Please use this identifier to cite or link to this item:
Title: Generic physiological features as predictors of player experience
Authors: Martinez, Hector P.
Garbarino, Maurizio
Yannakakis, Georgios N.
Keywords: Computer games
Human-computer interaction
Issue Date: 2011
Publisher: Springer
Citation: Martinez, H. P., Garbarino, M., & Yannakakis, G. N. (2011). Generic physiological features as predictors of player experience. International Conference on Affective Computing and Intelligent Interaction, Memphis. 267-276.
Abstract: This paper examines the generality of features extracted from heart rate (HR) and skin conductance (SC) signals as predictors of self-reported player affect expressed as pairwise preferences. Artificial neural networks are trained to accurately map physiological features to expressed affect in two dissimilar and independent game surveys. The performance of the obtained affective models which are trained on one game is tested on the unseen physiological and self-reported data of the other game. Results in this early study suggest that there exist features of HR and SC such as average HR and one and two-step SC variation that are able to predict affective states across games of different genre and dissimilar game mechanics.
Appears in Collections:Scholarly Works - InsDG

Files in This Item:
File Description SizeFormat 
Generic_Physiological_Features_as_Predictors_of_Pl.pdf224.96 kBAdobe PDFView/Open

Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.