

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE
EXAMINATIONS BOARD**SECONDARY EDUCATION CERTIFICATE LEVEL
2025 SUPPLEMENTARY SESSION**

SUBJECT: **Engineering Technology**
PAPER NUMBER: Synoptic – Unit 2
DATE: 4th November 2025
TIME: 8:30 a.m. to 10:35 a.m.

**THIS PAPER SHOULD BE RETURNED TO THE INVIGILATOR
AFTER THE EXAMINATION.**

For examiners' use only:

Question	1	2	3	4	5	6	7	8	Total
Score									
Maximum	6	8	8	8	8	8	12	12	70

Answer **ALL** questions in the space provided. The use of non-programmable electronic calculators is allowed.

Scenario

- An electronics company is seeking to recruit an electronics technician to assist in the repairs department.
- To assess the knowledge of applicants, the following test was designed.

Question 1**K-1 (6 marks)**

a. Categorise the different materials listed below as insulators or conductors by filling in Table 1 below.

Mercury	Porcelain	Gold	Wood
Glass	Brass	Aluminium	Ceramic

Table 1: Conductors or Insulators.

Conductors	Insulators

(2)

b. Define the term semi-conductor.

(2)

c. Two pieces of wire of equal length have different resistance.

State **TWO** other parameters that affect the resistance of a piece of wire.

6

(2)

Question 2**K-3 (8 marks)**

a. Differentiate between open and closed circuits.

(2)

b. In the space below, draw the following circuits:

i. A 3 V battery supplying a series combination of $1 \times 560 \Omega$ resistor and a $1 \times 1 K\Omega$ resistor.

(1)

ii. A 3 V battery supplying a parallel combination of a 330Ω resistor in parallel with a 680Ω resistor.

(1)

This question continues on next page.

c. Identify the series subcircuit and the parallel subcircuit in Figure 1 by referring to resistors R1, R2 and R3. Write your answers in the space provided below.

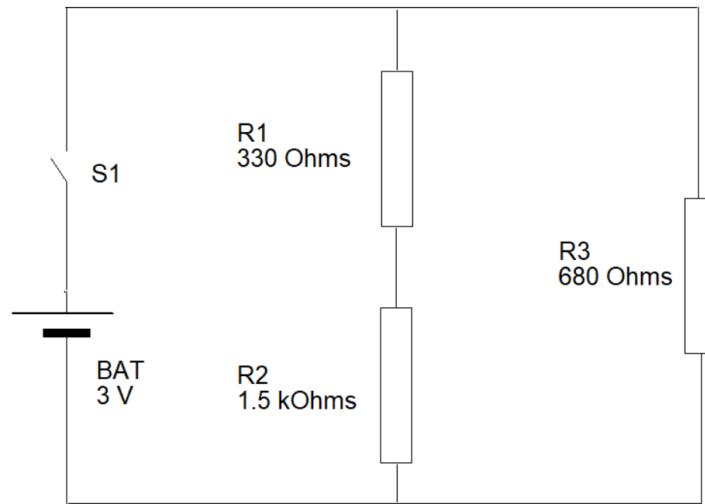


Figure 1: Series-parallel circuit

Series sub-circuit: _____ (2)

Parallel sub-circuit: _____ (2)

8

Question 3**K-5 (8 marks)**

a. Identify the **FOUR** different types of capacitors provided in Table 2.

Table 2: Different types of capacitors.

	Picture of Capacitor	Type of capacitor
i.		_____ (0.5)
ii.		_____ (0.5)

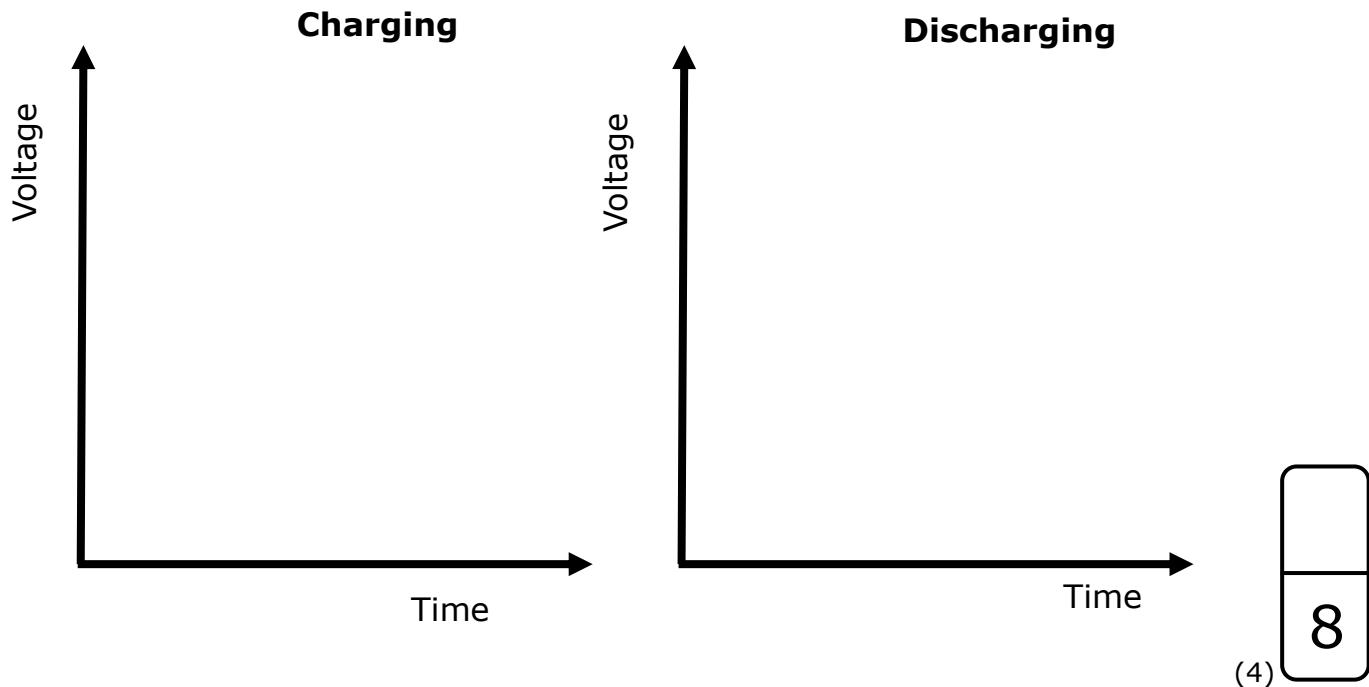
iii.	 (Source: https://www.jeccapacitor.com/)	_____ (0.5)
iv.	 (Source: https://rajshreeelectronics.com/)	_____ (0.5)

b. Rank the capacitor values listed below in ascending order starting from the smallest to the largest capacitor value.

1.5 μF , 2200 pF , 0.15 ηF , 0.033 mF , 8.2 ηF

i. _____ (0.4)

ii. _____ (0.4)


iii. _____ (0.4)

iv. _____ (0.4)

v. _____ (0.4)

This question continues on next page.

c. Sketch the voltage vs. time graphs of a charging and discharging capacitor on the graphs provided below.

Question 4

K-6 (8 marks)

a. Identify the **TWO** different signals tabulated in Table 3.

Table 3: Different types of Signals

	Signal	Name
i.		_____ (1)
ii.		_____ (1)

(Source: <https://www.circuitbasics.com/>)

b. Define **TWO** parameters of a sine wave signal, and their respective units.

i. Parameter 1: _____ (0.5)

SI Unit of Parameter 1: _____ (0.5)

ii. Parameter 2: _____ (0.5)

SI Unit of Parameter 2: _____ (0.5)

c. Label the important features of the oscilloscope shown in Figure 2.

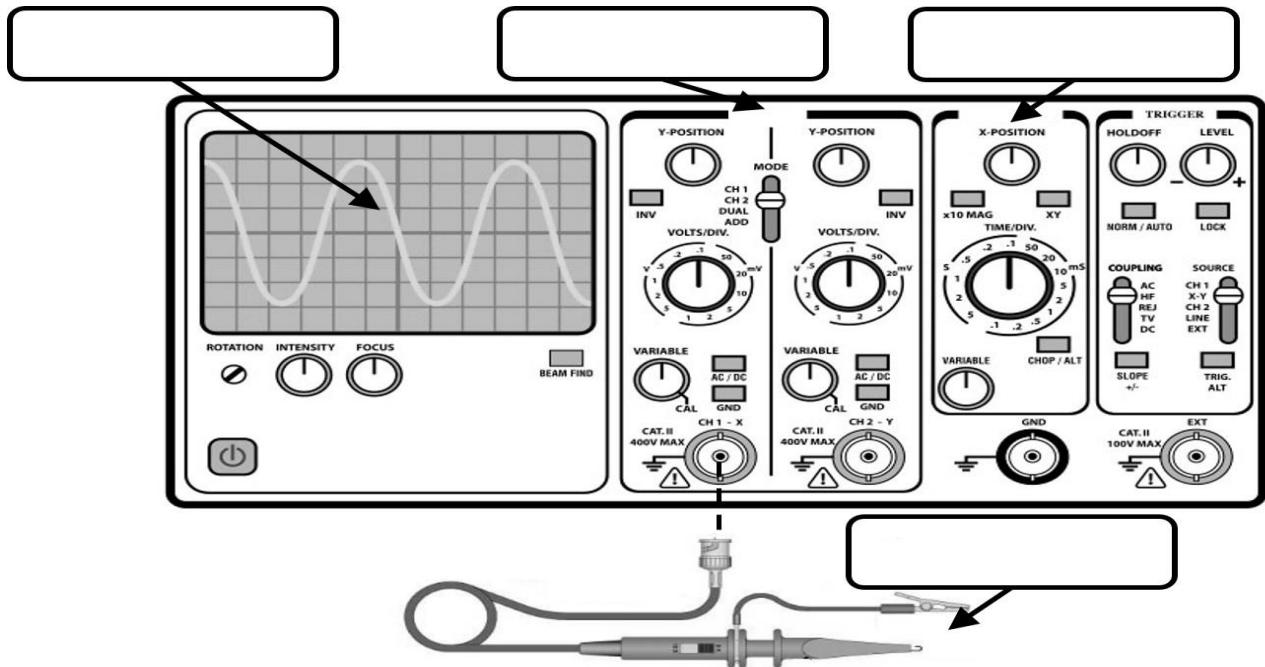


Figure 2: Oscilloscope
(Source: <https://www.wellpcb.com/> and <https://www.shutterstock.com>)

(4)

8

Please turn the page.

Question 5

K-7 (8 marks)

a. List **TWO** different types of analogue devices.

i. Analogue device 1: _____ (1)

ii. Analogue device 2: _____ (1)

b. List **TWO** characteristics for each analogue device listed in Question 5a.

i. Analogue device 1

Characteristic 1: _____ (0.5)

Characteristic 2: _____ (0.5)

ii. Analogue device 2

Characteristic 1: _____ (0.5)

Characteristic 2: _____ (0.5)

c. Describe the function of the **TWO** analogue devices listed in Question 5a.

i. Function of the Analogue device 1: _____

(2)

ii. Function of the Analogue device 2:

(2)

Question 6**K-10 (8 marks)**

a. Label the **FOUR** different tools used for electronic circuit construction given in Table 4.

Table 4: Tools.

	Tool	Name
i.		_____ (0.5)
<i>(Source: https://cpc.farnell.com/)</i>		
ii.		_____ (0.5)
<i>(Source: https://www.sparkfun.com/)</i>		
iii.		_____ (0.5)
<i>(Source: https://www.tomsonelectronics.com/)</i>		
iv.		_____ (0.5)
<i>(Source: https://circuit-electronics.com/)</i>		

This question continues on next page.

b. Identify, in the correct order, the first **FOUR** steps required to use a soldering iron effectively.

Step 1: _____
_____ (0.5)

Step 2: _____ (0.5)

Step 3: _____ (0.5)

Step 4: _____ (0.5)

Step 5: Allow the solder joint to solidify appropriately.

c. Outline the function of the following **FOUR** tools used in the process of electronic circuit construction on a PCB board.

long nose plier soldering iron side cutter solder wick

Question 7

C-1 (12 marks)

a. i. Describe the relationship between resistance, voltage and current.

_____ (2)

(2)

ii. Write down the Ohm's Law equation and the SI unit for each parameter in the equation.

_____ (2)

(2)

b. Determine the resistance using the current and voltage measurement of a resistor under test shown in Figure 3. Show all your workings.

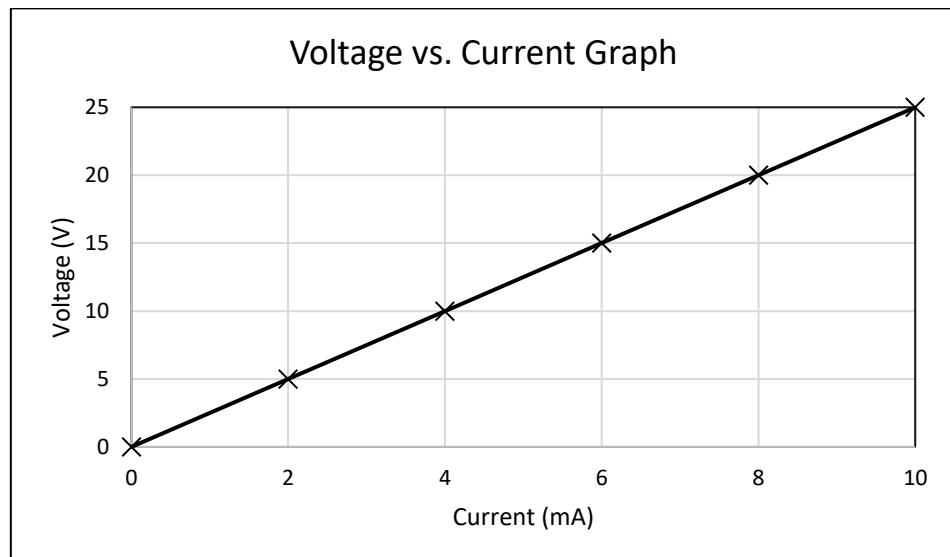


Figure 3: Voltage vs Current graph of a resistor

This question continues on next page.

(4)

c. The LED shown in the circuit in Figure 4 requires 2V and 20mA to operate in its optimal state. Calculate the value of resistance R1 in the circuit. Show all your workings.

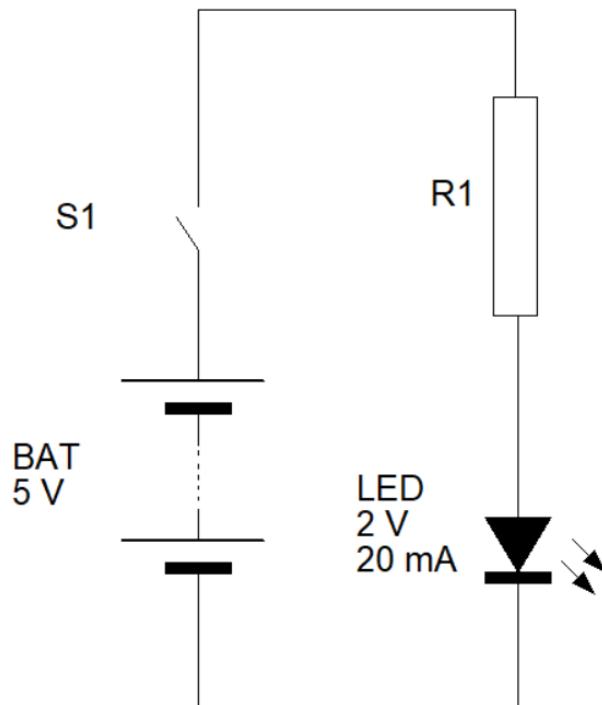


Figure 4: Circuit with missing unknown resistance R1

12

(4)

Question 8**C-4 (12 marks)**

a. List **FOUR** different types of Logic Gates and draw their respective symbols in the respective column in Table 5. (4)

b. Write the Truth Tables of the **FOUR** Logic Gates selected in Question 8(a) in the respective column in Table 5. (4)

Table 5: Logic Gates.

	Name of Logic Gate	Symbol	Truth Table		
i.			Input 1	Input 2	Output
			0	0	
			0	1	
			1	0	
			1	1	
ii.			Input 1	Input 2	Output
			0	0	
			0	1	
			1	0	
			1	1	
iii.			Input 1	Input 2	Output
			0	0	
			0	1	
			1	0	
			1	1	
iv.			Input 1	Input 2	Output
			0	0	
			0	1	
			1	0	
			1	1	

This question continues on next page.

c. Determine the output of the multi-stage logic circuit shown in Figure 5. Show all your working in the Truth Table (Table 6) given below.

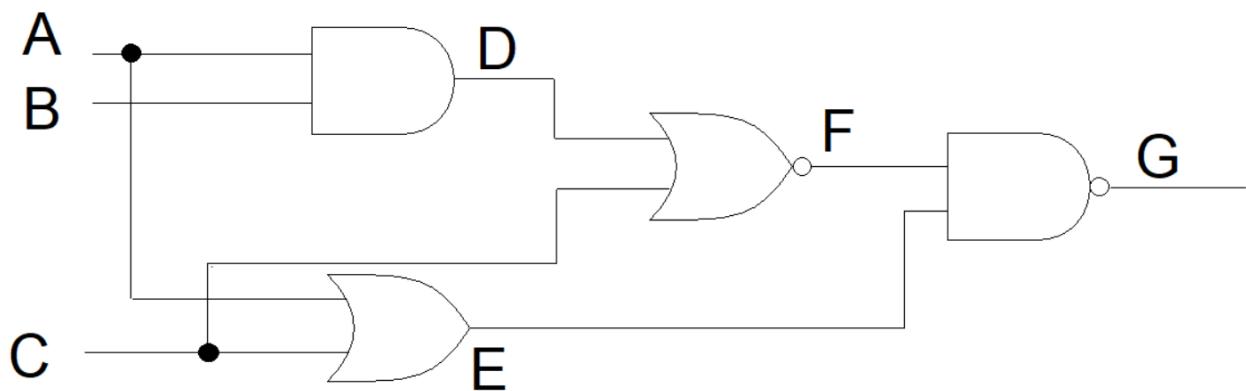


Figure 5: Circuit 3

Table 6: Truth Table

A	B	C	D	E	F	G
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

(4)

12

Blank Page

Blank Page