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ABSTRACT The purpose of microgrids is to improve system flexibility and resilience during normal and
emergency conditions. The ceaseless load growthmandates to increasemicrogrid’s capacity, thereby improv-
ing the system flexibility and resilience. However, capacity expansion requires significant investments,
making it essential to identify the optimal capacity of energy resources. The methodologies proposed in the
literature identifies the microgrid’s capacity with an assumption of investments with a single installment.
This way of theoretical approach leads to unrealistic solutions. Besides, microgrid’s participation in a
flexible market will enhance its performance both in commercial and technical aspects. Therefore, this
paper proposes a realistic framework with the concept ‘‘expansion through time’’ inspired by ‘‘Real Options
Theory.’’ This framework includes practical parameters like resource & load uncertainty, physical space
required to install, revenue generated by resources, and maximum demand penalty, on top of electrical
parameters; constrained with significant return in investments to improve the overall savings. In addition,
this paper proposes a market participation model for microgrid, which defines a bidding process with two
components, such as regular and flexible portions under both normal and extreme conditions. This study
considers renewable-based energy resources like solar-photovoltaic plants (SPPs) and battery energy storage
systems (BESSs) as microgrids’ energy resources. The system chosen for testing the efficacy of the proposed
framework is a real-world active-microgrid of Malta College of Arts, Science and Technology (MCAST),
located on an island.

INDEX TERMS Microgrid planning, battery energy storage system, renewable energy, optimization,
resilience.

I. INTRODUCTION
In recent years, the renewable penetration into the distribu-
tion system is increasing mainly to decrease the reliance on
fossil fuels and reduce associated carbon emission. How-
ever, the high penetration of renewables introduces various
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challenges to the grid, such as reliability, power quality,
etc., mainly due to their intermittent nature. The introduction
of an optimal-sized battery energy storage system (BESS)
increases the grid flexibility and minimizes the uncertain
nature of renewables [1]. In addition, microgrids are espoused
with renewable energy resources (RERs) and other dis-
tributed energy resources (DERs) to enhance their economy
and reliability in a self-controlled way [2]–[6]. However, with
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the increasing demand growth, microgrids are subjected to
capacity expansion, bringing investment challenges. There-
fore, it is essential to optimize the investments along with the
optimal allocation of energy resources.

A. BACKGROUND AND MOTIVATION
The capacity expansion of microgrids imposes various chal-
lenges out of which the investments are of more interest.
In other words, one of the significant challenges for the
enlargement of microgrids is high capital investment. In addi-
tion, accurate assessment of energy resources is challeng-
ing due to uncertain conditions introduced by load, RERs,
and future electric vehicles (EVs). Hence, it is essential to
consider uncertainty parameters for the effective planning
of microgrids [7]. In recent days, microgrid’s participation
in flexible market at distribution system operator (DSO)
level is getting more popular considering the benefits. Many
researchers proposed various methodologies to formulate the
market participation of microgrids at various levels [8]–[10].
Therefore, this paper proposes a realistic framework that
includes the technical parameters for optimal resource expan-
sion and a bidding process for the market participation model
to improve the microgrids’ overall technical and financial
benefits.

B. RELEVANT LITERATURE
Earlier, the research on microgrids has mainly been focused
on optimal operation and control of available resources.
However, in recent years, studies on optimal planning of
energy resources for microgrids are also being undertaken.
Most researchers formulated the resource planning problem
as a mixed-integer non-linear problem (MINLP), which min-
imizes the investment cost. In [4], a study on energy planning
of microgrids is performed by minimizing the overall cost
using HOMER and PSCAD software. The authors of [11]
presented a microgrid planning study on primary distribu-
tion systems using a genetic algorithm. Here the proposed
methodology identifies the optimal location and capacity of
DERs like solar photovoltaic plants (SPPs), gas turbines,
wind turbines, and synchronous generators by considering
the availability of the grid. In [12], the authors proposed a
stochastic optimal planning methodology with the primary
objective to minimize the net present cost and CO2 emission.
Here, the methodology identifies the optimal capacity of
SPPs and wind power plants (WPPs) for a stand-alone micro-
grid using a genetic algorithm. Finally, the authors of [13]
present a case study investigating the planning scenarios for
remote microgrids with energy resources like wind farms
and energy storage. Here, a Monte-Carlo-based approach is
applied to generate various scenarios for wind power gener-
ation, the availability of wind and diesel, and uncertainty of
load forecast to identify the optimal size of wind farm and
energy storage system with minimum capital investments for
the chosen planning horizon.

In recent years, there is a considerable increase in load
growth in microgrids which mandates expansion of resource

capacity. For instance, studies on optimal expansion plans
adding the distributed resources like SPPs, WPPs, and BESS
for microgrids are performed using particle swarm optimiza-
tion (PSO) considering the uncertain environment [14], [15].
Besides, the service of microgrids is extended to improve the
system’s resilience. The resilience enhancement framework is
majorly classified into hardening and operational strategies.
One of the main reasons for power outages during extreme
conditions is the failure of the main feeder. Most of the hard-
ening strategies proposed in the literature provide resource
addition to improve the system’s resilience. For instance,
in [16], [17], the hardeningmeasures like optimal BESS plan-
ning across the system and the combination of grid-side and
demand-side resilience measures are proposed to enhance
system resilience. Deployment of microgrids with mini-
mized operational cost improves system resilience [18]–[20].
The prior installed energy resources are generally from the
microgrids via optimal operation of sectionalizer switches
[21]–[23]. In [24], the authors proposed the optimal intercon-
nector which connects the available RERs across the com-
munity to form microgrids. It is essential to have sufficient
operational energy resources to satisfy the demand during
extreme conditions.

The authors of [25] proposed a concept named ‘‘Provi-
sional microgrids.’’ The provisional microgrids have suffi-
cient energy resources without islanding capability, and for its
islanding operation, it is essential to be electrically connected
with conventional microgrids. In other words, the provisional
microgrids will serve as an energy resource for conventional
microgrids, eliminating this challenge partially. However, the
reserve capacity in microgrid planning must be constrained to
the jurisdiction of DSO. In [26], the authors propose a bi-level
planning model to optimize the power from DERs con-
strainedwith electrical parameters and the capacity of flexible
reserves (constrained with DSO jurisdiction). Considering
the uncertain nature of renewable-based DERs, the authors
of [27] proposed amethodology to identify the optimal capac-
ity of BESS within a microgrid. Here, the objective function
is constrained by the uncertainty of renewables and load on
top of electrical parameters. Realizing the role of EVs in the
future distribution system, the authors of [28] proposed uti-
lizing EVs to enhance microgrid flexibility effectively. Here,
an optimal energy trading methodology is proposed using
the day-a-head and real-time energy market to maximize the
flexibility of buildingmicrogrids with renewables, BESS, and
EVs. Finally, a study in [29] identifies the optimal capac-
ity of DERs by minimizing a cost-based objective function
constrained with the placement of DER at less vulnerable
nodes (identified via contingency analysis) to improve the
microgrid resilience. A summary of recent related literature
is presented in Table 1, which showcases the contribution of
this article.

C. CONTRIBUTIONS AND ORGANIZATION
From the literature, it is evident that the existing microgrid
planning methodologies mainly focuses on parameters like
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TABLE 1. Summary of recent related literature.

voltage deviation, loading capacity of the interconnector,
uncertainty offered by load, and RERs; leaving the practi-
cal constraints such as physical space available for installa-
tion of both BESS and RERs, investment burden, and the
uncertainty of future EVs. Most of the approaches in the
literature apply evolutionary-based optimization algorithms
to solve the formulated objective function. Therefore, it is
essential to identify the best suitable algorithm to solve a
problem of this kind. Popular evolutionary algorithms are
applied to solve the formulated cost-based objective function
to determine the adequate size of BESS and SPP. Besides,
to recognize the suitable algorithm among the popular ones,
the results are compared based on execution time, iterations
for convergence, and appropriate size. In addition, this paper
proposes a market participation model for DERs of a micro-
grid at the DSO level. In general, the concept of microgrid
capacity expansion is concerned with mainland installations.
Therefore, it is essential to study the effect of microgrid
capacity expansion methodologies to improve the resilience
and flexibility of the systems located on islands. Hence,
this paper presents the study of the capacity expansion plan
inspired from real option theory for a microgrid situated on
an island by considering practical constraints [30].

The significant contributions of this paper are as follows:

• Techno-economic framework for optimal capacity
expansion of active microgrid based on willingness
factor of investment (wfi) and ‘‘Expansion through time’’
to enhance system resilience and flexibility.

• Formulation of an optimization problem with realistic
constraints like the uncertainty of load, RERs, and EVs,
physical space constraint for RERs and BESS, and rev-
enue generation from DERs of the microgrid.

• Flexible market participation model at DSO level based
on willingness factor of participation (wfp) during nor-
mal and extreme conditions.

• The efficacy of the proposed framework is tested
on real-world active microgrids of MCAST in the
Mediterranean region.

This study utilizes the pandapower python package to
develop the power system model [25] and python 3.7 for
implementing the optimization algorithm. As mentioned ear-
lier, this paper considers the MCAST microgrid located in
Malta (an island in the Mediterranean) to perform numerical
experiments. The rest of the article is organized as follows:
Section II elaborates the proposed framework, including
problem formulation, uncertainty modeling, capacity expan-
sion model including the methodology to solve the optimiza-
tion problem, and market participation model. Section III
demonstrates the case study, and section IV concludes this
paper.

II. PROPOSED FRAMEWORK
This section elaborates on the techno-economic framework
for optimal capacity expansion of microgrids to improve
their flexibility and resilience. To address the financial
burden, the framework proposed is based on wfi and
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FIGURE 1. Proposed framework.

expansion through time. In other words, the overall invest-
ment (including the initial investment) is segmented into var-
ious investments through time, based on wfi and the return on
investments. Figure 1 shows the proposed frameworkwith the
capacity expansion and market participation model, respec-
tively. Here the expansion model derives the optimal capacity
of energy resources and its year of investment. The cost pro-
jection model estimates the yearly cost of energy resources
for the entire project tenure [28]. Based on the historical
data, the load and pricing model estimate the maximum
annual demand and the possible penalty cost for the complete
project tenure. The factorwfi represents the investor’s interest
in investing in capacity expansion, taking a value between
0 and 1. The value of wfi towards 1 indicates the reluctance
of investors towards capacity expansion in the future, and
0 indicates the eagerness to invest. The market participation
model determines the return in investment based on the cost
of electricity purchased and sold. To address the concern of
customers willing to participate in the aggregator market,
wfp is introduced. The factor wfp represents the microgrid’s
customer interest to participate in the market. In other words,
the customer is willing to participate in load shifting, power
generation, energy storage during normal and islanding mode
of operation.

The factor wfp is a binary variable that takes the value 0
when the customer is unwilling for market participation. The
following subsections elaborate on the problem formulation,
uncertainty modeling, capacity expansion, and market partic-
ipation models.

A. PROBLEM FORMULATION
This section elaborates the formulation of the cost-based
objective function to derive the optimal capacity expansion.
The objective function formulated comprises four compo-
nents: investment cost, yearly expenses, yearly revenue, and

cost of microgrid performance such as line loading, voltage
deviation, and power loss shown in equations (1) – (8).

ObjF = CINV + CEx
yr + CµG − C

Rev
yr (1)

CINV =
∑NSPP

n=1
CSPP,n
FI + ASPP,n × Cland × S

SPP,n
rated

+

∑NBESS

n=1
CBESS,n
FI + CBESS,n

PI + CBESS,n
EI

+Cland × ABESS,n × S
BESS,n
rated (2)

CEx
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∑PT

yr=1

∑NSPP

n=1
CSPP,yr
OM × SSPP,nrated

+

∑
yr∈N SPP

Rplyr

CSPPInv,yr
Rpl × Dyr

f +
∑NBESS

n=1
CBESS,yr
OM
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∑
t∈N SPP

Rplyear

∑NSPP

n=1
CSPPInv,n
Rpl

×Dyr
f + C
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grid (3)

CµG = CL
ll + C

Nn
Vdev + C

L
Sp (4)

CL
ll =

{∑L

l=1
%LLBESS +%LLSPP

}
× Cll (5)

CN
Vdev =

∑Nn

n=1

∣∣∣Vrated − (V BESS
n + V SPP

n )
∣∣∣× CVdev (6)

CL
Sp =

√∑L

l=1

(
P2loss,l + Q

2
loss,l

)
× Closs (7)

CRev
yr =

∑PT

yr=1

∑NSPP

n=1
CSPP,yr
grid × SSPP,nrated

+

∑NBESS

n=1
Crev,yr
grid × S

BESS,n
rated (8)

As shown in equation (1), the cost-based objective function
represents the project expenditure in ¿(Euros) for capacity
expansionwith BESS and SPP in themicrogrid. Here, the first
term means the cost of initial investments towards building
SPP, BESS, and the land required for installation. The second
term represents the expenses that occur during the operation
stage of the project, like the operation & maintenance cost
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of SPP & BESS and the replacement cost of SPP inverter
& BESS after its lifespan. The third term represents the
microgrid performance cost, which includes cost due to line
loading, voltage deviation, and power loss. Finally, the last
term denotes the revenue from the feed-in tariff of SPP
and peak management using BESS to avoid the maximum
demand penalty.

The formulated objective function is subjected to the fol-
lowing constraints:

1) OPTIMIZATION CONSTRAINTS
The power demand (including EVs) at any time of the day
must be satisfied by the power from the grid, SPPs, power
loss, and the power injected (during peak hours) or absorbed
(during off-peak hours) by BESS, respectively. The optimiza-
tion constraints for capacity expansion of microgrid are given
by equations (9) – (18).

PnD + P
n
EV = PnSPP + P

n
BESS + P

LG
grid + P

IC
grid + Ploss (9)

QnD + Q
n
EV = QnSPP + Q

n
BESS + Q

LG
grid + Q

IC
grid + Qloss

(10)

Pniflow = V ni ×
∑

ni,nj∈N
V nj

(
Gninjcosθninj + Bninjsinθninj

)
(11)

Qniflow = V ni ×
∑

ni,nj∈N
V nj

(
Gninjsinθninj − Bninjcosθninj

)
(12)

Vmin < V n < Vmax ∀n = 1, 2, 3, . . . . .,N (13)

%LL l < %LL lmax ∀l = 1, 2, 3, . . . . .,L (14)

PnBESS ≥
∑NESSD

i=1
PnESSD,i (15)

EnBESS ≥
∑NESSD

i=1
PnESSD,i × EET (16)

ESPP ≥ EBESS (17)

ObjF ≤ Budgetmax (18)

Equations (9) – (12) represent the power balance and power
flow constraints of real and reactive power, respectively.
Equations (13) – (14) represent voltage deviation and line
loading constraints due to grid-tied SPP. The selection of
energy to power ratio plays a vital role in demand satisfaction
(at least the essential loads) during the expected emergency
time (EET), and equations (15 – 17) ensure the same. Finally,
equation (18) restricts the overall expenditure within themax-
imum budget of the project.

B. UNCERTAINTY MODELING
The capacity expansion of microgrids is a planning activity;
therefore, it is essential to model the uncertainty of parame-
ters like load (both general and EV) and power generation
from SPPs. The probabilistic behavior of these parameters
reflects its uncertainty. For instance, the power output from
SPP depends on the level of solar irradiance at the chosen
site. Here, the beta and normal distribution function reflect
the uncertainty of solar irradiance, general load, and EV load

as given by equations (19), (20), and (21), respectively.

PDFSPP (Gn)

=

{
1

B(α,β) × G
α−1
n × (1− Gn)β−1 if Gn ∈ [0, 1]

0 otherwise
(19)

PDFP (Sn)

=
1

√
(2π) σ [Sn]

×e
−

(
Sn − E (Sn)/√2σ [Sn]

)2

(20)

PDFEV
(
PEVn

)
=

1
√
(2π )σ [PEVn ]

×e
−

(
PEVn − E(PEVn )/√2σ [PEVn ]

)2

(21)

where Gn indicates solar irradiance, at nth location in W/m2,
B denotes the beta distribution function, α, and β represents
the shape parameters of the probability density function,
which takes values greater than zero. Sn refers to the apparent
power of general load and PEVn represents the EV load, at nth

location, respectively. E[] and σ [] represent the mean and
standard deviation, respectively.

C. CAPACITY EXPANSION MODEL
This section elaborates on the strategy to minimize the overall
expenditure over the project tenure to derive the optimal size
of SPP, BESS, and the year of investments based on wfi. The
flowchart of the proposed framework is shown in figure 2.
The steps of the proposed capacity expansion strategy are as
follows:
Step 1: Fetch the system data required for power flow

calculation, e.g., line data, bus data, the capacity of prior
installed energy resources like SPP (if any), historical profile
of general and EV load, etc.
Step 2:Derive the estimated cost of energy resources using

the cost projection model.
Step 3: Derive the maximum demand and penalty against

maximum demand using load and its pricing model. Besides,
obtain the bidding price data from the market participation
model for normal and extreme conditions to derive an effec-
tive pricing model.
Step 4: Choose an appropriate optimization algorithm and

read the parameters required for optimization.
Step 5: Develop the system to perform power flow studies

using pandapower.
Step 6: Set the iteration count.
Step 7: Generate the initial solution using a chosen opti-

mization algorithm and run the power flow analysis.
Step 8: Execute step 9 and step 10 throughout the project

tenure.
Step 9: Evaluate the objective function parameters men-

tioned in equations (2) - (8) and check for the constraints
(9) – (17). If any violation in constraints, go to step 7.
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FIGURE 2. Flowchart of the proposed framework.

Step 10: For the given value of wf i, check the value
of equation (8). If the value is greater than or equal to
wf i×ObjF , add the size of SPP & BESS generated by step 7,

its cost calculated using step 9, and store the year, else go to
the next step directly.
Step 11: Evaluate the objective function using equa-

tion (1) and check for the budget constraint mentioned in
equation (18).
Step 12:Update the local and global best solution obtained

from the optimization algorithm.
Step 13: Update the size of BESS & SPP to a new posi-

tion according to the procedure followed in the optimization
algorithm.
Step 14: Check for the maximum number of iterations and

display the optimal size of BESS&SPP and the optimal years
of investments.

FIGURE 3. Market participation model.

D. MARKET PARTICIPATION MODEL
In recent days, the market participation model for micro-
grids is getting popular. The main objective of these models
presented in the literature is to enhance the commercial and
technical benefits at themicrogrid andDSO levels. This paper
adopts a similar concept of generalized market participation
model, as shown in figure 3. Here, various microgrids form
a microgrid aggregator to communicate with DSO for both
commercial and technical transactions. The bidding process
initiated will be communicated via communication lines and
the power delivery via power lines, as shown in figure 3.
This paper proposes a bidding process addressing both nor-
mal and extreme conditions assuming that the power and
communication lines are in operation during both conditions.
This process is defined with two components, such as reg-
ular and flexible portions. The microgrids adopted for the
regular portion are subjected to a fixed price model (for
both conditions) for power production (using SPPs) and the
demand consumption as per the contract between DSO and
the microgrid aggregator. This paper considers that the role of
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FIGURE 4. Flowchart of flexible bidding portion.

the energy storage system is restricted within the nth micro-
grid for demand-side management. The microgrids espoused
for the flexible portion are subjected to the bidding process,
as shown in figure 4.

In the flexible portion, the DSO provides specific data
like power required, time duration for which the power is
required, and the start time of requirement concerning load
shifting, storage support, and power generation. For instance,
if DSO requires a specific amount of load to be shifted to
a particular interval of time (for a given day) to meet the
technical constraints, a request will be sent to the microgrid
aggregator in prior as shown in figure 4. Then, based on
the received requirement from DSO, the status of microgrid
DERs, and the condition (either normal or extreme), a bidding
price (Bp) is quoted to DSO as shown in figure 4. Here,
the bidding price for both normal (Bp,n) and extreme con-
ditions (Bp,e), is calculated based on willingness factor for
participation (wfp) and time of day factor (TODf ); where
TODf reflects whether the given time lies on peak or off-peak
condition.

III. CASE STUDIES AND RESULTS
This paper considers a real-world active microgrid of
MCAST located on an island to perform numerical experi-
ments. The system consists of two 11 kV substations SS1 and
SS2, where SS1 is connected to an external grid, and SS2 is
connected to SS1 via a 153-meter AL XLPE cable. Table 2
shows the detailed system data. This microgrid lies on an
island called Malta. In Malta, fifty percent of the energy
demand is satisfied from local power generation and the
rest from Sicily, Italy in the mainland via interconnector
by ‘Enemalta’ distribution company. This microgrid’s load
is the building load located in Blocks D, F, and J with
underground parking. The total area of MCAST Campus
shown in figure 5 covers an area of 40,000 sq.m. Presently,
the microgrid has three SPPs with an installed capacity
of 63.36 kWp, with 21.12 kWp each on Block D, J, and F,
respectively. From figure 5, it is evident that the MCAST

campus has more rooftop space to install similar SPPs.
However, to formulate a practical optimization problem,
the objective function includes land cost as one of its fea-
tures. In Figure 5, the yellow and orange box represents
substation 1 (SS1) and substation 2 (SS2), respectively. The
description of the blocks in the MCAST campus is shown
in Table 3. The terminology used in this study to represent
the HVAC system, main distribution board, pumping room,
and car parking are AC, MDB, PR, and CP, respectively. For
better understanding, the loads are represented using a jargon:
[Building]_[Type]_[Category]. Here, the category specifies
the importance of a chosen load. For instance, J_AC_NE rep-
resents the HVAC load in the J building, which comes under
the non-essential category of load. The essential loads under
the car parking distribution board (DB) represent the system’s
EV load Figure 6 shows the single line diagram of MCAST
themicrogrid. The load data, load profile of both essential and
non-essential loads, and annual average solar irradiance at
MCAST campus are shown in Figures 6, 7, 8, and 9, respec-
tively. The value of depreciation factor (Df) for SPP and
BESS over the project tenure is derived from the cost project
model presented in [31], [32].

TABLE 2. Component details of MCAST microgrid.

In general, the market participation of DSO and micro-
grid aggregator is encouraged to ensure a reliable power
supply. In this paper, the concept of the flexible market
is extended to improve system flexibility and resilience by
load shifting, energy storage support, and power generation
requirement during normal and extreme conditions. As dis-
cussed in Table 1, many researchers attempt to solve a
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problem of this kind using popular meta-heuristic algorithms.
Therefore, to identify a better suitable algorithm, popular
algorithms like PSO, WOA, Grey Wolf Algorithm (GWO),
Harris Hawks Optimization (HHO) algorithm, and BAT algo-
rithm are applied to solve the proposed framework. Table 4
shows the input parameters for optimization. Considering
the present scenario of Malta, which promotes renewable
energy solutions on the island and decreases the depen-
dency on the interconnector, this study is performed for
wfi = 0.05, 0.1 & 0.5.

TABLE 3. Description of buildings in MCAST campus.

Table 5 shows the optimization results obtained after solv-
ing the formulated problem using popular meta-heuristic
algorithms, as mentioned earlier. Figure 10 shows the conver-
gence curve of the proposed optimization obtained from pop-
ular meta-heuristic algorithms. Table 5 and figure 10 show
that PSO and GWO algorithms converge at local minima
by taking many iterations to convergence and large execu-
tion time compared to other algorithms. The optimal solu-
tion obtained from WOA, HHO, and BAT are very close to
each other. However, by comparing the number of iterations
to converge and the execution time, the HHO algorithm’s
performance is better than other algorithms. Therefore, the
optimal solution obtained from the HHO algorithm is consid-
ered for numerical experiments on the market participation
model of the proposed framework. The numerical experi-
ments performed to showcase the efficacy of the proposed
framework consider two cases such as Case I : the cus-
tomers of microgrid (DERs) opting for the regular bidding
process, and Case II: the customers of microgrid (DERs)
opting for a flexible bidding process. Further subsections
discuss the results obtained from the proposed framework
for both the cases with the market participation parame-
ters like load shifting, energy storage support and power
generation. In this study, the load shifting is assumed to
be a part of the flexible portion of the bidding process
by default.

FIGURE 5. Aerial view of MCAST microgrid.

TABLE 4. Input parameters for optimization.

TABLE 5. Comparison of optimization results among the chosen
algorithms.

A. RESULTS FROM CASE I
This case presents the results if the microgrid cus-
tomers (DERs) opted for the regular bidding process. Asmen-
tioned earlier, the regular bidding process is subjected to a
fixed price model for normal and extreme conditions. There-
fore, the effectiveness of the capacity expansion strategy lies
in the selection of wfi. Considering various values of wfi like
0.05, 0.1, and 0.5, the net cash flow during the project tenure
is shown in figure 11.

From figure 11, it is evident that for wfi = 0.5, the net cash
flow is approximately constant throughout the project tenure.
However, for wfi = 0.1, the net cash flow improves, and it
further improves for wfi = 0.05. From this, it is clear that
the payback period can be improved with proper selection of
wfi concerning the present market scenario. Figure 12 shows

120458 VOLUME 9, 2021



B. V. Venkatasubramanian et al.: Techno-Economic Framework for Optimal Capacity Expansion of Active Microgrid

FIGURE 6. Single line diagram of MCAST microgrid.

FIGURE 7. Load scaling factor of essential loads.

the steady-state performance of microgrid during the project
tenure after installation of BESS and SPP.

B. RESULTS FROM CASE II
This case presents the results if the microgrid cus-
tomers (DERs) opted for a flexible bidding process. As men-
tioned earlier, the microgrid customers (like general load) are
considered under a flexible bidding process for load shift-
ing. To perform the flexible market participation regarding
load shifting, energy storage support, and power genera-
tion, the MCAST microgrid data is considered as input.
For numerical experiments, the load data and outage data

throughout a year are taken from the MCAST microgrid,
and the size of BESS and SPP is considered from the
optimal solution derived using the proposed framework.
In addition, the values of TODf considered in this study for
both normal and extreme conditions is shown in Table 6.
Figure 13 represents the per-year outage data of the MCAST
microgrid. The outage duration considered for this study
is thirty minutes for normal conditions and three hours for
extreme condition. Figure 14 shows the load duration curve
of the MCAST Microgrid. Finally, the allowable %load
shifting is evaluated in terms of maximum demand shown
in figure 15.
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FIGURE 8. Load scaling factor of non-essential loads.

FIGURE 9. Annual average solar irradiance at MCAST campus in W/m2.

FIGURE 10. Convergence curve of proposed optimization.

The revenue generated from bidding prices for normal and
extreme conditions is calculated using TODf ,wfp,& Ep as
shown in figure 4. As mentioned earlier, the revenue with a

FIGURE 11. Net income throughout the project for various wfi: Case I.

FIGURE 12. Bus voltage profile: Case I.

flexible portion is obtained for load shifting, energy storage
support, and power generation. Here, the energy storage sup-
port from BESS is obtained for a reduced price based on the
discount rate.

120460 VOLUME 9, 2021



B. V. Venkatasubramanian et al.: Techno-Economic Framework for Optimal Capacity Expansion of Active Microgrid

FIGURE 13. Power outages in MCAST microgrid during various seasons.

FIGURE 14. Load duration curve of MCAST microgrid.

FIGURE 15. Allowable % load shifting.

In other words, the BESS will behave like a general load
for a compensating price to maintain the grid performance.
For the optimal size of BESS with an E/P ratio of 1.4 and
a discount rate of 5% & 10% during peak and off-peak

TABLE 6. Time of day factor.

TABLE 7. Monthly revenue by load shifting.

TABLE 8. Monthly revenue by power generation.

TOD during the normal condition, the revenue generated is
361.11 ¿/year. This is evaluated by considering a minimum
of one energy support request per day in a year. With the
same input values, the revenue generated per energy support
during extreme conditions is 10 ¿/support and 7 ¿/support
during peak and off-peak TOD, respectively. For the given
outage data (shown in figure 13), the revenue generated by
load shifting and power generation throughout the year for
both normal and extreme conditions is shown in Table 7
and Table 8, respectively. Here, the notation R_NP, R_NOP,
R_EP, and R_EOP represents the revenue in Euros during
peak and off-peak for normal and extreme conditions. The
revenue during extreme conditions is calculated on per day
basis during the specified month.

IV. CONCLUSION
This paper proposes an improved optimal capacity expansion
framework with a market participation model to enhance
the microgrid flexibility and resilience. The optimization
problem formulated in this framework includes the practical
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parameters like initial investments, cost of land required to
install BESS and SPP, yearly expenditure and yearly revenue,
uncertainty of SPP, general load, and EV on top of grid
performance parameters. In addition, this paper compares the
efficacy of popular meta-heuristic algorithms such as PSO,
GWO, HHO, WOA, and BAT for an optimization problem of
this kind based on convergence, execution time, and optimal
size of BESS and SPP. The results show that formulation
of optimal planning problem with capacity expansion strat-
egy based on wfi largely improves the financial benefits for
the investor by increasing the overall net cash flow during
the project tenure. Besides, the market participation model
with regular and flexible portion further enhance the revenue
generation. For instance, with the proposed flexible bidding
process, a significant amount of revenue could be generated
from load shifting, energy storage support, and power gener-
ation in both normal and extreme conditions. Concerning the
current scenario of Malta, a flexible bidding model with load
shifting and power generation model along with significant
energy storage support will be very effective in reducing the
dependency on interconnectors.
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