represents the state at time n. Hence, by labelling
the order of the states according to the Viterbi algorithm, one deciphers the most probable market
phases based on the entire observable sequence of log returns, which in turn guide us in making
profitable investments. Such a procedure is called global decoding.

The daily log return series are hence analysed as follows: (i) suitable HMMs and HSMMs on the
complete time series are fitted by varying the number of assumed states; (ii) the optimal model based
on the Akaike information criterion (AIC), Bayesian information criterion (BIC), and Hannan–Quinn
criterion (HQC) is chosen; (iii) the chosen time period is split into mutually exclusive training and
testing periods; (iv) an expanding window method is implemented by first fitting the optimal model
on the training set and then iteratively adding one time-point from the test set (until the testing period
is exhausted) to the training period and applying the Viterbi algorithm as a filtering procedure to
nowcast the current most likely hidden state after parameter re-estimation; (v) the evolution of the
mean and variance parameters of each state across time are analysed on the chosen test set; and (vi)
finally, investment strategies based on the model features arising from the Viterbi algorithm are applied
to determine models’ success at determining market phases. The data analysis presented next was
carried out using R packages HiddenMarkov from [28] and hsmm from [29].

3. Model Results

In this section, we look at the modelling of the different market phases—first of BTC/USD,
and then followed by S and P 500 for eventual comparison.

3.1. Bitcoin/USD Exchange Rate

HMMs and HSMMs were applied to the daily closing prices of the BTC/USD exchange rate.
Figure 1 provides the sequence plots of BTC/USD (adjusted) close prices, (Pn)n∈N, and the daily
log returns, (Yn)n∈N. As can be observed, up to 2017 the close prices exhibit steady but small rises,
while between 2017 and 2018 the close prices rise very aggressively, with a sharp decline at the end.
From 2018 onwards, there seems to be a negative overall trend with few ups and downs in between.
The daily BTC/USD log returns seem to be characterised by volatility clustering, i.e., the tendency for
low (or high) volatilities to occur in clusters. Summary statistics of (Yn)n∈N reveal that the mean and
variance are equal to 0.1854 and 16.6094, respectively. The coefficient of skewness is negative (−0.2077),
implying that the distribution of log returns is left-tailed. Another stylised fact that is characterised by
the series is that the coefficient of kurtosis greatly exceeds three (7.0052), implying a highly leptokurtic
distribution. Non-normality of the series is supported by the Jarque–Bera test (statistic: 759.36, p-value:
0.00), which rejects the null hypothesis that the series follows a normal distribution at a 0.01 level
of significance.

Table 1 summarises the model-fitting results on the complete series via the negative log-likelihood
−lN , AIC, BIC, and HQC for HMMs (where the underlying discrete-time Markov chains were assumed
to be stationary) and HSMMs with different numbers of states. Note that the means and variances
of the resulting mixtures of the two-, three-, and four-state HMMs were computed. As can be
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observed, the resulting means and variances are close to the sample statistics, which suggests that the
regime-switching models fit the data well. We see that, according to the information criteria considered,
the four-state models provide the best fit to the complete data. Note that, with regards to the normal
HMMs, the BIC suggests that three states provides the best fit.

Figure 1. Daily closing prices (top) and log returns (bottom) of Bitcoin/US dollar (BTC/USD) from
1 January 2016 to 28 January 2019.

Table 1. Goodness-of-fit statistics of stationary normal HMMs and homogeneous normal HSMMs with
negative binomial dwell-time distributions for 2, 3, and 4 states based on the entire series of daily log
returns of BTC/USD. Table reproduced from [1].

Model −lN AIC BIC HQC

2-state HMM 2924.454 5860.908 5891.056 5872.302

3-state HMM 2872.646 5769.292 5829.587 5792.078

4-state HMM 2848.546 5737.093 5837.586 5775.070

2-state HSMM 2887.872 5779.743 5789.793 5783.541

3-state HSMM 2857.086 5720.171 5735.245 5725.868

4-state HSMM 2837.926 5683.852 5703.950 5691.447

The parameter estimates and 90% confidence intervals (based on the parametric bootstrap method)
for the stationary four-state normal HMM are summarised in Table 2. As a general rule, we shall
now refer to estimates of parameters with a ̂ over the symbol. From the stationary probabilities,
δ̂i, it is evident that the four-state normal HMM spends most of its time in state 3 (35.7%), which is
characterised by a positive mean and moderately high volatility. The least time is spent in state 4
(17.1%), which is the only state characterised by a negative mean and the highest volatility. Of particular
interest are the transition probability estimates, âij, which show a lack of strong persistence in states 1
and 2. Consequently, we interpret the model as follows. State 3 can be associated with a bull market
due to the moderately high mean and strong persistence. State 4 can be associated with a bear market
due to the large (and only) negative mean with relatively weak persistence. Both states exhibit very
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high volatility, though the bear state exhibits a stronger drift and volatility. Attaching interpretations
to state 1 and 2 can be a bit more tricky, as both have weak persistence. State 1 appears to be a market
correction/rally state due to its low drift and volatility, while state 2 appears to be an additional bull
state with stronger drift, smaller volatility, and weak persistence.

Table 2. Parameter estimates and parametric bootstrap confidence intervals for the stationary four-state
HMM based on the complete BTC/USD log returns series.

Parameter MLE 90% C.I.

δ1 0.275 0.151 0.356

δ2 0.197 0.099 0.266

δ3 0.357 0.207 0.590

δ4 0.171 0.083 0.259

a11 0.616 0.498 0.712

a12 0.344 0.241 0.471

a13 0.000 0.000 0.000

a14 0.039 0.000 0.064

a21 0.537 0.358 0.769

a22 0.448 0.190 0.614

a23 0.003 0.000 0.037

a24 0.012 0.000 0.110

a31 0.000 0.000 0.000

a32 0.011 0.002 0.030

a33 0.975 0.944 0.990

a34 0.014 0.000 0.034

a41 0.000 0.000 0.000

a42 0.058 0.021 0.100

a43 0.048 0.016 0.116

a44 0.893 0.813 0.932

µ1 0.142 0.051 0.216

µ2 0.641 0.345 1.119

µ3 0.392 −0.024 0.754

µ4 −0.700 −1.725 0.133

σ1 0.661 0.574 0.759

σ2 2.398 2.056 2.720

σ3 4.016 3.662 4.412

σ4 7.289 6.549 8.526

The parameter estimates and 90% confidence intervals (based on the parametric bootstrap method)
for for the homogeneous four-state normal HSMM, fitted via the EM algorithm, are presented in
Table 3. The initial distribution estimates suggest that the series starts from state 1. The dwell-time
distributions for the four-state HSMM are compared with the equivalent geometric dwell-time
distribution of the 4-state HMM in Figure 2. For states 1 and 2, the geometric and negative binomial
distributions closely resemble each other and show a lack of persistence in these states. The HSMM
dwell-time distribution for state 3, however, is clearly non-geometric as it shows an extremely high
persistence with a modal run length of 47 time steps until a state-switch. For state 4, the HMM
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geometric distribution shows a higher persistence than the negative binomial dwell-time distribution
of the HSMM. The state-dependent parameter estimates closely resemble those of the stationary
normal-HMM, and thus similar interpretations can be attached.

Table 3. Parameter estimates and parametric bootstrap confidence intervals for the homogeneous
four-state HSMM based on the complete BTC/USD log returns series.

Parameter MLE 90% C.I.

δ1 (1) 1.000 0.45 1.00

δ2 (1) 0.000 0.000 0.000

δ3 (1) 0.000 0.000 0.000

δ4 (1) 0.000 0.000 0.000

q12 0.831 0.630 0.953

q13 0.000 0.000 0.000

q14 0.169 0.047 0.370

q21 0.901 0.798 0.993

q23 0.000 0.000 0.000

q24 0.099 0.007 0.202

q31 0.000 0.000 0.000

q32 0.270 0.000 0.978

q34 0.730 0.022 1.000

q41 0.006 0.000 0.162

q42 0.769 0.406 0.853

q43 0.225 0.146 0.507

v1 0.351 0.150 1.232

v2 0.204 0.089 0.552

v3 10.573 1.854 83.826

v4 0.143 0.080 0.532

p1 0.180 0.111 0.365

p2 0.126 0.049 0.245

p3 0.170 0.043 0.580

p4 0.031 0.013 0.110

µ1 0.099 0.013 0.190

µ2 0.603 0.302 0.823

µ3 0.376 −0.006 0.821

µ4 −0.702 −1.828 0.106

σ1 0.617 0.555 0.693

σ2 2.135 1.891 2.414

σ3 4.162 3.900 4.392

σ4 7.376 6.471 8.269
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Figure 2. State dwell-time distributions for the homogeneous four-state normal-HSMM (red) and for
the stationary four-state normal-HMM (black). Figure reproduced from [1].

For the expanding window procedure, we shall assume that the training period is
1 January 2016–31 December 2016, while the testing period is 1 January 2017–28 January 2019.
For computational stability, we shall update the model parameters and decode at each iteration
in the expanding window. The test set results based on the homogeneous four-state normal HMM are
given henceforth. Figure 3 shows that the probabilities of self-transition (persistence) for the states
change quite drastically. Overall, the probabilities fluctuate erratically at the start of the testing period
and then stabilise as more data streams in. Note that the probability of staying in the second state
alternates between low and high persistence at the start of the expanding window procedure and then
stabilises to medium persistence. For the third and fourth states, the probability of self-transition starts
quite low but gradually increases until high persistence is achieved. Figure 4 illustrates that both
means and volatilities remain quite stable. Moreover, µ̂1 and µ̂3 remain positive with low and high
volatilities, respectively. For these reasons, states 1 and 3 can be considered as bull regimes, the latter
being more volatile and persistent. Additionally, µ̂2 is negative at the start of the testing period, but it
gradually becomes strongly positive. Due to the change in sign for the second state, it is not obvious
whether it should be associated with a bull or bear market, and it is also associated with a weak drift.
Thus, it will be considered as a correction/rally state. In contrast, state 4 retains its identity as a bear
market due to the negative mean and very high volatility.

Figure 5 shows that the four-state HMM, based on a filtering method, can reasonably capture
the hidden economic regimes since upward trends are generally a shade of blue, while downward
trends are generally orange to red in colour. Observe that the Viterbi algorithm assigns most of
the test period to the third state—the bull state. Then, at the start of 2018, the value of one Bitcoin
starts plummeting, which is identified early by the Viterbi algorithm. It must be noted, though, that
some minor downward trends in 2018 failed to be distinguished from upward trends. Ultimately,
the four-state normal HMM seems to perform fairly well in detecting the changing market conditions.
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Figure 3. Expanding window: state persistence for the homogeneous four-state normal-HMM on
BTC/USD daily log returns.

Figure 4. Cont.
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Figure 4. Expanding window: state-dependent means and volatilities for the homogeneous four-state
normal-HMM on BTC/USD daily log returns.

Figure 5. Expanding window: four-state normal HMM filtering via the Viterbi algorithm on BTC/USD.
Upper figure: Colours vary by the value of the state-dependent mean (see legend), and the larger the
state-dependent volatility, the larger the dot size. Lower figure: The plot indicates the inferred state at
each time-point, and the colour code also indicates the value of the state-dependent mean as per the
legend. Figure reproduced from [1].
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The test set results based on the homogeneous four-state normal HSMM are also presented.
Figure 6 shows how the state-dependent parameters of the negative binomial distributions vary in
the expanding window procedure. As can be observed, the probabilities p̂i for i = 1, 2, 4 do not
fluctuate as much as p̂3. The state-dispersion parameters, v̂i, vary substantially as more data streams
in. With regards to the state-dependent normal distribution parameters (cf. Figure 7), the state means
vary considerably via the expanding window procedure, especially at the end of 2017. As can be
observed, such parameter estimates can be interpreted similarly to those obtained from the HMM
counterpart. Moreover, the state volatilities undergo substantial changes throughout the expanding
window process. Most notable is the volatility in state 3, which at the start of the testing phase is
as large as the volatility in state 4.

Figure 6. Expanding window: dwell-time parameters for the homogeneous four-state normal HSMM
on BTC/USD daily log returns.
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Figure 7. Expanding window: state-dependent means and volatilities for the homogeneous four-state
normal HSMM on BTC/USD daily log returns.

Through the use of the Viterbi algorithm, a filtering procedure was applied to infer the current
hidden states, as shown by Figure 8. As can be observed, this figure differs from Figure 5, especially
around the period of January 2018. In particular, it can be noted that the colours do not alternate
much, which was the major criticism with the HMM based plot. Again, the Viterbi algorithm assigns
most of the test period to the third state—the bull state. Then, at the start of 2018, the value of one
Bitcoin starts plummeting, which is identified early by the Viterbi algorithm as state 4—the bear state.
Moreover, the last days of the testing period switch between states 1 and 2. Ultimately, the four-state
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normal HSMM seems to perform fairly well in detecting the changing market conditions. In order to
compare the market traits of BTC/USD with those of more traditional assets, we now also analyse S
and P500 returns in a similar manner.

Figure 8. Expanding window: four-state normal HSMM filtering via the Viterbi algorithm on BTC/USD.
Upper figure: Colours vary by the value of the state-dependent mean (see legend), and the larger the
state-dependent volatility, the larger the dot size. Lower figure: The plot indicates the inferred state at
each time point, and the colour code also indicates the value of the state-dependent mean as per the
legend. Figure reproduced from [1].

3.2. Standard and Poor 500 Index Returns

The sequence plot of S and P 500 (adjusted) close prices, (Pn)n∈N, together with an illustration
of the daily log returns, (Yn)n∈N, can be found in Figure 9. As can be observed, the close prices
exhibit periods of downward and upward trends, while the log returns are clearly characterised by
volatility clustering. This observation corroborates the belief that bear markets are much more volatile
than bull markets in benchmark stocks. An interesting contrast between the S and P 500 and BTC/USD
emerges when noting that, for the latter, price drops and rises are highly volatile, while the former only
experiences high volatility during price drops. Summary statistics of (Yn)n∈N reveal that the mean and
variance are equal to 0.012 and 1.457, respectively. The coefficient of skewness is negative (−0.214),
implying that the distribution of log returns is left-tailed. Another stylised fact that is characterised by
the series is that the coefficient of kurtosis greatly exceeds three (11.480), implying a highly leptokurtic
distribution. Non-normality of the series is supported by the Jarque–Bera test (statistic: 14408, p-value:
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0.00), which rejects the null hypothesis that the series follows a normal distribution at the 0.01 level
of significance.

Figure 9. Daily close prices (top) and log returns (bottom) of the S and P 500 from 1 January 2000 to
28 January 2019.

Table 4 summarises the model-fitting results on the complete series via the negative log-likelihood,
AIC, BIC, and HQC for HMMs and HSMMs with different numbers of states. The DTMCs were
assumed to be stationary. Note that a five-state normal HMM was also considered, but since it did not
exhibit large persistence in the additional state, it was discarded. From Table 4, it can be concluded
that the four-state models provide the best fit to the data, with the four-state HSMM having superiority
over the four-state HMM, as demonstrated by the information criteria.

Table 4. Goodness-of-fit statistics of stationary normal HMMs and homogeneous normal HSMMs with
negative binomial dwell-time distributions for 2,3, and 4 states based on the entire series of daily log
returns of the S and P 500. Table reproduced from [1].

Model −lN AIC BIC HQC

2-state HMM 6744.512 13,501.02 13,539.88 13,514.67

3-state HMM 6536.509 13,097.02 13,174.73 13,124.34

4-state HMM 6483.062 13,006.12 13,135.64 13,051.61

2-state HSMM 6684.716 13,373.43 13,386.38 13,377.98

3-state HSMM 6533.021 13,072.04 13,091.47 13,078.87

4-state HSMM 6467.457 12,942.91 12,968.82 12,952.01

The parameter estimates and 90% confidence intervals (based on the parametric bootstrap method)
for the stationary four-state normal HMM are summarised in Table 5. From the stationary probabilities,
δ̂i, it is evident that the four-state normal HMM spends most of its time in states 1 (38.1%) and 2 (34.0%),
which are characterised by positive means and low volatilities. The least time is spent in state 4 (3.8%),
which is characterised by a large negative mean and high volatility. The dynamics of the transition
probabilities and state-dependent parameter estimates allow for the following interpretations of the
states: (i) state 1 can be associated with a bull market due to a large positive mean with low volatility
and likely transitions to states 2 and 3, (ii) state 4 can be associated with a bear market due to the
large negative mean and high volatility with a likely switch to state 3, and (iii) states 2 and 3 can
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both be interpreted as market corrections, where the former is characterised by a positive mean with
low volatility and the latter has a negative mean with larger volatility. Note that the less volatile
correction state, i.e., state 2, is likely to transition to the bull state or to the more volatile correction
state, i.e., state 3, while the latter can transition to the bear state or to the other correction state.

Table 5. Parameter estimates and parametric bootstrap confidence intervals for the stationary four-state
HMM based on the complete S and P 500 log returns series.

Parameter MLE 90% C.I.

δ1 0.381 0.289 0.480

δ2 0.340 0.284 0.423

δ3 0.242 0.116 0.342

δ4 0.038 0.01 0.07

a11 0.967 0.955 0.976

a12 0.031 0.023 0.042

a13 0.002 0.000 0.007

a14 0.000 0.000 0.000

a21 0.036 0.026 0.051

a22 0.953 0.939 0.965

a23 0.010 0.004 0.016

a24 0.000 0.000 0.002

a31 0.000 0.000 0.000

a32 0.018 0.011 0.031

a33 0.977 0.964 0.985

a34 0.005 0.002 0.007

a41 0.000 0.000 0.000

a42 0.000 0.000 0.000

a43 0.036 0.019 0.067

a44 0.964 0.933 0.981

µ1 0.096 0.069 0.113

µ2 0.013 −0.022 0.055

µ3 −0.081 −0.193 0.001

µ4 −0.275 −0.804 0.145

σ1 0.507 0.491 0.523

σ2 0.951 0.912 0.987

σ3 1.573 1.513 3.219

σ4 3.513 1.657 3.787

The parameter estimates and 90% confidence intervals (based on the parametric bootstrap method)
for the homogeneous four-state normal HSMM, fitted via the EM algorithm, are presented in Table 6.
The initial distribution estimates suggest that the series starts from state 3. The state-dependent
parameter estimates closely resemble those of the four-state HMM, and thus similar interpretations can
be attached to the states. Recall that the probabilities q̂ij model the state switches, while the dwell-time
distributions for each state, according to v̂is and p̂is above, model the state persistence. The negative
binomial dwell-time distributions (red) are illustrated by Figure 10, which show that states clearly
deviate from the geometric dwell-time distributions (black) of the aforementioned HMM.
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Table 6. Parameter estimates and parametric bootstrap confidence intervals for the homogeneous
four-state HSMM based on the complete S and P 500 log returns series.

Parameter MLE 90% C.I.

δ1 (1) 0.000 0.000 0.000

δ2 (1) 0.000 0.000 0.000

δ3 (1) 1.000 1.000 1.000

δ4 (1) 0.000 0.000 0.000

q12 0.998 0.974 1.000

q13 0.002 0.000 0.026

q14 0.000 0.000 0.000

q21 0.973 0.954 0.995

q23 0.023 0.004 0.035

q24 0.004 0.000 0.014

q31 0.000 0.000 0.000

q32 0.767 0.571 0.940

q34 0.233 0.060 0.429

q41 0.000 0.000 0.000

q42 0.000 0.000 0.000

q43 1.000 1.000 1.000

v1 0.079 0.055 0.142

v2 0.112 0.070 0.226

v3 7.755 3.718 46.090

v4 0.455 0.156 5.622

p1 0.028 0.017 0.045

p2 0.044 0.028 0.098

p3 0.119 0.052 0.473

p4 0.015 0.012 0.158

µ1 0.107 0.085 0.132

µ2 0.000 −0.047 0.045

µ3 −0.119 −0.121 0.011

µ4 0.015 −0.829 0.253

σ1 0.449 0.427 0.470

σ2 0.970 0.924 1.022

σ3 1.540 1.479 1.591

σ4 3.385 2.885 3.959

For the expanding window procedure, we shall assume that the training period is
3 January 2000–30 December 2005, while the testing period is 1 January 2006–28 January 2019. The scope
of considering such a long testing period is to understand how the four-state HMM and HSMM can
handle economic swings, i.e., bear vs. bull markets. We updated the model parameters and decoded
at each iteration in the expanding window. The test set results based on the homogeneous four-state
normal HMM are given hereafter. Figure 11 shows that the probabilities of self-transition (persistence)
are close to one during the entire testing period, with little fluctuations. Figure 12 illustrates how the
state-dependent parameters for the normal distributions update at each iteration of the expanding
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window procedure. Given estimates σ̂
(n)
i of σ

(n)
i , it can be observed that σ̂

(n)
1 < σ̂

(n)
2 < σ̂

(n)
3 < σ̂

(n)
4

for all n = 1, . . . , 3289 iterations. Moreover, given estimates µ̂
(n)
i of µ

(n)
i , note that µ̂

(n)
1 ≥ 0, while

µ̂
(n)
4 ≤ 0 for all n = 1, . . . , 3289 iterations. Hence, it is clear to associate states 1 and 4 with bull and bear

markets, respectively. Since µ̂
(n)
2 and µ̂

(n)
3 fluctuate around zero and are not consistent in their sign,

it is reasonable to consider them as correction states, with their volatility being the distinguishable
trait. It is interesting to note how around the period of the financial crisis of 2008, the volatilities of
states 2, 3, and 4 increase sharply especially for the bear market regime. The behaviour of the state
means is also similar as they fluctuate haphazardly during the 2008–2010 period and then stabilise as
time goes by (more data streams in).

Figure 13 was obtained by selecting the mean and volatility of the Viterbi-chosen state at each
time-point in the testing period. As can be observed, warm colours (peach to burgundy) are associated
with negative means, while cool colours (pale blue to navy) are associated with positive means.
Figure 13 shows that the four-state HMM, based on a filtering method, can accurately capture the
dynamics of bull and bear markets since upward trends are generally blue while downward trends are
generally red. Note how during the period 2010–2015, the S and P 500 Index is on the rise, with a few
short periods of drops in price highlighting market corrections. These instances are captured by the
four-state HMM as very pale (sometimes white) colours, implying a mean that is very close to zero,
with moderate volatility (state 2). In conclusion, the HMM seems to be useful in the early detection of
changing market conditions.

The test set results based on the homogeneous four-state normal HSMM are given hereafter.
Figure 14 shows how the state-dependent parameters of the negative binomial distributions vary in the
expanding window procedure. As can be observed, the probabilities p̂i do not fluctuate as much as the
dispersion parameters v̂i. Figure 15 illustrates how the state-dependent normal distribution parameters
change over time via the expanding window procedure. As can be observed, the parameter estimates
are updated similarly to the state-dependent parameter estimates for the four-state HMM (cf. Figure 12).
Therefore, similar interpretations can be attached to the four-state HSMM.

Figure 10. State dwell-time distributions for the homogeneous four-state normal HSMM (red) and for
the stationary four-state normal HMM (black). Figure reproduced from [1].
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Figure 11. Expanding window: state persistence for the homogeneous four-state normal HMM on S
and P 500 daily log returns.

Figure 12. Cont.
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Figure 12. Expanding window: state-dependent means and volatilities for the homogeneous four-state
normal HMM on S and P 500 daily log returns.

Figure 13. Expanding window: four-state normal HMM filtering via the Viterbi algorithm on the S and
P 500 Index. Upper figure: Colours vary by the value of the state-dependent mean (see legend), and
the larger the state-dependent volatility, the larger the dot size. Lower figure: The plot indicates the
inferred state at each time-point, and the colour code also indicates the value of the state-dependent
mean as per the legend. Figure reproduced from [1].
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Figure 14. Expanding window: dwell-time parameters for the homogeneous four-state normal HSMM
on S and P 500 daily log returns.
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Figure 15. Expanding window: state-dependent means and volatilities for the homogeneous four-state
normal HSMM on S and P 500 daily log returns.

Through the use of the Viterbi algorithm, a filtering procedure was applied to infer the current hidden
state, as shown by Figure 16. Upon inspection, there do not seem to be any clear differences between
Figures 16 and 13. Again, the four-state normal HSMM seems to capture the market dynamics well. The subtle
differences between the two plots will be exploited through the implementation of investment strategies.
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Figure 16. Expanding window: four-state normal HSMM filtering via the Viterbi algorithm on the S
and P 500 Index. Upper figure: Colours vary by the value of the state-dependent mean (see legend),
and the larger the state-dependent volatility, the larger the dot size. Lower figure: The plot indicates
the inferred state at each time-point, and the colour code also indicates the value of the state-dependent
mean as per the legend. Figure reproduced from [1].

4. Investment Strategies to Assess Model Adequacy

In order to analyse the success of HMMs and HSMMs in determining bull and bear features,
we devised four mock investment strategies and applied them with the expanding window procedure
on both BTC/USD and the S and P 500, using the buy-and-hold strategy as a benchmark. For simplicity,
the following assumptions were made for each strategy: (i) the actions (buy or sell) are not subject to
transaction costs; (ii) the testing period is entered with an initial capital of $20,000; (iii) the first action
is to buy on the first day of the testing period; (iv) if a buy signal is given, financial assets are bought
only if enough cash is at hand; and (v) if a sell signal is given, financial assets are sold in their entirety
if and only if they are owned. The first is a naive investment strategy called buy-and-hold, which is
used for comparative purposes.

Strategy 1—Buy-and-Hold:

The buy-and-hold is defined by two actions:

• Buy on the first day of the testing phase.
• Sell on the last day of the testing phase.

The second strategy is based on the way we arbitrarily associate the states obtained via the Viterbi
algorithm under the expanding window procedure (see earlier explanations for more detail).
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Strategy 2—Regime:

At each state change given a particular time n, apply the following actions:

• Given that state i∗n−1 is associated with a bear market at time n− 1 and state i∗n associated with
a bull market at time n, buy as many financial positions as possible at time n.

• Given that state i∗n−1 is associated with a bull market at time n− 1 and state i∗n associated with
a bear market at time n, sell all financial positions at the close price of time n.

• Otherwise, do nothing.

For Bitcoin, we consider state 3 as a bull state and state 4 as a bear state, while other states
will not be labelled since they are ambiguous and infrequent. For the S and P 500, on the other
hand, we shall consider states 1 and 2 as bull states and states 3 and 4 as bear states, based on the
probabilities in Q̂ connecting them. For the third and fourth strategies below, on the other hand,
we denote the mean estimate by µ̂

(n)
i∗ such that i∗ is the Viterbi chosen state at time n. Moreover,

the following grid values for ε, based on empirical evidence, are taken: ε = 0, 0.2, 0.4, 0.6, 0.8, 1.0; and
ε = 0, 0.005, 0.01, 0.02, 0.03, 0.1, for BTC/USD and the S and P 500, respectively.

Strategy 3:

Given a particular time n, apply the following actions based on a pre-specified tolerance ε:

• If µ̂
(n−1)
i∗ < 0 and µ̂

(n)
j > ε for j 6= i∗, then buy as many financial positions as possible at time n.

• If µ̂
(n−1)
i∗ > 0 and µ̂

(n)
j < −ε for j 6= i∗, then sell all financial positions at the close price of time n.

• Otherwise, do nothing.

Strategy 4:

Given a particular time n, apply the following actions based on a pre-specified tolerance ε:

• If µ̂
(n−2)
i∗ < 0, µ̂

(n−1)
j > 0 and µ̂

(n)
j > ε for j 6= i∗, then buy as many financial positions as possible

at time n.
• If µ̂

(n−2)
i∗ > 0, µ̂

(n−1)
j < 0 and µ̂

(n)
j < −ε for j 6= i∗, then sell all financial positions at the close price

of time n.
• Otherwise, do nothing.

Note that strategies 2 to 4 are HMM/HSMM-based since they make use of the underlying hidden
states or the active state-dependent normal distribution means. Strategy 2 can be interpreted as the
simplest out of the HMM/HSMM-based approaches since it only considers information regarding the
inferred hidden state sequence and the “subjective” interpretations attached to each state. Strategy 3
can be interpreted as an indicator of when a regime that is characterised by a negative trend is
superseded by another regime that is characterised by a positive trend, according to some pre-defined
threshold value ε. When ε = 0, strategy 3 becomes a simple indicator of a negative-to-positive trend
or vice versa. Thus, this strategy tries to capture bull–bear movements and capitalise immediately
on such transitions. However, strategy 3 with ε = 0 is clearly susceptible to market correction traps
since it does not consider the size of the trend. This led to the consideration of other ε > 0 that
take into consideration the current estimated trend size. Thus, strategy 3 with ε > 0 could possibly
improve upon the case when ε = 0 by ignoring buy (or sell) signals that are based on trends that are
too close to zero. Thus, choosing an ε > 0 attempts to capture bull and bear phases by ignoring periods
which are characterised by weak upward or downward trends that could potentially mislead investors
in making unprofitable decisions. However, the aforementioned strategies are flawed in situations
where state-switches occur in (unrealistic) short terms. As an attempt to limit this, we considered
strategy 4, which builds upon strategy 3 by additionally taking into account the trend of the day before
yesterday and waiting one day before performing an action. The one-day waiting time in a particular
regime acts to safeguard excessive actions during turbulent periods where the models infer consecutive
(unrealistic) state-switches.
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4.1. BTC/USD Exchange Rate

Table 7 summarises the pay-offs according to the aforementioned investment strategies for
BTC/USD, respectively. It includes the naive buy-and-hold approach as well as the HMM and
HSMM-based strategies. As can be observed for HMM-based results, strategy 4 with ε = 0.4 yields the
highest ROI when compared with the other HMM-based strategies. Although strategy 4 with ε = 0.2
is almost just as profitable, notice that it requires two more actions. Thus, if transaction costs were
considered, the latter strategy would suffer a hefty penalty and would not be as close to strategy 4
with ε = 0.4. Meanwhile, for HSMM-based results, strategy 3 yields the highest ROI when compared
with the other HSMM-based strategies. Note that strategy 2 yields a high return with 14 less actions.
It can be concluded that the buy-and-hold strategy performs the worst but requires the lowest amount
of actions. This could be attributed to the fact that the testing period under consideration was short.
The overall best strategy is HSMM-based with an ROI that is more than double that of strategy 1.

Table 7. Investment metrics for buy-and-hold and HMM- and HSMM-based strategies during the
testing period of 1 January 2017–28 January 2019 for BTC/USD. Best strategy marked in bold.

Strategy ε
Number

of Actions
Last

Sell Date
Cumulative
Amount ($) ROI (%)

1 (Buy-and-Hold) / 2 28 January 2019 69,384.79 246.92

2 (HMM) / 60 10 October 2018 71,967.73 259.84

3 (HMM) 0 82 19 November 2018 71,299.09 256.50

0.2 70 10 October 2018 71,292.09 256.46

0.4 64 10 October 2018 53,343.84 166.71

0.6 42 19 November 2018 60,524.84 202.62

0.8 20 13 September 2017 34,077.70 70.39

1.0 16 13 September 2017 26,278.13 31.39

4 (HMM) 0 32 20 November 2018 84,211.24 321.06

0.2 30 15 November 2018 106,458.40 432.29

0.4 28 15 November 2018 119,350.79 496.75

0.6 14 20 November 2018 86,329.31 331.65

0.8 6 24 June 2017 40,016.87 100.08

1.0 6 24 June 2017 46,975.57 134.88

2 (HSMM) / 22 20 December 2018 113,540.75 467.70

3 (HSMM) 0 36 20 December 2018 147,203.48 636.02

0.2 29 20 December 2018 60,992.54 204.96

0.4 25 20 December 2018 40,969.47 104.85

0.6 18 17 December 2018 39,737.98 98.68

0.8 2 24 July 2017 51,888.21 159.44

1.0 2 14 September 2017 74,615.45 273.08

4 (HSMM) 0 14 20 November 2018 89,768.60 348.84

0.2 10 20 November 2018 40,735.23 103.68

0.4 6 20 November 2018 35,166.88 75.83

0.6 6 20 November 2018 78,965.71 294.83

0.8 2 20 July 2017 53,746.69 168.73

1.0 / / / /
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Figure 17 illustrates the actions taken based on the best HSMM strategy. As can be observed,
since strategy 3 (ε = 0) is triggered whenever the mean changes from positive to negative and
vice-versa, there are many actions taken throughout the testing period. Note how the HSMM-based
approach was overall profitable over the testing period and made most profit by buying 13.20 BTC on
21 September 2017 and then selling them on 30 December 2017 at around $12,500 each. However, due to
the declining period between April 2018 and January 2019, the model ends up making some
substantial losses.

Figure 17. HSMM-based best strategy for BTC/USD actions. Colours vary by the value of the
state-dependent mean (see legend), and buy and sell signals are denoted in the figure.

4.2. S and P 500 Index

Table 8 summarises the payoffs according to the four investment strategies for the S and
P 500, respectively. As can be observed for HMM-based results, strategy 4 with ε = 0.03 yields
the highest ROI when compared with the other HMM-based strategies. Although strategy 3 with
ε = 0.005 is almost just as profitable, notice that it requires 36 more actions. Thus, if transaction
costs were considered, the profitability in comparison to strategy 4 with ε = 0.03 would be even less.
For HSMM-based results, strategy 3 with ε = 0.02 yields the highest ROI when compared with the
other HSMM-based strategies. Although strategy 3 with ε = 0.02 yields the most profit, notice that it
requires 16 actions, while strategy 3 with ε = 0.03 and strategy 4 with ε = 0.02 yield very similar results
but with four fewer actions each. Thus, if transaction costs had been included, it is very likely that the
latter would be more profitable than the former. By considering Table 8, the buy-and-hold strategy
works very well. This could be attributed to the fact that the testing period under consideration
is long. In spite of this, the HSMM with strategy 3 (ε = 0.03) is the most profitable under the assumed
circumstances for the S and P 500 Index.

Figure 18 illustrates the actions taken based on the best HSMM strategy. As can be observed,
most of the actions take place at the start of the testing period. This could be due to the fact that
the parameter estimates would still be updating quite erratically during the early part and stabilise
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as more data streams in. Note how the HSMM-based approach anticipated the collapse during the
financial crisis of 2008 and made substantial profit by holding the asset for a long time until selling
in 2016.

Table 8. Investment metrics for buy-and-hold and HMM- and HSMM-based strategies during the
testing period of 1 January 2006–28 January 2019 for the S and P 500. Best strategy marked in bold.

Strategy ε
Number

of Actions
Last

Sell Date
Cumulative
Amount ($) ROI (%)

1 (Buy-and-Hold) / 2 28 January 2019 40,625.75 103.13

2 (HMM) / 38 11 October 2018 45,275.13 126.38

3 (HMM) 0 64 11 October 2018 31,058.78 55.29

0.005 46 11 October 2018 32,789.96 63.95

0.01 28 05 February 2018 28,096.15 40.48

0.02 18 05 February 2018 31,813.92 59.07

0.03 16 05 February 2018 32,488.31 62.44

0.1 2 24 June 2016 31,529.15 57.65

4 (HMM) 0 52 12 October 2018 29,833.44 49.17

0.005 36 12 October 2018 31,204.80 56.02

0.01 22 06 February 2018 28,044.47 40.22

0.02 12 06 February 2018 32,380.75 61.90

0.03 10 06 February 2018 32,952.37 64.76

0.1 2 27 June 2016 30,976.10 54.88

2 (HSMM) / 46 10 October 2018 41,505.15 107.53

3 (HSMM) 0 80 10 October 2018 27,312.20 36.56

0.005 62 22 March 2018 29,843.16 49.22

0.01 44 22 March 2018 38,567.65 92.84

0.02 16 22 March 2018 47,898.68 139.49

0.03 12 22 March 2018 47,802.54 139.01

0.1 2 27 February 2017 21,953.60 9.77

4 (HSMM) 0 58 11 October 2018 26,965.29 34.83

0.005 46 23 March 2018 29,239.71 46.20

0.01 32 23 March 2018 36,372.66 81.86

0.02 12 23 March 2018 47,747.17 138.74

0.03 10 23 March 2018 41,267.90 106.34

0.1 2 28 February 2018 22,070.30 10.35
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Figure 18. Best HSMM-based strategy for S and P 500 Index actions. Colours vary by the value of the
state-dependent mean (see legend), and buy and sell signals are denoted in the figure.

5. Discussion

Given the results from previous sections, we now compare and contrast the features for both
BTC/USD and the S and P 500. The four-state HSMMs, in both cases, reveal two states indicative of
bull and bear behaviour, with two “in-between” states. However, while BTC/USD has had strong and
persistent bull phases with savage and weakly persistent bear phases, for the most part, the S and
P 500 tended to switch between bull and stable/bull correction phases with rare but persistent bear
phases. In addition, BTC/USD can exhibit higher volatility in comparison to the S and P 500 as it is
more novel and prone to external events. Indeed, both bull and bear markets for BTC/USD are volatile,
while for the S and P 500, only bear markets are volatile. In view of this, cryptocurrencies have often
been remarked to be excessively volatile and subject to speculation, even compared to benchmark
stocks, and not currency-like in their behaviour. Secondly, BTC/USD states are less interpretable in
terms of market phases than the S and P 500. While our models seem to perform well in detecting the
bear states, for BTC/USD it is harder to distinguish between bull phases and more stable ones. For the
S and P 500, on the other hand, steep upward trends are associated with the lowest volatility, while
steep downward trends tend to be the most volatile. Ultimately, the four-state HSMM appears to be
an effective modelling framework for both BTC/USD and the S and P 500.

The investment strategies results yield some notheworthy revelations. Firstly, the naive
buy-and-hold strategy for the considered testing periods worked fairly well for the S and P 500,
while it was the least profitable for BTC/USD, though this is largely due to the test period considered.
Secondly, the HSMM framework provides a clear improvement over the standard HMM methodology
in both the cryptocurrency and stock markets. Thirdly, it must be noted that for the better-performing
HSMM, allowing the interpretations of the states to adjust at each step according to the mean of the
state can have its advantages, as either strategy 3 or 4 improved upon strategy 2. Finally, had we
considered transaction costs, it is very likely that the HSMM framework could still result in being the
most profitable due to its superior performance with a relatively smaller number of transaction costs,
highlighting its applicability in real-world algorithmic trading analyses.
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6. Materials and Methods

The data for BTC/USD is freely available and can be downloaded from https://finance.yahoo.
com/quote/BTC-USD/history?p=BTC-USD, and similarly for the S and P 500. The computer codes
used to derive the results in this paper can be found as open access on https://github.com/lukespi/
HMMHSMMBitcoinSP500.

7. Conclusions

In summary, this paper concludes that a more desirable approach for modelling both BTC/
USD and the S and P 500, and capturing effectively the dynamics of bull and bear market regimes,
is a four-state normal HSMM with negative binomial dwell-time distributions. When implementing
investment strategies, it has proven to be considerably superior to a buy-and-hold approach for our
data, while this was not always the case for HMMs, which constrain dwell-times to being geometric.
Indeed, by allowing dwell-time distributions on the states with larger modes, the number of buy/sell
actions is greatly reduced in comparison. Although in the case of BTC/USD, the states of the four-state
HSMM model have an inferior interpretation compared to the S and P 500, it still provides a good
basis for further improvement and future research.

This research does have some limitations, primarily the length of the BTC/USD time series
(around three years long), which was chosen as such to reflect more recent interesting times. This is
not the case for the S and P 500, and one must pinpoint that this is a much older financial instrument
with consistent long-term behaviour, while Bitcoin and other cryptocurrencies may still be maturing.
A second limitation is that this paper has considered daily data, and the analysis may respond too
late to sudden large changes in the market. In future, it may be interesting to study how such models
perform in high-frequency scenarios. Two other limitations are the fact that prior specification of the
number of states is required by both HMMs and HSMMs, even though these may vary throughout
the test set, and the fact that transaction costs are not included in the investment strategies. The final
limitation we conclude with is that only normal HMMs and HSMMs were considered, which means
that the individual states are only being defined by their mean and variance. If other, more complex,
distributions were considered, other features such as skewness and kurtosis of returns could also be
determined. However, it is envisaged that numerical instability can be an issue with more complex
models, as one seeks to estimate more parameters.

Author Contributions: Conceptualisation, D.S.; methodology, D.S. and L.S.; software, L.S.; validation, D.S.
and L.S.; formal analysis, D.S. and L.S.; investigation, D.S. and L.S.; resources, D.S. and L.S.; data curation,
D.S. and L.S.; writing—original draft preparation, D.S. and L.S.; writing—review and editing, D.S. and L.S.;
visualisation, L.S.; supervision, D.S.; project administration, D.S.; funding acquisition, L.S.

Funding: The research work disclosed in this publication is partially funded by the Endeavour Scholarship Scheme
(Malta). Scholarships are partly financed by the European Union—European Social Fund (ESF)—Operational
Programme II—Cohesion Policy 2014—2020, “Investing in human capital to create more opportunities and promote the
well-being of society”.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AIC Akaike information criterion
BIC Bayesian information criterion
BTC/USD Bitcoin/US dollar
C.I. Confidence intervals
CSI 300 Chinese Stock Index 300
DNM Direct numerical maximisation
DTMC Discrete-time Markov chain
DTSMC Discrete-time semi-Markov chain
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EM expectation maximisation
GARCH Generalised autoregressive conditional heteroscedasticity
HMM Hidden Markov model
HQC Hannan–Quinn criterion
HSMM Hidden semi-Markov model
MLE Maximum likelihood estimates
ROI Return on investment
S and P 500 Standard and Poor’s 500
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