Please use this identifier to cite or link to this item:
Title: Digging deeper into platform game level design : session size and sequential features
Authors: Shaker, Noor
Yannakakis, Georgios N.
Togelius, Julian
Keywords: Level design (Computer science)
Computer games
Issue Date: 2012
Publisher: Springer
Citation: Shaker, N., Yannakakis, G. N., & Togelius, J. (2012).Digging deeper into platform game level design : session size and sequential features. European Conference on the Applications of Evolutionary Computation, Malaga. 275-284.
Abstract: A recent trend within computational intelligence and games research is to investigate how to affect video game players’ in-game experience by designing and/or modifying aspects of game content. Analysing the relationship between game content, player behaviour and self-reported affective states constitutes an important step towards understanding game experience and constructing effective game adaptation mechanisms. This papers reports on further refinement of a method to understand this relationship by analysing data collected from players, building models that predict player experience and analysing what features of game and player data predict player affect best. We analyse data from players playing 780 pairs of short game sessions of the platform game Super Mario Bros, investigate the impact of the session size and what part of the level that has the major affect on player experience. Several types of features are explored, including item frequencies and patterns extracted through frequent sequence mining.
Appears in Collections:Scholarly Works - InsDG

Files in This Item:
File Description SizeFormat 
Digging_Deeper_into_Platform_Game_Level_Design_Ses.pdf156.7 kBAdobe PDFView/Open

Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.