Please use this identifier to cite or link to this item:
Title: Evolving personalized content for Super Mario Bros using grammatical evolution
Authors: Shaker, Noor
Yannakakis, Georgios N.
Togelius, Julian
Nicolau, Miguel
O'Neill, Michael
Keywords: Computer games
Level design (Computer science)
Human-computer interaction
Issue Date: 2012
Publisher: Association for the Advancement of Artificial Intelligence
Citation: Shaker, N., Yannakakis, G. N., Togelius, J., Nicolau, M., & O’Neill, M. (2012). Evolving personalized content for Super Mario Bros using grammatical evolution. Artificial Intelligence and Interactive Digital Entertainment (AIIDE 12), Stanford.
Abstract: Adapting game content to a particular player's needs and expertise constitutes an important aspect in game design. Most research in this direction has focused on adapting game difficultyto keep the player engaged in the game. Dynamic difficulty adjustment, however, focuses on one aspect of the gameplay experience by adjusting the content to increase ordecrease perceived challenge. In this paper, we introduce a method for automatic level generation for the platform game Super Mario Bros using grammatical evolution. The grammatical evolution-based level generator is used to generate player-adapted content by employing an adaptation mechanism as a fitness function in grammatical evolution to optimizethe player experience of three emotional states: engagement, frustration and challenge. The fitness functions used are models of player experience constructed in our previous work from crowd-sourced gameplay data collected from over 1500 game sessions.
Appears in Collections:Scholarly Works - InsDG

Files in This Item:
File Description SizeFormat 
Evolving_Personalized_Content_for_Super_Mario_Bros.pdf605.4 kBAdobe PDFView/Open

Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.