

Specimen Papers SEC 45 Core Science

Table of Contents

Specimen Assessments: Controlled Paper Level 1-2	3
Specimen Assessments: Marking Scheme for Controlled Paper Level 1-2	16
Specimen Assessments: Controlled Paper Level 2-3	20
Specimen Assessments: Marking Scheme for Controlled Paper Level 2-3	33

Specimen Assessments: Controlled Paper Level 1-2

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

SECONDARY EDUCATION CERTIFICATE LEVEL SAMPLE PAPER

SUBJECT: Core Science PAPER NUMBER: Level 1 – 2

DATE:

TIME: 2 Hours

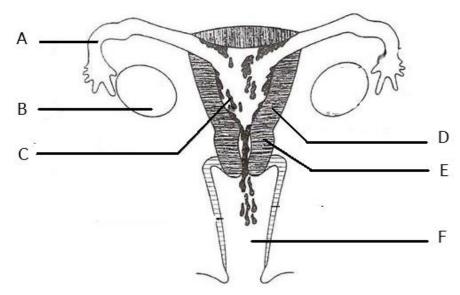
Directions to Candidates

- The use of electronic calculators is permitted.
- You are requested to show your working and to write the units where necessary.

Useful information

- Standard temperature and pressure (stp): 0 °C and 1 atm
- The molar volume for gases at stp = 22.4 dm³
- A Periodic Table which includes the symbol, the name, the atomic number and the relative atomic mass of each element, is printed on the back of this booklet.
- When necessary, take g, acceleration due to gravity, as 10 m/s².

Useful equations


$\rho = \frac{m}{V}$	v = f\lambda	Q = m c Δθ	
$Speed = \frac{Distance}{Time}$	Unbalanced force = ma	W = m g	momentum = m v
v = u + a t	$s = u t + \frac{1}{2} a t^2$	$v^2 = u^2 + 2 a s$	$s = (u + v)\frac{t}{2}$
Q = I t	V = I R	P = I V	E = Pt
$R_{total} = R_1 + R_2$	$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2}$	-	output energy transfer nput energy transfer
Area of a triangle =	$\frac{1}{2}$ b h Area of a trape.	$zium = \frac{1}{2} (a + b) h$	Area of a circle = πr^2

List of polyatomic ions and their charges	
Name	Formula
Ammonium	NH ₄ ⁺
Nitrate	NO ₃ -
Sulfate	SO ₄ ²⁻
Carbonate	CO ₃ ²⁻
Hydrogencarbonate	HCO₃ ⁻
Hydroxide	OH-

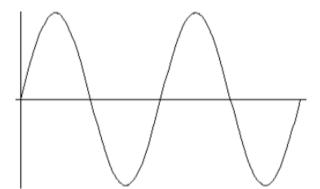
Answer ALL questions in ALL sections.

SECTION A: This section carries 40 marks.

1. The following diagram represents the female reproductive system.

_	NI		A [
a.	wame	structures	A - F

A	_ D
B -	E
_	_
C	_ F


(6)

b. Name the stage of the menstrual cycle that the diagram above is representing. Explain what happens during this stage.

	Stage -	11	١
•	Stage	(τ	•)

(Total: 8 marks)

2. The following is a diagram of a wave.

a. Name this type of wave.

_____(1)

b. On the diagram above, mark and label:

ii. the amplitude. (1)

c. Give **TWO** examples of this type of wave.

(2)

d. John is enjoying his walking holiday in the mountains when there is a thunderstorm. He sees the flash of light first, then hears the sound of thunder.

i. Why does John see the light before he hears the thunder?

_____(1)

ii. Why does John hear a second sound of thunder?

_____(1)

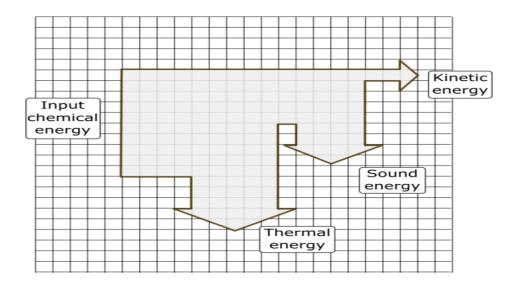
iii. Why is the second sound quieter than the first?

____(1)

(Total: 8 marks)

3. a. i. Air is a mixture of gases. Name **ONE** component and give its percentage in air.

Component: _____ (1)


Percentage: (1)

ii. Name ONE pollutant present in the atmosphere.	(1)
b. Oxidation and reduction can be defined in more than one	
i. Define oxidation and reduction in terms of oxygen and	hydrogen.
Oxidation:	
	(1)
Reduction:	
	(1)
ii. Define oxidation and reduction in terms of exchange	of electrons.
Oxidation:	
Reduction:	(1)
	(Total: 6 marks)
4. Below are two electrical circuits.	
Diagram 1 B	Diagram 2
A C	
a. Which components do A, B and C represent?	
A	
В	
C	(3)
b. Name the arrangement of the bulbs in Diagram 2	(1)
c. A hair dryer transfers 48,000 J of energy in one minute.	What is the power rating of the dryer?
	(2)

(Total: 6 marks)

5.	a. A	solution is composed of a solute and a solvent.	
	i.	Give a suitable example of a solute and its solvent in a solution	n.
		Solute:	(1)
		Solvent:	(1)
	ii.	Explain what is meant by the solubility of a substance.	
			(2)
b.	i.	Explain how catalysts affect chemical reactions.	
			(1)
	ii.	Name ONE other factor that affects chemical reactions.	
			(1)
			(Total: 6 marks)
6.		ar energy and crude oil are examples of renewable and no ewable sources of energy respectively.	n- Oil Oil
a.	i. Gi	ive ONE disadvantage of a renewable source of energy.	(1)
	ii. G	Give ONE advantage of a non-renewable source of energy.	(1)
			(1)
	iii.	Give ONE example of how fossil fuel consumption can be reduce	
		·	(1)

b. This Sankey diagram shows the energy input and output for an old diesel car engine.

In the above Sankey diagram every grid represent 10KJ (Joules). Use the grid to calculate the following:

- i. total input (chemical) energy; ______(1)
- ii. total output energy. ______(2)

(Total: 6 marks)

SECTION B: This section carries 15 marks.

- 7. Read the following passage and answer **ALL** the questions that follow.
- Untreated sewage is sometimes released in the sea. This causes changes in the habitat and also effects the marine community. Seagrasses will be more shaded and will have a reduced capacity to perform photosynthesis.

Changes in the biotic community can be used to assess the environmental status of a given babitat. These changes can occur due to an increase or a decrease in pollution levels.

When raw sewage stopped being poured in Wied Għammieq in 2011, a decrease in organic pollution and nutrient load to the marine waters in its vicinity was recorded. The bathing water quality classification of the area was changed from "Sufficient" to "Excellent".

Some time ago another study was conducted at Wied Għammieq. Four locations were selected.

10 Two quadrats were sampled at each of the four sites and studied.

- a. Seagrasses perform photosynthesis to produce food. This food is stored as starch in the leaves.
 - i. Write a word equation to summarise the process of photosynthesis.

	(3)
ii. Name the chemical that tests for the presence of starch in sea grass.	
	(1)

iii. Identify the colours obtained when the chemical named in part a.ii. is in the presence / absence of starch.

•	Presence of starch -	 (1)
		` ,

b. Name the ecosystem that is being described in the passage above.

(1)

c. Complete the following table to list **TWO** biotic and **TWO** abiotic components of the ecosystem named in part b.

Biotic Component	Abiotic Component

(4)

		(2)
e.	What are "quadrats" (line 10)?	
		(2)
u. —	Explain the meaning of the term "habitat" in line 1.	

SECTION C: This section carries 45 marks.

Answer ALL questions in this section.

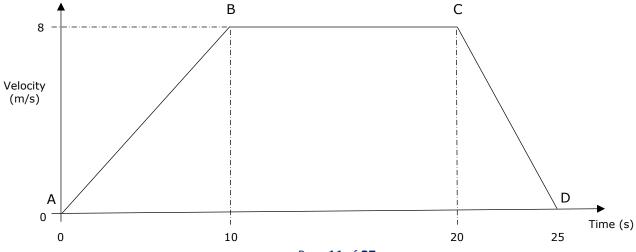
8. a. i. State the meaning of the terms scalar quantity and vector quantity.

Scalar quantity:	(1
Vector quantity:	(1)

ii. Complete the following table by marking with an 'X' whether each quantity is a scalar or a vector. (The first one has been done for you.)

Quantity	Scalar	Vector
Length	x	
Mass		
Weight		
A distance of 10 m to the left		
Velocity		

b. i. State whether the following statements are True (T) or False (F).


Weight is measured in kilogrammes (kg).
 (2)

(2)

ii. Find the weight of an object of mass 20 kg.

(2)

c. The following plot shows the journey of a car over a journey of 25 s.

Page **11** of **37**

i. The car moves for 25 s. Indicate wh	at happens in section AB	, section BC and section CD of the
plot.		443
Section AB:		(1)
Section BC:		(1)
Section CD:		(1)
ii. Calculate the acceleration of the car	in the first 10 s.	
		(2)
iii. If the mass of the car is 500 kg, find	its momentum in the sec	ction BC.
		(2)
		(Total: 15 marks)
9. a. The presence of metals in compounds $% \left(1\right) =\left(1\right) \left(1$	can be identified by carry	ring out a flame test.
i. Outline the procedure to carry out a fla	me test.	
		(2)
ii. Flame tests were carried out on four s	samples labelled A, B, C a	and D. The results were as follows:
Sample A – lilac; Sample B – apple gre	•	
the metal present in each of the four s	samples.	
Sample A:	Sample B:	
Sample C:	Sample D:	(4)
b. A mixture of sand and water can be separ	rated by filtration Draw:	a lahelled diagram of the apparatus
used, indicating the filtrate and the residu	,	

(1)
(2)
(Total: 15 marks)
get sick.
(4)
(1)
(1)
(1)
(1)
(1)
(1)
(1)

	(Total: 15	marks)
		(2)
	Explain why a person will not get the emeken pox twice.	
d. I	Explain why a person will not get the chicken pox twice?	
	diagram showing the steps involved.	(3)
C.	When pathogens manage to enter our body it is up to the white blood cells to remove them	

END OF PAPER

PERIODIC TABLE OF THE ELEMENTS

9

S

3

4 He Helium 2	20 Ne Neon 10	40 Ar Argon 18	84 Kr Krypton 36	131 Xe Xenon 54	222 Rn Radom 86
	19 Fluorine	35.5 CI Chlorine 17	80 Br Bromine 35	127 I Iodine 53	210 At Astatine 85
	16 O Oxygen 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 Po Polonium 84
	14 N Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic 33	Sb Antimony 51	209 Bi Bismuth 83
	12 C Carbon 6	28 Si Silicon 14	73 Ge Germanium 32	119 S n Tin 50	207 Pb Lead 82
	11 B Boron 5	27 Al Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81
			65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80
			63.5 Cu Copper	108 Ag Silver 47	197 Au Gold 79
			59 Ni Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78
			59 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77
$egin{array}{c} 1 \\ egin{array}{c} \mathbf{H} \\ ext{Hydrogen} \end{array}$			56 Fe Iron 26	101 Ru Ruthenium 44	190 Os Osmium 76
			Min Manganese 25	99 Tc Technetium 43	186 Re Rhenium 75
			52 Cr Chromium 24	96 99 Mo Molybdenum Technetium 42 43	184 W Tungsten 74
			$\begin{array}{c} 51 \\ \mathbf{V} \\ \text{Vanadium} \\ 23 \end{array}$	93 Nb Niobium 41	181 Ta Tantalum 73
			48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Haffnium 72
			45 Sc Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57
	9 Be Beryllium 4	24 Mg Magnesium 12	40 Ca Calcium 20	Sr Strontium 38	137 Ba Barium 56
	7 Li Lithium 3	23 Na Sodium 11	39 K Potassium 19	85 Rb Rubidium 37	133 Cs Caesium 55
ı					

Key: X relative atomic mass SYMBOL Name

b atomic mass atomic mass atomic mass

Specimen Assessments: Marking Scheme for Controlled Paper Level 1-2

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

SECONDARY EDUCATION CERTIFICATE LEVEL SAMPLE PAPER MARKING SCHEME

SUBJECT: Core Science
PAPER NUMBER: Level 1 – 2

DATE:

TIME: 2 Hours

Question		ion	Suggested Answer		Remarks
1.	_		A – Fallopian tube / oviduct	1	
			B – Ovary	1	
			C – Endometrium / lining of uterus	1	
			D – Uterus / wall of uterus	1	
			E – Cervix	1	
			F - Vagina	1	
	b.		Stage: Menstruation	1	
			Explanation: The endometrium is shed from the vagina	1	
			Total	8	
2.	a.		Transverse wave	1	
			Wavelength	2	
	c.		Water / ocean waves, light waves	2	
	d.	i.	Light waves travel faster than sound waves	1	
		ii.	This is because sound waves are reflected by the mountains producing an echo.	1	
		iii.	This is because at such large distances there are 'losses' / unwanted energy transfers in energy	1	
			Total	8	
3.	a.	i.	Any component	1	
٠.		•	and its respective percentage	1	
		ii.	Any acceptable answer	1	
	b.	i.	Oxidation: addition of oxygen; loss of hydrogen	1	
			Reduction: loss of oxygen; addition of hydrogen	1	
		ii.	Oxidation: loss of electrons; Reduction: gain of electrons	1	
			Total	6	

4	1_		A 147:	-	1
4.	a.		A. Wire	1	
			B. Cell / battery	1	
			C. Light bulb	1	
	b.		Parallel	1	
	c.		Power = Energy / time		
			= 48000 / 60	1	
			= 800 W	1	
			Total	6	
			1000		
5.	a.	i.	Any solute	1	
٥.	a.	١.			
			and respective solvent	1	Dada a 1
		ii.	The maximum amount of solute that can dissolve in a certain	2	Reduce 1 mark for
			amount of solvent or solution at a certain temperature.		
					each
					parameter left out
	b.	i.	A catalyst is a substance that shanges/alters the rate (speed) of	1	leit out
	Ь.	1.	A catalyst is a substance that changes/alters the rate (speed) of	1	
			a chemical reaction.		
		ii.	Temperature or surface area	1	
			Total	6	
6.	a.	i.	Any valid disadvantage	1	
		ii.	Any valid advantage	1	
		iii.	- Reduce, reuse, recycle, buying products with minimal	1	Any one or
			packaging will help to reduce waste		equivalent
			- Use less heat and air conditioning		to
			- replace your light bulbs with energy efficient ones		
			- drive less and drive smart		
			- buy energy-efficient products		
			- use less hot water		
	ļ	ļ.,	- Switch OFF appliances when not in use		
	b.	i.	100 kJ	1	
		ii.	100 kJ	2	
			Total	6	
7.	a.	i.			
			light energy		
			:arbon dioxide + water	3	
			chlorophyll		
			cinor opinjii		
		ii.	Iodine	1	
 	\vdash	iii.	Blue / Blue-black	1	
		1111 -	·		
	 -	1	Yellow / Yellow-brown	1	
	b.	1	Marine / sea-water ecosystem	1	
	c.				
			Biotic Component Abiotic Component	4	
			Sea grass/alga/plankton Sunlight/pH/salinity		
1	1	1	Fish/sea urchins/bacteria Water currents/nutrients		

	d.		A habitat is a place where an organism or a community of organisms live				2	
е	€.		Frames in the form of squares that are used in fieldwork/sampling studies				2	
			Total				15	
8. a	Э.	i.	Scalar: magnitude/size only				1	
			Vector: magnitude/size and direction				1	
		ii.	Quantity	Scalar	Vector			
			Length	X				
			Mass	X			1/2	
			Weight		Х		1/2	
			A distance of 10 m to the left		Х		1/2	
			Velocity		X		1/2	
r).	i.	False		Λ		1/2	
	٠.	١.	True				1/2	
			False				1/2	
			False				1/2	
		ii.	$W = m \times g$					
			$= 20 \times 10$				1	
			= 200N				1	
С	· ·	i.	AB – Acceleration				1	
			BC - no acceleration / constant velocity				1	
			CD – deceleration				1	
		ii.	Acc = gradient					
			= (8-0) / (10-0)					
			= 8/10				1	
			$= 0.8 \text{m/s}^2$				1	
		iii.	$P = m \times v$				_	
			$= 500 \times 8$				1	
			= 4000 kgm/s				1	
			Table				15	
			Total					
9. a	€.	i.	- Dip a clean wire loop into a sample of tested	the comp	ound bein	g	1	
			- put the loop into the edge of the a Bu	nsen burn	er blue fla	me	1	
		ii.	A – Potassium			-	1	
			B – Barium				1	
			C – Lithium				1	
			D – Calcium				1	

	b.		Glass Funnel Filter Paper Solid Residue 2 marks for diagram 2 marks for labelling 1 mark for residue 1 mark for filtrate			
	c.	i.	Chromatography		1	
		ii.	The more soluble the component it is, the further it moves		1	
			The various components separate into different spots		1	
			Total		15	
10.	a.		Air, water, food, contact (body fluids), animals		4 6	Any correct four
	b.		Skin, mucus and cilia in respiratory tract Tears Acid in stomach - prevent entry of pathogens			
	c.		microbes white blood cell microbes are surrounded white blood cell has digested the microbes		3	
			white blood cell white blood cell			
	d.		Once the body learns how to fight the disease it will remembe If the body is invaded again, it will quickly produce antibodies		1	
			and stop the disease before it infects the body.	•	1	
			,		-	
			Total		15	

Specimen Assessments: Controlled Paper Level 2-3

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE

EXAMINATIONS BOARD

SECONDARY EDUCATION CERTIFICATE LEVEL SAMPLE PAPER

SUBJECT: Core Science
PAPER NUMBER: Level 2 - 3

DATE:

TIME: 2 Hours

Directions to Candidates

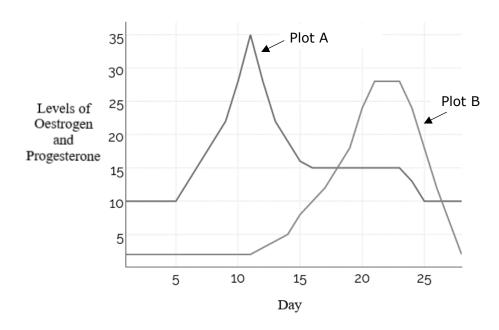
- The use of electronic calculators is permitted.
- You are requested to show your working and to write the units where necessary.

Useful information

- Standard temperature and pressure (stp): 0 °C and 1 atm
- The molar volume for gases at stp = 22.4 dm³
- A Periodic Table which includes the symbol, the name, the atomic number and the relative atomic mass of each element, is printed on the back of this booklet.
- When necessary, take g, acceleration due to gravity, as 10 m/s².

Useful equations

$\rho = \frac{m}{V}$	v = f\lambda	Q = m c Δθ	
$Speed = \frac{Distance}{Time}$	Unbalanced force = ma	W = m g	momentum = m v
v = u + a t	$s = u t + \frac{1}{2} a t^2$	$v^2 = u^2 + 2 a s$	$s = (u + v)\frac{t}{2}$
Q = I t	V = I R	P = I V	E = P t
$R_{total} = R_1 + R_2$	$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2}$		output energy transfer nput energy transfer
Area of a triangle =	$\frac{1}{2}$ b h Area of a trape.	$zium = \frac{1}{2} (a + b) h$	Area of a circle = πr^2


List of polyatomic ions and their charges				
Name	Formula			
Ammonium	NH ₄ ⁺			
Nitrate	NO ₃ -			
Sulfate	SO ₄ ²⁻			
Carbonate	CO ₃ ²⁻			
Hydrogencarbonate	HCO₃⁻			
Hydroxide	OH ⁻			

Answer ALL questions in ALL sections.

SECTION A: This section carries 40 marks.

1. The following graph represents the levels of the hormones oestrogen and progesterone in a female having a menstrual cycle of 28 days.

Levels of Oestrogen and Progesterone during a 28 day menstrual cycle.

a. Name the gland that produces the hormones oestrogen and progesterone.

_____(1)

b. From the graph above, state the plot that indicates the change in level of progesterone.

_____(1)

c. State what happens to the progesterone level when a female becomes pregnant. Give **ONE** reason for your answer.

(2)

d. Name a birth control method that may prevent sexually transmitted infections (STIs).

___(1)

e. Name **ONE** viral sexually transmitted infection.

____(1)

(Total: 6 marks)

2. A mosquito beats its wings approximately 360,000 times in 1 minute and flies at a speed of 6.5 m/s. The speed of sound of wing beats is 330 m/s. a. Calculate: i. the frequency of the sound waves produced by the mosquito; _ (2) ii. the wavelength of the sound wave produced by the mosquito; _____(1) iii. the time taken for a mosquito to travel 1500 m. __ (1) b. A dog whistle is a training tool that has been used for a very long time. It has a piercing sound which is emitted at a frequency of 23,000 Hz to 54,000 Hz and is carried a long distance. This makes it a great tool if you need to control your dog at a distance or if you need to get your dog's attention in a noisy situation. i. Explain how sound travels from the whistle to the dog. ____(2) ii. Some people might complain that if many dog owners use these whistles in parks or other open spaces, they would disturb the tranquillity of these areas with all the noise produced. Do you agree? Explain.

(Total: 8 marks)

(2)

3.	. a. i. Name an atmospheric pollutant.	
		(1)
	ii. Describe ONE effect of the pollutant mentioned in part a. i. on ecosystems and/or l	biodiversity.
		(1)
b.	. i. Define oxidation and reduction in terms of exchange of electrons.	
		(1)
	ii. Consider the chemical reaction: $C + O_2 \longrightarrow CO_2$	
	Using oxidation numbers, deduce which element is being oxidised and which element is	being reduced.
_		
	iii. Give the valency of carbon in CO ₂ . Show your reasoning.	
		(1)
	(та	otal: 6 marks)
4.	. The hair dryer shown has a plastic casing and a heating element of rating 900 W, 240 V.	
a.	. Calculate the current flowing through the heating coil when it is being used.	
	(2)	
b.	. Calculate the cost of running the dryer for 30 minutes if 1 kWh costs 17 c.	
_		(3)
c.	A circuit breaker is a safety feature found in homes. Explain its function.	
		(1)

(Total: 6 marks)

5. a. Solution A was prepared by dissolving 50 g of common salt (sodium chloride) in 500 mL of solution,

while solution B was prepared by dissolving 64 g of common salt in 1 L of solution.	
i. Calculate the concentration of solution A in g/L.	
	(1)
ii. Calculate the concentration of solution B in g/L.	
	(1)
iii. Name the more concentrated solution.	(1)
b. Sketch the reaction profile of an exothermic reaction. Indicate the activation energy on the p	
6. Solar energy and crude oil are examples of renewable and non-	marks)
renewable sources of energy respectively.	O.
f. i. Give ONE disadvantage of a renewable source of energy.	
ii. Give ONE advantage of a non-renewable source of energy.	
(1)	

is used to heat the water. 300 J o	is used to	energy		surrou					
			idirigs.	Juiroui	Juc Circ			STAGE	rmai energy is was
						, , , , , , , , , , , , , , , , , , , ,	211G 10	occu c	imar energy is mas
									П
								++-	H
			4: 4:					-	
							\vdash	+	
								++	
							\vdash		

Page **25** of **37**

(Total: 8 marks)

SECTION B: This section carries 15 marks.

7. Read the following passage and answer **ALL** the questions that follow.

Influence of Sewage Effluent on Rocky Shore Biotic Assemblages

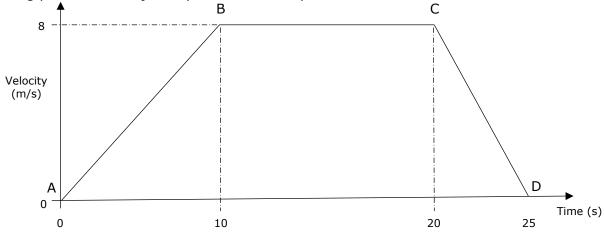
- 1 Sewage is defined by the United Nations Environment Programme as a collection of solids, organic matter, nutrients, pathogens, toxic organic chemicals, heavy metals and fats, oils and grease.
- When sewage is released in the sea ecosystem, it causes changes in the habitat such as the increase in nutrients and the introduction of particulates in the sea. It also effects the marine community such as the shading of seagrasses which lead to a reduced capacity to perform photosynthesis, and the promotion of eutrophic conditions due to the high amounts of nutrients.
 - Changes in the biotic community can be used to assess the environmental status of a given habitat. These changes can occur due to an increase or a decrease in pollution levels.
- Following the decommissioning of the Wied Għammieq raw sewage outfall in 2011, a decrease in organic pollution and nutrient load to the marine waters in its vicinity was recorded. The bathing water quality classification of the area was changed from "Sufficient" to "Excellent".

Four years after the cessation of the raw sewage discharge, another study was conducted. Four locations at different distances from the previous sewage outfall site at Wied Għammieq were selected. Two quadrats were sampled at each of the four sites and studied.

Adapted extract from Attard M., Influence of Sewage Effluent on Rocky Shore Biotic Assemblages; in Biology Symposium Abstracts 2016, UOM a. Explain the meaning of the term "ecosystem" in line 4.

_	(2)
b.	List TWO ways by which the discharge of untreated sewage may affect the abiotic component of the marine ecosystem.
_	(2)
c.	The release of untreated sewage "lead[s] to a reduced capacity to perform photosynthesis" (lines 6-7). i. Write a word equation to summarise the process of photosynthesis.
_	ii. Explain why untreated sewage reduces the capacity of seagrass to photosynthesise.

(2)


d.	What are "quadrats" (line 15)?
	(1)
e.	How can quadrats be used in field studies?
	(2)
f. —	Predict the changes in the populations of bacteria and fish when comparing studies prior to and after the cessation of raw sewage input at Wied Għammieq. Explain your predictions.
	(4)

(Total: 15 marks)

SECTION C: This section carries 45 marks.

Answer ALL questions in this section.

8. a	a. i. Explain how the mass and weight of an object are related.
	(2)
i	i. The weight of an object of given mass on Earth is different from its weight on the moon, while it has no weight in space. Explain.
	(2)
i	ii. Find the weight (on Earth) of an object of mass 20 kg.
	(2)
b.	The following plot shows the journey of a car over a period of 25 s. B C

- i. Section AB shows that the car accelerates in the first 10 s. Describe, in terms of acceleration, what happens in:
 - section BC;

(1)

• section CD.

__ (1)

ii. Calculate the acceleration of the car in the first 10 s.	
	(2)
iii. Find the total distance travelled during the whole 25 s of the car's journey.	
iv. Calculate the average velocity of the car.	
	(2)
(Tot	al: 15 marks)
9. a. The presence of metals in compounds can be identified by carrying out a flame test	
i. Outline the procedure to carry out a flame test.	
	(2)
ii. Flame tests were carried out on four samples labelled A, B, C and D. The results w Sample A – lilac; Sample B – apple green; Sample C – crimson red. Identify the m each of the following samples:	
Sample A:	
Sample B:	
Sample C:	(3)
b. A sample of ink can be analysed to see its components.	, ,
i. Name the technique that can be used.	
	(1)
ii. Draw a labelled diagram of the apparatus used.	(2)

iii. Explain br	ii. Explain briefly how results can be interpreted. (2) here is simple and fractional distillation. i. What is the purpose of the process of distillation? (1) ii. Give ONE example where simple distillation and ONE example where fractional distillation are used.				
					(2)
c. There is simple	e and fractional o				(2)
i. What is the	e purpose of the	process of distillation	on?		
					(1)
ii. Give ONE used.	example where	simple distillation	and ONE exan	nple where fraction	nal distillation are
					(2)
iii. Distinguish	between instan	ces where simple ar			· · · · · · · · · · · · · · · · · · ·
					(2)
				(1	Γotal: 15 marks)
10. The table sho		age of protein, fat a	nd minerals fo	und in the same m	nass of meat from
	Meat	Protein (%)	Fat (%)	Minerals (%)]
	Beef	19.0	17.0	0.9	-
	Chicken	21.0	2.5	1.1	
	Lamb	17.5	20.0	1.0	
	Pork	16.0	25.0	0.9	
	Rabbit	21.0	3.5	1.5	
a. i. Which mea	t contains the le	east protein?			(1)
ii. Calculate h	now many gram	mes of protein are p	present in 1 kg	of rabbit meat. Sh	
b. Which type o	f meat would pr	ovide the most enei	rgy?		(2)
					(1)

	1					
	2					
Na	ame the mineral f	ound in mea		ded to make haem		
St	arch and glucose	are carbohy		in living organism		
of	the properties of	starch and	glucose. In	sert a tick (✓) if th	ne property a	applies or a cross
do	es not.					
	Carbohydrate	Soluble in water	Found in animal cells	Broken down by carbohydrase	Small molecule	Tests positive with iodine solution
	Starch					
	Glucose					
ive	ONE function of	the followin	g terms:			
i. sa	aliva;					
ii. b	ile;					
iii. 1	eeth.					

PERIODIC TABLE OF THE ELEMENTS

0

9

S

He He He He He 14 16 19 20 N O F Ne Nitrogen Photrine Neon 7 8 9 10 8 9 10 9 S CI Ar Phosphorus Sulfur Chorine Argan 1 18 18 18 1 18 18	79 80 Se Br Selenium Bromine 34 35	128 127 131 Te I Xe Tellurium Iodine Xenon 52 53 54	At Rn Astatine Radon 85 86
16 Oxygen 8 8 8 Sulfur 15 15	79 Selenium 34		
		28 [Fe urium 52	_
14 N N 7 7 7 7 P P P Sophorus 15		1 Tell	210 Po Polonium 84
Z A	75 AS Arsenic 33	Sb Antimony 51	209 Bismuth 83
12 Carbon 6 Silicon Silicon 14		Sn Tin 50	207 Pb Lead 82
111 Boron 5 27 All Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81
	65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80
	63.5 Cu copper 29	108 Ag Silver 47	197 Au Gold 79
	59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78
	59 Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77
Hydrogen 1	56 Fe Iron 26	Ru Ruthenium 44	190 Os Osmium 76
	MIn Manganese 25	99 Technetium 43	186 Re Rhenium 75
	S2 Cr Chromiu	96 Molybden 42	184 W Tungsten 74
	51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73
	48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafinium 72
		89 Y Yttrium 39	
7 9 Lithium Beryllium 3 4 23 24 Na Mg Sodium Magnesium 11 1	40 Ca Calcium 20	Sr Strontium 38	137 Ba Barium 56
Lithium 3 3 8 Na Sodium 11	39 K Potassium 19	85 Rb Rubidium 37	133 Csestium 55

Key: X SYMBOL Name
b atomic mass symbol atomic number

Specimen Assessments: Marking Scheme for Controlled Paper Level 2-3

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

SECONDARY EDUCATION CERTIFICATE LEVEL SAMPLE PAPER MARKING SCHEME

SUBJECT: Core Science
PAPER NUMBER: Level 2 - 3

DATE:

TIME: 2 Hours

Qu	est	ion	Suggested Answer	Marks	Other Remarks	
1	а		Ovary	1		
	b		Plot B	1		
			Progesterone level increases	1		
	С		It maintains the lining of the uterus until birth	1		
	d		Abstinence / Use of a condom	1		
	е		HIV / AIDS / Genital warts	1		
			Total	6		
2	а	i	360000 / 60	1		
			6000 Hz	1		
		ii	V = f x \(\)			
			$330 = 6,000 \times \Lambda; 0.055 \text{ m} = \Lambda$	1		
		iii	S = d/t			
			6.5 = 1500 / t; 230.8 s = t	1		
			Sound travels in air as longitudinal waves in a series of			
	b	İ	compressions and rarefactions which travel in the same direction as	1		
			the wave.	1		
			No,	1		
		ii	this sound is well above the audible range in humans which ranges from 20Hz to 20000Hz	4		
			110111 20112 to 20000112	1		
			Total	8		
			Total	0		
			Any one atmospheric pollutant (oxides of nitrogen; oxides of sulfur;			
3	а	i	particulate matter; or ozone in the lower atmosphere)	1		
		ii	ONE corresponding effect	1		
	b	i	Oxidation = loss of electrons; reduction = gain of electrons	1		
	Ť		$C (O.N. = 0) + O_2 (O.N. = 0) > C (O.N. = +4) O_2 (O.N. = -2)$			
		ii	C = oxidised, O.N. increases from 0 to +4	1		
			O = reduces, O.N. decreases from 0 to -2	1		
		iii	Valency of $C = 4$ (1), $O = C = O$ where C has four bonds	1		
			Total	6		

				1		
			$P = I \times V$			
4	а		$900 = I \times 240$	1		
			3.75 A = I	1		
			E = P x t			
			$E = 0.9 \text{ kW} \times 0.5 \text{ hrs}$	1		
	b		E = 0.45 kWh	1		
			Cost = $0.45 \text{ kWh} \times 17 \text{ c} = 7.65 \text{c}$			
				1		
			A circuit breaker is an automatically operated electrical switch			
	С		designed to protect an electrical circuit from damage caused by	1		
			excess current from an overload or short circuit.			
			Total	6		
5	а	i	50 g in 500 mL → 100 g/L	1		
F	а	1				
		ii 	64 g in 1 L → 64 g/L	1		
		iii	Solution A		<u> </u>	
			Activation	1 = axes		
			energy, E.	1 = dxc3		
				1 = active	≘-	
	b		Reactants	ation ene		
			energy, E, Reactants			
			A Paragraph of the state of the			
			Products			
			Total	6		
6	а	i	Any valid disadvantage	1		
\vdash	ч	ii	Any valid advantage	1		
		111			Α	
			Double glazing	1		other
			Size and position of windows	1		eptable
					mea	asure
			1200J Electrical 900J Heat			
			Energy			
		i				
				2		
			1 1		ĺ	
			I I			
			3001 Heat Energy loct to			
			300J Heat Energy lost to			
			300J Heat Energy lost to the surroundings			

			Efficiency = Power output/Power input x 100%		
		ii	Efficiency = 900 W / 1200 W x 100%	1	
			Efficiency = 75%	1	
			Total	8	
			An ecosystem refers to the interactions between all living organisms		
7	а		and their interactions with the physical environment.	1	
			Anna taura afa	1	Other
			Any two of:		Other valid
			increase in nutrients in the sea; or introduction of particulates in the sea; or	2	
	b		introduction of particulates in the sea; or reduction in light paratration, or	2	replies
			reduction in light penetration; orreduction in oxygen; or		
			change in pH.		
			Change in pri.		
			light energy		
	С	i	carbon dioxide + water — glucose + oxygen		
				2	
			chlorophyll		
			Sewage will reduce light penetration in the sea	1	
		ii	 Light intensity is a limiting factor to photosynthesis, (or 		
		"	decrease in light intensity will reduce the rate of	1	
			photosynthesis)		
	d		Frames in the form of squares that are used in fieldwork / sampling	1	
			studies.	1	Other
			 To identify all the organisms present in that quadrat. To count the organisms present in that quadrat and estimate 	1	
	е		the total number of organisms present in a particular site.	1	acceptable answers
			Bacteria population increases – there will be the release of	Т	answers
			bacteria when untreated sewage is discharged in the sea. On		
			finding ideal conditions such as nutrients and water, bacteria		
			will reproduce rapidly.		
			 Fish population increases – there will be the release of nutrients 		
	f		which will enhance the plants' growth. This enables the fish to		
		find more food.		4	
		OR			
			 Fish population decreases – the release of particulates reduces light penetration and thus limiting photosynthesis and reducing 		
			the amount of producers in the food web.		
			and amount of production in the root fresh		
			Total	15	
			Weight is the product of	1	'gravity' not
8	а	i	mass and acceleration due to gravity	1	accepted as
			(mass multiplied by acceleration due to gravity;		a correct answer
			= mass x acceleration due to gravity)		
			As the acceleration due to gravity on the moon is lower than that on	1	
		ii	earth, the weight on the moon would be lower		
			As the acceleration due to gravity in space is zero, then the weight	1	
			in space is zero		

	b	iii i	$W = mg$ $W = 20 \times 10$ $W = 200 \text{ N}$ section BC; no acceleration section CD. Deceleration (or negative acceleration) $acceleration = gradient$ $= (8 - 0) / (10 - 0)$ $= 8 / 10 = 0.8 \text{ m/s}^2$ $A = (a + b / 2) \text{ h}$ $A = (10 + 25 / 2) \text{ 8}$ $A = (35 / 2) \text{ 8} = 140 \text{ m}$	2 1 1 2	(1 for answer, 1 for units) (1 for answer; 1 for units) * (1 for answer; 1 for units)
		iv	Average vel = distance / time = 140 / 25 = 5.6 m/s	2 15	(1 for answer; 1 for units)
			dip a clean wire loop into a sample of the compound being tested	1	
9	а	i	put the loop into the edge of a Bunsen burner blue flame	_	
			Consulta A. mata asimus	1	
		۱.,	Sample A: potassium	1	
		ii	Sample B: barium Sample C: lithium	1 1	
-	b	i	Chromatography	1	
		ii	Chromatography paper Beaker Ink spot on pencil line Solvent	2	Deduct ½ mark for each missing item.
		:::	The more soluble the component is, the further it moves	1	
		iii	The various components separate into different spots	1	
	С	i	To separate the components of a mixture of liquids	1	
		ii	A suitable example of a simple distillation (e.g. water and ethanol)	1	
		-	A suitable example of a fractional distillation (e.g. crude oil)	1	
		iii	Simple distillation – when the boiling points of the liquids to be separated are widely different Fractional distillation – when the boiling points of the liquids to be separated are close	1	
			• • • • • • • • • • • • • • • • • • • •		
			Total	15	

10	а	i	Pork					1		
		ii	21.0% x 1000 g					1		
									1	
	b		Pork	Pork						
	n		Energy				1			
	C		Insulation						1	
	d		Iron						1	
	е									Award one
			Carbohydrate	Soluble in	Found in	Broken down	Small molecule	Tested for		mark for
				water animal cells		by carbohydrase	moiecule	using		each
							iodine solution		correct	
								Solution	5	column.
			Starch	×	*	✓	*	✓		
			Glucose	✓	✓	*	✓	×		
	f	i	Help digest food using carbohydrase / moisten food						1	
		ii	Emulsification						1	
		iii	Increases surface area/breakdown food into smaller bits					1		
			Total						15	