Please use this identifier to cite or link to this item: https://www.um.edu.mt/library/oar/handle/123456789/59233
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFarrugia, Russell-
dc.contributor.authorGrech, Ivan-
dc.contributor.authorCamilleri, Duncan-
dc.contributor.authorCasha, Owen-
dc.contributor.authorMicallef, Joseph-
dc.contributor.authorGatt, Edward-
dc.date.accessioned2020-08-03T06:10:07Z-
dc.date.available2020-08-03T06:10:07Z-
dc.date.issued2018-
dc.identifier.citationFarrugia, R., Grech, I., Camilleri, D., Casha, O., Gatt, E., & Micallef, J. (2018). Design optimization of a dynamically flat resonating micro-mirror for pico-projection applications. Journal of Microsystems Technology, 24(5), 10.1007/s00542-018-3956-5.en_GB
dc.identifier.urihttps://www.um.edu.mt/library/oar/handle/123456789/59233-
dc.description.abstractOne of the main design limitations of resonant micro-mirrors, intended for visual projection display applications, is inertia-driven dynamic deformation. In order to achieve high scan angles, micro-mirrors used for high frequency (20–30 kHz) laser beam scanning are typically operated at resonance and in the region of their torsional modal frequency. Although the optical resolution of the projected image is defined by the micro-mirror dimensions, the scanning frequency and the maximum scan angle, significant dynamic deformation (> 1/10 of the incident wavelength) can develop and give rise to a loss in contrast between adjacent projected spots. A design optimization scheme for a one directional resonant micro-mirror intended for laser projection with XGA optical resolution is performed and presented in this study. The minimization of dynamic deformation is considered as one of the main objectives but other parameters related to micro-mirror optical performance, structural reliability and gas damping characteristics are also investigated. The optimization scheme is performed using Design of Experiments and response surface methodologies. The design process demonstrates the technical feasibility of including features, such as a gimbal structure, that improve the dynamic mirror flatness without compromising the target scanning frequency, mode separation, maximum shear stress and power consumption.en_GB
dc.language.isoenen_GB
dc.publisherSpringeren_GB
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_GB
dc.subjectMicroelectromechanical systemsen_GB
dc.subjectOptical MEMSen_GB
dc.subjectProjectorsen_GB
dc.titleDesign optimization of a dynamically flat resonating micro-mirror for pico-projection applicationsen_GB
dc.typearticleen_GB
dc.rights.holderThe copyright of this work belongs to the author(s)/publisher. The rights of this work are as defined by the appropriate Copyright Legislation or as modified by any successive legislation. Users may access this work and can make use of the information contained in accordance with the Copyright Legislation provided that the author must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the prior permission of the copyright holder.en_GB
dc.description.reviewedpeer-revieweden_GB
dc.identifier.doi10.1007/s00542-018-3956-5-
dc.publication.titleJournal of Microsystems Technologyen_GB
Appears in Collections:Scholarly Works - FacICTMN

Files in This Item:
File Description SizeFormat 
Design_optimization_of_a_dynamically_flat_resonating_micro-mirror_for_pico-projection_applications_2018.pdf
  Restricted Access
2.53 MBAdobe PDFView/Open Request a copy


Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.