

MATSEC Examinations Board

Specimen Papers SEC 45 Core Science

Table of Contents

Specimen Assessments: Controlled Paper Level 1-2	3
Specimen Assessments: Marking Scheme for Controlled Paper Level 1-2	16
Specimen Assessments: Controlled Paper Level 2-3	20
Specimen Assessments: Marking Scheme for Controlled Paper Level 2-3	33

Specimen Assessments: Controlled Paper Level 1-2

L-Università ta' Malta

SECONDARY EDUCATION CERTIFICATE LEVEL SAMPLE PAPER

EXAMINATIONS BOARD

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE

SUBJECT:	Core Science	
PAPER NUMBER:	Level 1 – 2	
DATE:		
TIME:	2 Hours	

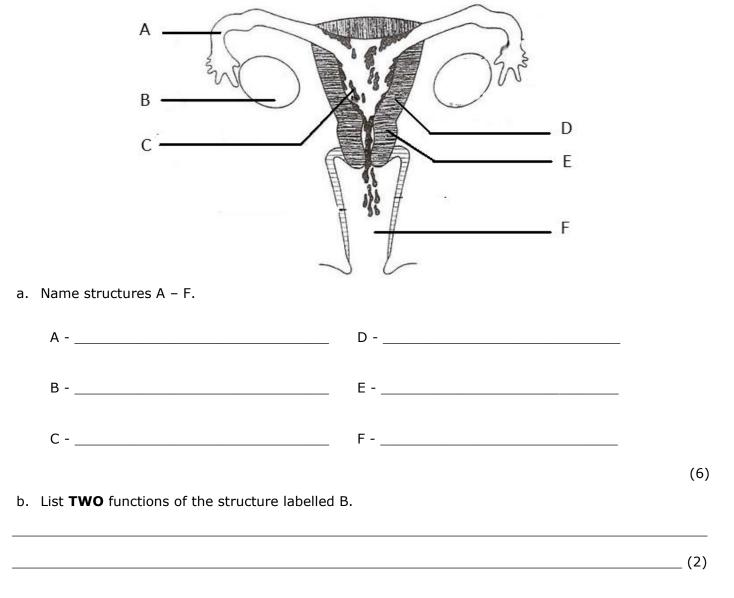
Directions to Candidates

- The use of electronic calculators is permitted.
- You are requested to show your working and to write the units where necessary.

Useful information

- Standard temperature and pressure (stp): 0 °C and 1 atm
- The molar volume for gases at stp = 22.4 dm³
- A Periodic Table which includes the symbol, the name, the atomic number and the relative atomic mass of each element, is printed on the back of this booklet.
- When necessary, take g, acceleration due to gravity, as 10 m/s².

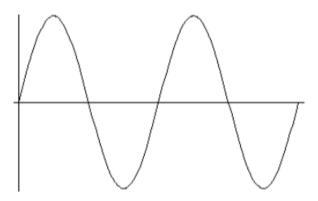
Useful equations


r			
$\rho = \frac{m}{V}$	$v = f\lambda$	$Q = m c \Delta \theta$	
Speed = $\frac{\text{Distance}}{\text{Time}}$	Unbalanced force = ma	W = m g	momentum = m v
v = u + a t	$s = u t + \frac{1}{2} a t^2$	$v^2 = u^2 + 2 a s$	$s = (u + v)\frac{t}{2}$
Q = I t	V = I R	P = I V	E = P t
$R_{total} = R_1 + R_2$	$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2}$	-	output energy transfer nput energy transfer
Area of a triangle =	$\frac{1}{2}$ b h Area of a trape	zium = $\frac{1}{2}$ (a + b) h	Area of a circle = π r ²

List of polyatomic ions and their charges	
Name Formula	
Ammonium	NH4 ⁺
Nitrate	NO ₃ -
Sulfate	SO4 ²⁻
Carbonate	CO32-
Hydrogencarbonate	HCO3-
Hydroxide	OH-

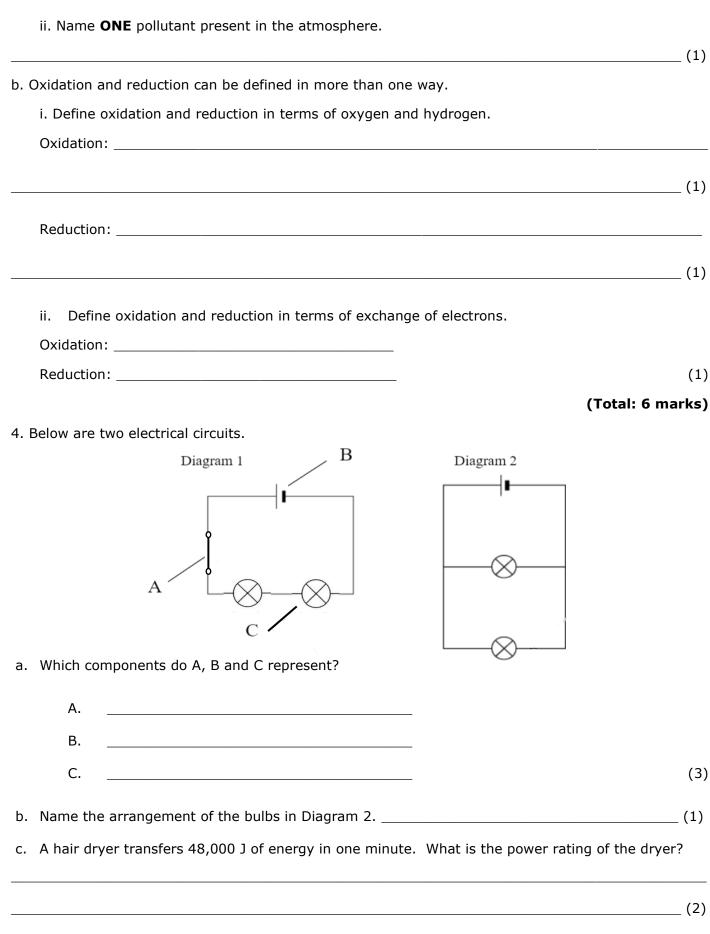
Answer ALL questions in ALL sections.

SECTION A: This section carries 40 marks.


1. The following diagram represents the female reproductive system.

- c. Name the stage of the menstrual cycle that the diagram above is representing. Explain what happens during this stage.
 - Stage ______(1)
 Explanation _______(1)

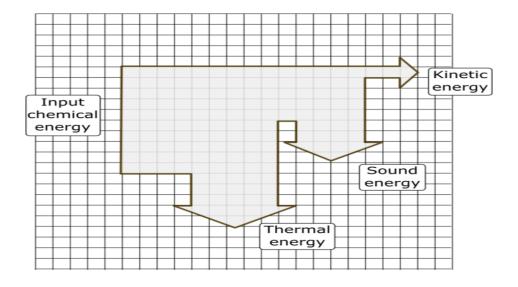
(Total: 10 marks)


2. The following is a diagram of a wave.

a. Name this type of wave.

		_(1)
b.	On the diagram above, mark and label:	
	i. the wavelength;	(1)
	ii. the amplitude.	(1)
c.	Give TWO examples of this type of wave.	

		(2)
d.	John is enjoying his walking holiday in the mountains when there is a thunderstorm.	
	He sees the flash of light first, then hears the sound of thunder.	
	i. Why does John see the light before he hears the thunder?	
		(1)
	ii. Why does John hear a second sound of thunder?	
		(1)
	iii. Why is the second sound quieter than the first?	
		(1)
	(Total: 8	marks)
3.	a. i. Air is a mixture of gases. Name ONE component and give its percentage in air.	
	Component:	(1)
	Percentage:	(1)



(Total: 6 marks)

SPECIMEN PAPERS (2025): CORE SCIENCE

5. a. A	solution is composed of a solute and a solvent.	
i.	Give a suitable example of a solute and its solvent in a solution.	
	Solute:	(1)
	Solvent:	(1)
ii.	Explain what is meant by the solubility of a substance.	
		(2)
b. i.	Explain how catalysts affect chemical reactions.	
		(1)
ii.	Name ONE other factor that affects chemical reactions.	
		(1)
	(Total: 6 n	narks)
rene	ar energy and crude oil are examples of renewable and non- ewable sources of energy respectively.	05
ii. G	Sive ONE advantage of a non-renewable source of energy.	(1) (1)
	Give ONE example of how fossil fuel consumption can be reduced.	(1)

b. This Sankey diagram shows the energy input and output for an old diesel car engine.

In the above Sankey diagram every grid represent 10KJ (Joules). Use the grid to calculate the following:

i.	total input (chemical) energy;	
ii.	thermal energy;	
iii.	sound energy;	
iv.	kinetic energy;	
v.	total output energy.	

(Total: 8 marks)

(5)

SECTION B: This section carries 15 marks.

- 7. Read the following passage and answer **ALL** the questions that follow.
- ¹ Untreated sewage is sometimes released in the sea. This causes changes in the habitat and also effects the marine community. Seagrasses will be more shaded and will have a reduced capacity to perform photosynthesis.

Changes in the biotic community can be used to assess the environmental status of a given 5 habitat. These changes can occur due to an increase or a decrease in pollution levels.

When raw sewage stopped being poured in Wied Għammieq in 2011, a decrease in organic pollution and nutrient load to the marine waters in its vicinity was recorded. The bathing water quality classification of the area was changed from "Sufficient" to "Excellent".

Some time ago another study was conducted at Wied Għammieq. Four locations were selected. 10 Two quadrats were sampled at each of the four sites and studied.

- a. Seagrasses perform photosynthesis to produce food. This food is stored as starch in the leaves.
 - i. Write a word equation to summarise the process of photosynthesis.
 - ii. Name the chemical that tests for the presence of starch in sea grass.
 - _____(1)
 - iii. Identify the colours obtained when the chemical named in part a.ii. is in the presence / absence of starch.
 - Presence of starch _____ (1)
 - Absence of starch _____ (1)
- b. Name the ecosystem that is being described in the passage above.

_(1)

_____(3)

c. Complete the following table to list **TWO** biotic and **TWO** abiotic components of the ecosystem named in part b.

Biotic Component	Abiotic Component

d. Explain the meaning of the term "habitat" in line 1.

e. What are "quadrats" (line 10)?

(2) (Total: 15 marks)

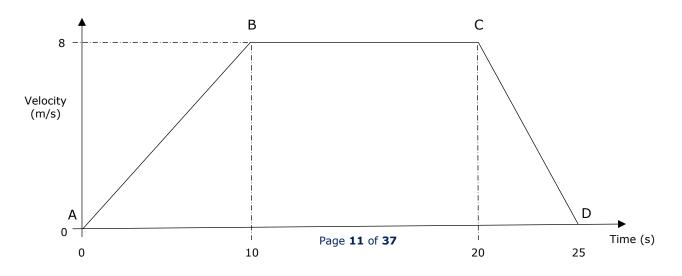
SECTION C: This section carries 45 marks.

Answer ALL questions in this section.

8. a. i. State the meaning of the terms scalar quantity and vector quantity.

Scalar quantity:	(1)
Vector quantity:	(1)

ii. Complete the following table by marking with an 'X' whether each quantity is a scalar or a vector. (The first one has been done for you.)


Quantity	Scalar	Vector
Length	x	
Mass		
Weight		
A distance of 10 m to the left		
Velocity		

- b. i. State whether the following statements are True (T) or False (F).
 - Weight and mass are the same.
 Our weight is different on Earth and on the moon.
 Our mass is different on Earth and on the moon.
 Weight is measured in kilogrammes (kg).
 (2)
 ii. Find the weight of an object of mass 20 kg.

(2)

____(2)

c. The following plot shows the journey of a car over a journey of 25 s.

	i.	i. The car moves for 25 s. Indicate what happens in section AB, section BC and se plot.	
		Section AB:	(1)
		Section BC:	(1)
		Section CD:	(1)
	ii.	Calculate the acceleration of the	ar in the first 10 s.
			(2)
	iii.	If the mass of the car is 500 kg, f	ind its momentum in the section BC.
			(2)
			(Total: 15 marks)
9.	a. T	he presence of metals in compour	ds can be identified by carrying out a flame test.
	i. O	utline the procedure to carry out a	flame test.
			(2)
	9		ur samples labelled A, B, C and D. The results were as follows: green; Sample C – crimson red; Sample D – brick red. Identify ur samples.
	9	Sample A:	Sample B:
	g	Sample C:	Sample D: (4)
h	A	inture of good and water can be a	anarated by filtration. Draw a labelled discrement the anaratus

b. A mixture of sand and water can be separated by filtration. Draw a labelled diagram of the apparatus used, indicating the filtrate and the residue. (6)

- c. A sample of ink can be analysed to see its components.
 - i. Name the technique that can be used.
 - ii. Explain briefly how results can be interpreted.
 - _____(2)

(Total: 15 marks)

- 10. a. There are many ways how we can feel unwell. List **FOUR** ways how you can get sick.
- b. List **THREE** barriers the body uses to defend itself from getting infections and explain how they perform their function?

Barrier 1:	(1)
Explanation:	
Barrier 2:	(1)
Explanation:	
Barrier 3:	(1)
Explanation:	
	(1)

c. When pathogens manage to enter our body it is up to the white blood cells to remove them. Draw a diagram showing the steps involved.(3)

d. Explain why a person will not get the chicken pox twice?

_____(2)

(Total: 15 marks)

END OF PAPER

PERIODIC TABLE OF THE ELEMENTS

0	4 He ^{Helium}	$\frac{20}{N_{eon}}$	$\begin{array}{c} 40 \\ \mathbf{Ar} \\ _{\mathrm{Argon}} \\ 18 \end{array}$	84 Kr Krypton 36	131 Xenon 54	222 Radon 86
7		19 F Fluorine 9	35.5 CI ^{Chlorine}	80 Br Bromine 35	127 I Iodine 53	210 At Astatine 85
6		16 O ^{Oxygen} 8	32 Sulfur 16	79 Selenium 34	128 Te 52	210 Po 84
s		14 N Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi 83
4		12 C Carbon 6	28 Silicon 14	73 Ge ^{Germanium} 32	119 Sn 50	207 Pb ^{Lead} 82
3		11 B Boron 5	27 Al Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 TI ^{Thallium} 81
				65 Zn ^{Zinc} 30	112 Cd ^{cadmium} 48	201 Hg Mercury 80
				63.5 Cu copper 29	$\mathop{\mathbf{Ag}}_{\mathrm{Silver}}$	197 Au _{Gold} 79
				59 Nickel 28	106 Pd Palladium 46	195 Pt 78
				59 Co cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77
	1 H Hydrogen 1			56 Fe ^{Iron} 26	101 Ru Ruthenium 44	190 OS ^{Osmiun} 76
				55 Mn Manganese 25	99 Tc chnetium 43	186 Re ^{Rhenium} 75
				52 Cr Chronium 24	96 Molybdenum Te 42	184 W Tungsten 74
				51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73
				48 Ti 22	91 Zr Zirconium 40	178 Hf ^{Hafnium} 72
				45 Sc Scandium 21	89 Yttrium 39	139 Lanthanum 57
2		9 Beryllium 4	24 Mg 12	40 Ca calcium 20	88 Strontium 38	137 Ba ^{Barium} 56
1		7 Li Lithium 3	23 Na ^{Sodium} 11	39 K Potassium 19	85 Rb Rubidium 37	133 Cs Caestium 55

relative atomic mass SYMBOL Name atomic number

b XX a

Key:

Specimen Assessments: Marking Scheme for Controlled Paper Level 1-2

L-Università ta' Malta MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

SECONDARY EDUCATION CERTIFICATE LEVEL SAMPLE PAPER MARKING SCHEME

SUBJECT:	Core Science
PAPER NUMBER:	Level 1 – 2
DATE:	
TIME:	2 Hours

Qu	esti	on	Suggested Answer	Marks	Remarks
1.	a.		A – Fallopian tube / oviduct	1	
			B – Ovary	1	
			C – Endometrium / lining of uterus	1	
			D – Uterus / wall of uterus	1	
			E – Cervix	1	
			F - Vagina	1	
	b.		Produce egg cells	1	
			Produce hormones	1	
	с.		Stage: Menstruation	1	
			Explanation: The endometrium is shed from the vagina	1	
			Total	10	
2	_				
2.	a. b.		Transverse wave	1	
			Ampiftude	2	
	c.		Water / ocean waves, light waves	2	
	d.	i.	Light waves travel faster than sound waves	1	
		ii.	This is because sound waves are reflected by the mountains	1	
			producing an echo.		
		iii.	This is because at such large distances there are 'losses' / unwanted energy transfers in energy	1	
			Total	8	
_					
3.	a.	i.	Any component	1	
			and its respective percentage	1	
		ii.	Any acceptable answer	1	
	b.	i.	Oxidation: addition of oxygen; loss of hydrogen	1	
			Reduction: loss of oxygen; addition of hydrogen	1	
		ii.	Oxidation: loss of electrons; Reduction: gain of electrons	1	
			Total	6	

	1				
4.	а.		A. Wire	1	
4.	a.				
			B. Cell / battery C. Light bulb	1	
	b.		Parallel	1	
	-				
	c.		Power = Energy / time	1	
			= 48000 / 60	1	
			= 800 W	1	
			Total	6	
				0	
5.	a.	i.	Any solute	1	
5.	u .	1	and respective solvent	1	
		ii.	The maximum amount of solute that can dissolve in a certain	2	Reduce 1
			amount of solvent or solution at a certain temperature.	2	mark for
					each
					parameter
					left out
	b.	i.	A catalyst is a substance that changes/alters the rate (speed) of	1	
			a chemical reaction.		
		ii.	Temperature or surface area	1	
			Total	6	
		_			
6.	a.	i.	Any valid disadvantage	1	
		ii.	Any valid advantage	1	
		iii.	- Reduce, reuse, recycle, buying products with minimal	1	Any one or
			packaging will help to reduce waste		equivalent
			- Use less heat and air conditioning		to
			- replace your light bulbs with energy efficient ones		
			- drive less and drive smart		
			- buy energy-efficient products		
			- use less hot water		
			- Switch OFF appliances when not in use		
	b.	i.	100 kJ	1	
		ii.	50 kJ	1	
		iii.	40 kJ	1	
		iv.	10 kJ	1	
		v.	100 kJ	1	
			-		
			Total	8	
7.	a.	i.			+
/.	a.	.	light energy		
			arbon dioxide + water	3	
			chlorophyll	5	
		ii.	Iodine	1	
		iii.	Blue / Blue-black	1	
			Yellow / Yellow-brown	1	
	b.		Marine / sea-water ecosystem	1	

	c.				
			Biotic Component Abiotic Component		
			Sea grass/alga/plankton Sunlight/pH/salinity	4	
			Fish/sea urchins/bacteria Water currents/nutrients		
	d.		A habitat is a place where an organism or a community of	2	
	ч.		organisms live	2	
	e.		Frames in the form of squares that are used in	2	
			fieldwork/sampling studies		
			Total	15	
8.	a.	i.	Scalar: magnitude/size only	1	
			Vector: magnitude/size and direction	1	
		ii.	Quantity Scalar Vector		
			Length X		
			Mass X	1⁄2	
			Weight X	1⁄2	
			A distance of 10 m to the left X	1⁄2	
				1⁄2	
			Velocity X		
	b.	i.	False	1/2	
			True	1/2	
			False False	1/2 1/2	
		ii.	$W = m \times q$	72	
			$= 20 \times 10$	1	
			= 200N	1	
	c.	i.	AB – Acceleration	1	
			BC – no acceleration / constant velocity	1	
			CD – deceleration	1	
		ii.	Acc = gradient		
			= (8-0) / (10-0)		
1			= 8/10	1	
			$= 0.8 \text{m/s}^2$	1	
1		iii.	$P = m \times v$		
			$= 500 \times 8$	1	
 		-	= 4000 kgm/s	1	
			Takal	15	
			Total	15	
9.	a.	i.	- Dip a clean wire loop into a sample of the compound being	1	
			tested		
 		<u>.</u>	- put the loop into the edge of the a Bunsen burner blue flame	1	
1		ii.	A – Potassium	1	
			B – Barium	1	
			C – Lithium	1	
			D – Calcium	1	

	b.				marks for	
			Glass Funnel diagram Filter Paper 2 marks for Solid Residue labelling			
			1	L mar	ue	
			1 mark for filtrate			
			← Filtrate			
	c.	i.	Chromatography		1	
		ii.	The more soluble the component it is, the further it moves		1	
			The various components separate into different spots			
					1	
			Tatal		16	
			Total		15	
10.	a.		Air, water, food, contact (body fluids), animals		4	Any correct four
	b.		Skin, mucus and cilia in respiratory tract		6	1001
			Tears			
			Acid in stomach			
			 prevent entry of pathogens 			
	c.		white blood cell white blood cell		3	
			OR			
			white blood cell microbe			
	d.	1	Once the body learns how to fight the disease it will remember		1	
			If the body is invaded again, it will quickly produce antibodies			
	ļ		and stop the disease before it infects the body.		1	
			Total		15	
			Total		15	

Specimen Assessments: Controlled Paper Level 2-3

L-Università ta' Malta MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

SECONDARY EDUCATION CERTIFICATE LEVEL SAMPLE PAPER

SUBJECT:	Core Science	
PAPER NUMBER: DATE:	Level 2 – 3	
TIME:	2 Hours	

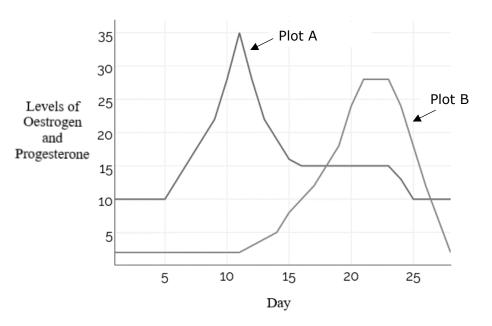
Directions to Candidates

- The use of electronic calculators is permitted.
- You are requested to show your working and to write the units where necessary.

Useful information

- Standard temperature and pressure (stp): 0 °C and 1 atm
- The molar volume for gases at stp = 22.4 dm³
- A Periodic Table which includes the symbol, the name, the atomic number and the relative atomic mass of each element, is printed on the back of this booklet.
- When necessary, take g, acceleration due to gravity, as 10 m/s².

Useful equations


$\rho = \frac{m}{V}$	$v = f\lambda$	$Q = m c \Delta \theta$	
Speed = $\frac{\text{Distance}}{\text{Time}}$	Unbalanced force = ma	W = m g	momentum = m v
v = u + a t	$s = u t + \frac{1}{2} a t^2$	$v^2 = u^2 + 2 a s$	$s = (u + v)\frac{t}{2}$
Q = I t	V = I R	P = I V	E = P t
$R_{total} = R_1 + R_2$	$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2}$	-	output energy transfer nput energy transfer
Area of a triangle =	$\frac{1}{2}$ b h Area of a trape	zium = $\frac{1}{2}$ (a + b) h	Area of a circle = πr^2

List of polyatomic ions and their charges			
Name Formula			
Ammonium	NH_4^+		
Nitrate	NO3 ⁻		
Sulfate	SO4 ²⁻		
Carbonate	CO32-		
Hydrogencarbonate	HCO ₃ -		
Hydroxide	OH-		

Answer ALL questions in ALL sections.

SECTION A: This section carries 40 marks.

1. The following graph represents the levels of the hormones oestrogen and progesterone in a female having a menstrual cycle of 28 days.

Levels of Oestrogen and Progesterone during a 28 day menstrual cycle.

a. Name the gland that produces the hormones oestrogen and progesterone.

b. From the graph above, state the plot that indicates the change in level of progesterone.

c. State what happens to the progesterone level when a female becomes pregnant. Give **ONE** reason for your answer.

(1)

(1)

(To	(1) otal: 6 marks)
e. Name ONE viral sexually transmitted infection.	(1)
d. Name a birth control method that may prevent sexually transmitted infections (STIs).	
	(2)

- 2. A mosquito beats its wings approximately 360,000 times in 1 minute and flies at a speed of 6.5 m/s. The speed of sound of wing beats is 330 m/s.
- a. Calculate:

i. the frequency of the sound waves produced by the mosquito;

ii. the wavelength of the sound wave produced by the mosquito;

iii. the time taken for a mosquito to travel 1500 m.

b. A dog whistle is a training tool that has been used for a very long time. It has a piercing sound which is emitted at a frequency of 23,000 Hz to 54,000 Hz and is carried a long distance. This makes it a great tool if you need to control your dog at a distance or if you need to get your dog's attention in a noisy situation.

i. Explain how sound travels from the whistle to the dog.

_____(2)

 ii. Some people might complain that if many dog owners use these whistles in parks or other open spaces, they would disturb the tranquillity of these areas with all the noise produced. Do you agree? Explain.

_____ (2)

(Total: 8 marks)

_____(1)

_ (2)

_ (1)

3. a. i.	Name an atmospheric pollutant.
----------	--------------------------------

ii. Describe **ONE** effect of the pollutant mentioned in part a. i. on ecosystems and/or biodiversity.

b. i. Define oxidation and reduction in terms of exchange of electrons.

_____(1)

_____(1)

_____(1)

ii. Consider the chemical reaction: C + O_2 \implies CO_2

Using oxidation numbers, deduce which element is being oxidised and which element is being reduced.

iii. Give the valency of carbon in CO_2 . Show your reasoning.

1	1	١
l	т	J

(Total: 6 marks)

4.	The hair dryer shown has a plastic casing and a heating element of rating 900 W, 240 V.	
a.	Calculate the current flowing through the heating coil when it is being used.	

____(2)

b. Calculate the cost of running the dryer for 30 minutes if 1 kWh costs 17 c.

_____(3)

c. A circuit breaker is a safety feature found in homes. Explain its function.

_____(1)

(Total: 6 marks)

- 5. a. Solution A was prepared by dissolving 50 g of common salt (sodium chloride) in 500 mL of solution, while solution B was prepared by dissolving 64 g of common salt in 1 L of solution.
 - i. Calculate the concentration of solution A in g/L.

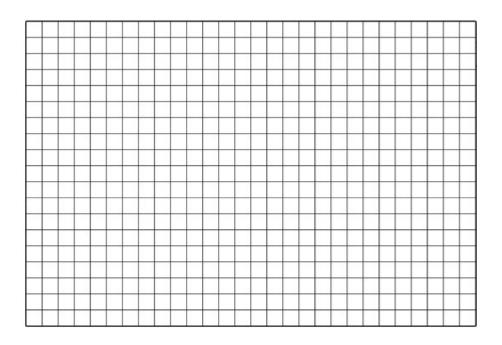
	(1)
ii. Calculate the concentration of solution B in g/L.	
	(1)
iii. Name the more concentrated solution.	(1)
	(1)

b. Sketch the reaction profile of an exothermic reaction. Indicate the activation energy on the plot. (3)

(Total: 6 marks)

6. Solar energy and crude oil are examples of renewable and nonrenewable sources of energy respectively.

f. i. Give **ONE** disadvantage of a renewable source of energy.



ii. Give $\ensuremath{\textbf{ONE}}$ advantage of a non-renewable source of energy.

b. Suggest **TWO** ways in which unwanted energy transfers can be reduced so that our houses remain warm in winter.

_____(2)

c. A kettle uses 1200 J of electrical energy. 900 J of thermal energy is used to heat the water. 300 J of thermal energy is wasted and lost to heat the surroundings.

i. Draw a Sankey diagram in the space provided to represent the energy transfer. (2)

ii. Calculate the efficiency of the kettle.

____(2)

(Total: 8 marks)

SECTION B: This section carries 15 marks.

7. Read the following passage and answer **ALL** the questions that follow.

Influence of Sewage Effluent on Rocky Shore Biotic Assemblages

- ¹ Sewage is defined by the United Nations Environment Programme as a collection of solids, organic matter, nutrients, pathogens, toxic organic chemicals, heavy metals and fats, oils and grease.
- When sewage is released in the sea ecosystem, it causes changes in the habitat such as the increase in nutrients and the introduction of particulates in the sea. It also effects the marine community such as the shading of seagrasses which lead to a reduced capacity to perform photosynthesis, and the promotion of eutrophic conditions due to the high amounts of nutrients.

Changes in the biotic community can be used to assess the environmental status of a given habitat. These changes can occur due to an increase or a decrease in pollution levels.

¹⁰ Following the decommissioning of the Wied Għammieq raw sewage outfall in 2011, a decrease in organic pollution and nutrient load to the marine waters in its vicinity was recorded. The bathing water quality classification of the area was changed from "Sufficient" to "Excellent".

Four years after the cessation of the raw sewage discharge, another study was conducted. Four locations at different distances from the previous sewage outfall site at Wied Għammieq were selected. Two quadrats were sampled at each of the four sites and studied.

Adapted extract from Attard M., *Influence of Sewage Effluent on Rocky Shore Biotic Assemblages;* in Biology Symposium Abstracts 2016, UOM

- a. Explain the meaning of the term "ecosystem" in line 4.
- b. List **TWO** ways by which the discharge of untreated sewage may affect the abiotic component of the marine ecosystem.

_ (2)

(2)

- c. The release of untreated sewage "lead[s] to a reduced capacity to perform photosynthesis" (lines 6-7).
 - i. Write a word equation to summarise the process of photosynthesis.

_ (2)

_(2)

ii. Explain why untreated sewage reduces the capacity of seagrass to photosynthesise.

d. What are "quadrats" (line 15)?

e. How can quadrats be used in field studies?

f. Predict the changes in the populations of bacteria and fish when comparing studies prior to and after the cessation of raw sewage input at Wied Għammieq. Explain your predictions.

(Total: 15 marks)

_____(4)

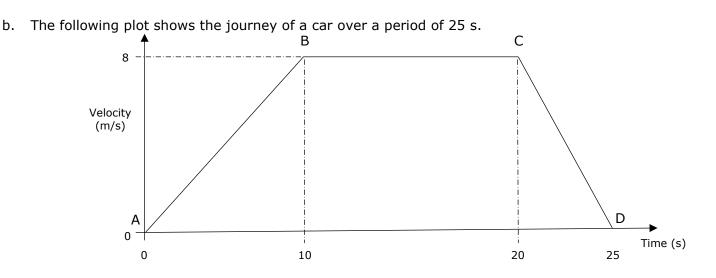
_____(1)

_____(2)

SECTION C: This section carries 45 marks.

Answer ALL questions in this section.

8. a. i. Explain how the mass and weight of an object are related.


ii. The weight of an object of given mass on Earth is different from its weight on the moon, while it has no weight in space. Explain.

iii. Find the weight (on Earth) of an object of mass 20 kg.

____(2)

_ (2)

(2)

- i. Section AB shows that the car accelerates in the first 10 s. Describe, in terms of acceleration, what happens in:
 - section BC;

_____(1)

• section CD.

ii. Calculate the acceleration of the car in the first 10 s.

		(2)
iii. Find the total distance	travelled during the whole 25 s of the car's jou	rney.
iv. Calculate the average		(3)
		(2)
9 a The presence of meta	ls in compounds can be identified by carrying ou	(Total: 15 marks)
	to carry out a flame test.	
		(2)
ii. Flame tests were car	ied out on four samples labelled A, B, C and D.	The results were as follows:
Sample A – lilac; Sar each of the four sam	nple B – apple green; Sample C – crimson red. bles.	Identify the metal present in
Sample A:		
Sample B:		
Sample C:		(3)
b. A sample of ink can be	analysed to see its components.	
i. Name the technique	that can be used.	
		(1)
ii. Draw a labelled diag	ram of the apparatus used.	(2)

ii. Draw a labelled diagram of the apparatus used.

SPECIMEN PAPERS (2025): CORE SCIENCE

iii. Explain briefly how results can be interpreted.

c. There is simple and fractional distillation.

i. What is the purpose of the process of distillation?

ii. Give **ONE** example where simple distillation and **ONE** example where fractional distillation are used.

_____(2)

iii. Distinguish between instances where simple and fractional distillation are used.

____(2)

_____(1)

(Total: 15 marks)

_____(2)

10. The table shows the percentage of protein, fat and minerals found in the same mass of meat from different animals.

Meat	Protein (%)	Fat (%)	Minerals (%)	
Beef	19.0	17.0	0.9	
Chicken	21.0	2.5	1.1	
Lamb	17.5	20.0	1.0	
Pork	16.0	25.0	0.9	
Rabbit	21.0	3.5	1.5	

a.

i. Which meat contains the least protein?

ii. Calculate how many grammes of protein are present in 1 kg of rabbit meat. Show your working.

b. Which type of meat would provide the most energy?

_____(1)

____(1)

_____(2)

SPECIMEN PAPERS (2025): CORE SCIENCE

- c. Give **TWO** uses of fat in the human body.
 - 1.
 (1)

 2.
 (1)
- d. Name the mineral found in meat that is needed to make haemoglobin.
- e. Starch and glucose are carbohydrates found in living organisms. Complete the table to show some of the properties of starch and glucose. Insert a tick (✓) if the property applies or a cross (×) if it does not.

Carbohydrate	Soluble in water	Found in animal cells	Broken down by carbohydrase	Small molecule	Tests positive with iodine solution
Starch					
Glucose					

(5)

_____(1)

- f. Give **ONE** function of the following terms:
 - i. saliva;

______(1) ______(1) ______(1)

(Total: 15 marks)

END OF PAPER

PERIODIC TABLE OF THE ELEMENTS

0	$\frac{4}{He^{Helium}}$	$\frac{20}{N_{\rm Neon}}$	$\begin{array}{c} 40 \\ \mathbf{Ar} \\ {}^{\mathrm{Argon}} \\ 18 \end{array}$	84 Krypton 36	131 Xenon 54	222 Radon 86
٢		19 F Fluorine 9	35.5 CI ^{Chlorine} 17	80 Br 35	127 I Iodine 53	210 At Astatine 85
6		16 O ^{Oxygen} 8	32 Sulfur 16	79 Selenium 34	128 Te 52	210 Po 84
s		14 N Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi 83
4		12 C Carbon 6	28 Silicon 14	73 Ge Germanium 32	119 Sn 50	207 Pb Lead 82
9		11 B Boron 5	27 Aluminium 13	70 Ga Gallium 31	115 Indium 49	204 TI Thallium 81
				65 Zn Zinc 30	112 Cd ^{Cadmium} 48	201 Hg Mercury 80
				63.5 Cu ^{copper} 29	108 Ag Silver 47	197 Au _{Gold} 79
				59 Ni Nickel 28	106 Pd Palladium 46	195 Pt 78
				59 Co cobalt 27	103 Rh Rhodium 45	192 Lr Iridium 77
	$\mathbf{H}_{\mathrm{Hydrogen}}$			56 Fe ^{Iron} 26	101 Ru Ruthenium 44	190 Os ^{Osmiun} 76
				55 Manganese 25	99 Tc Hechnetium 43	186 Re Rhenium 75
				52 Cr Chroniun 24	96 Mo Molybdenum 42	184 W 74
				51 V V 23	93 Nb Niobium 41	181 Ta Tantalum 73
				48 Ti 22	91 Zr Zirconium 40	178 Hf ^{Hafhium} 72
				45 Scandium 21	89 Yttrium 39	139 Lanthanum 57
2		9 Beryllium 4	$\begin{array}{c} 24 \\ \mathbf{Mg} \\ \mathbf{Mg} \\ 12 \end{array}$	40 Ca calcium 20	88 Strontium 38	137 Ва Ватішт 56
1		7 Li Lithium 3	23 Na ^{Sodium} 11	39 K Potassium 19	85 Rb Rubidium 37	133 CS ^{Caestum} 55

relative atomic mass SYMBOL Name atomic number

a X v J

Key:

Specimen Assessments: Marking Scheme for Controlled Paper Level 2-3

L-Università ta' Malta MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

SECONDARY EDUCATION CERTIFICATE LEVEL SAMPLE PAPER MARKING SCHEME

SUBJECT:	Core Science
PAPER NUMBER:	Level 2 – 3
DATE:	
TIME:	2 Hours

Question		ion	Suggested Answer		Other Remarks
1	а		Ovary	1	
	b		Plot B	1	
	_		Progesterone level increases	1	
	С		It maintains the lining of the uterus until birth	1	
	d		Abstinence / Use of a condom	1	
	e		HIV / AIDS / Genital warts	1	
			Total	6	
			360000 / 60	1	
2	а	i	6000 Hz	1	
		ii	$V = f \times \lambda$ 330 = 6,000 x λ ; 0.055 m = λ	1	
		iii	S = d/t 6.5 = 1500 / t; 230.8 s = t	1	
	b	i	Sound travels in air as longitudinal waves in a series of compressions and rarefactions which travel in the same direction as the wave.	1	
		ii	No, this sound is well above the audible range in humans which ranges	1	
			from 20Hz to 20000Hz	1	
			Total	8	
3	а	i	Any one atmospheric pollutant (oxides of nitrogen; oxides of sulfur; particulate matter; or ozone in the lower atmosphere)	1	
		ii	ONE corresponding effect	1	
	b	i	Oxidation = loss of electrons; reduction = gain of electrons	1	
			$C(O.N. = 0) + O_2(O.N. = 0) > C(O.N. = +4) O_2(O.N. = -2)$		
		ii	C = oxidised, O.N. increases from 0 to +4	1	
			O = reduces, O.N. decreases from 0 to -2	1	
		iii	Valency of $C = 4$ (1), $O = C = O$ where C has four bonds	1	
			Total	6	

			$P = I \times V$		
4	а		$900 = I \times 240$	1	
т	u		3.75 A = I	1	
				L	
			$E = P \times t$		
	b		E = 0.9 kW x 0.5 hrs	1	
	-		$E = 0.45 \; kWh$	1	
			Cost = 0.45 kWh x 17 c = 7.65c	1	
			A circuit breaker is an automatically operated electrical switch		
	С		designed to protect an electrical circuit from damage caused by	1	
			excess current from an overload or short circuit.		
-					
			Total	6	
5	а	i	50 g in 500 mL → 100 g/L	1	
	ŭ	II	$64 \text{ g in } 1 \text{ L} \rightarrow 64 \text{ g/L}$	1	
		iii	Solution A		
<u> </u>		111			<u> </u>
			Activation energy, <i>E</i>	1 = axes	
			Reactants	1 = plot	
	b			1 = activ	
	U		Reactants	ation ene	ergy
			ofe		
			<u>z</u> ,		
1					
			Products		
			Products		
				6	
			Total	6	
6	a	i	Total		
6	a	i	Total Any valid disadvantage	1	
6	а	i	Total Any valid disadvantage Any valid advantage	1 1 1	
6	а		Total Any valid disadvantage Any valid advantage Double glazing	1 1 1 1	Any other
6	а		Total Any valid disadvantage Any valid advantage	1 1 1	acceptable
6	а		Total Any valid disadvantage Any valid advantage Double glazing	1 1 1 1	
6	а		Total Any valid disadvantage Any valid advantage Double glazing	1 1 1 1	acceptable
6	a		Total Any valid disadvantage Any valid advantage Double glazing	1 1 1 1	acceptable
6	a		Total Any valid disadvantage Any valid advantage Double glazing Size and position of windows	1 1 1 1	acceptable
6	a		Total Any valid disadvantage Any valid advantage Double glazing Size and position of windows 1200J Electrical 900J Heat	1 1 1 1	acceptable
6	a		Total Any valid disadvantage Any valid advantage Double glazing Size and position of windows	1 1 1 1	acceptable
6	a		Total Any valid disadvantage Any valid advantage Double glazing Size and position of windows 1200J Electrical 900J Heat	1 1 1 1	acceptable
6	a		Total Any valid disadvantage Any valid advantage Double glazing Size and position of windows 1200J Electrical 900J Heat	1 1 1 1	acceptable
6	a	ii	Total Any valid disadvantage Any valid advantage Double glazing Size and position of windows 1200J Electrical 900J Heat	1 1 1 1	acceptable
6	a		Total Any valid disadvantage Any valid advantage Double glazing Size and position of windows 1200J Electrical 900J Heat		acceptable
6	a	ii	Total Any valid disadvantage Any valid advantage Double glazing Size and position of windows 1200J Electrical 900J Heat	1 1 1 1	acceptable
6	a	ii	Total Any valid disadvantage Any valid advantage Double glazing Size and position of windows 1200J Electrical 900J Heat		acceptable
6	a	ii	Total Any valid disadvantage Any valid advantage Double glazing Size and position of windows 1200J Electrical 900J Heat		acceptable
6	a	ii	Total Any valid disadvantage Any valid advantage Double glazing Size and position of windows 1200J Electrical 900J Heat		acceptable
6	a	ii	Total Any valid disadvantage Any valid advantage Double glazing Size and position of windows 1200J Electrical Energy 900J Heat Energy		acceptable
6	a	ii	Total Any valid disadvantage Any valid advantage Double glazing Size and position of windows 1200J Electrical 900J Heat		acceptable
6	a	ii	Total Any valid disadvantage Any valid advantage Double glazing Size and position of windows 1200J Electrical Energy 900J Heat Energy 300J Heat Energy lost to		acceptable

			Efficiency = Power output/Power input x 100%		
		ii	Efficiency = 900 W / 1200 W x 100%	1	
			Efficiency = 75%	1	
-				L L	
			Total	8	
-			An ecosystem refers to the interactions between all living organisms		
7	а		and their interactions with the physical environment.	1	
				1	
			Any two of:		Other
			 increase in nutrients in the sea; or 		valid
			 introduction of particulates in the sea; or 	2	replies
	b		 reduction in light penetration; or 		
			 reduction in oxygen; or 		
			 change in pH. 		
			light energy		
	с	i	carbon dioxide + water ————————————————————————————————————	2	
			chlorophyll	2	
			Sewage will reduce light penetration in the sea	1	
			 Light intensity is a limiting factor to photosynthesis, (or 	-	
		ii	decrease in light intensity will reduce the rate of	1	
			photosynthesis)	-	
	d		Frames in the form of squares that are used in fieldwork / sampling	1	
	u		studies.		
			 To identify all the organisms present in that quadrat. 	1	Other
	е		 To count the organisms present in that quadrat and estimate 		acceptable
			the total number of organisms present in a particular site.	1	answers
			 Bacteria population increases – there will be the release of 		
			bacteria when untreated sewage is discharged in the sea. On		
			finding ideal conditions such as nutrients and water, bacteria		
			will reproduce rapidly.		
			• Fish population increases – there will be the release of nutrients		
	f		which will enhance the plants' growth. This enables the fish to find more food.		
			OR	4	
			 Fish population decreases – the release of particulates reduces 		
			light penetration and thus limiting photosynthesis and reducing		
			the amount of producers in the food web.		
			Total	15	
			Weight is the product of		1
			Weight is the product of	1	'gravity' not
8	а	i	mass and acceleration due to gravity	1	accepted as a correct
			(mass multiplied by acceleration due to gravity;		answer
			= mass x acceleration due to gravity)		
			As the acceleration due to gravity on the moon is lower than that on	1	
		ii	earth, the weight on the moon would be lower		
1			As the acceleration due to gravity in space is zero, then the weight	1	
1	1		in space is zero		1

			W = mg	2	(1 for
		iii		_	answer, 1
			W = 200 N		for units)
			section BC; no acceleration	1	
	b	i	section CD. Deceleration (or negative acceleration)	1	
			acceleration = gradient	2	(1 for
		ii	= (8 - 0) / (10 - 0)		answer; 1
			$= 8 / 10 = 0.8 \text{ m/s}^2$		for units)
			A = (a + b / 2) h		* (1 for
		iii	A = (10 + 25 / 2) 8	1	answer; 1
			A = (35 / 2) 8 = 140 m	2*	for units)
			Average vel = distance / time	2	(1 for
		iv	= 140 / 25		answer; 1
			= 5.6 m/s		for units)
			Total	15	
			 dip a clean wire loop into a sample of the compound being tested 	1	
9	а	i		L T	
9	J J		 put the loop into the edge of a Bunsen burner blue flame 	1	
			Sample A: potassium	1	
		ii	Sample B: barium	1	
			Sample C: lithium	1	
	b	i	Chromatography	1	
	5			-	Deduct ½
					mark for
				2	each
			Chromatography paper	2	missing
					item.
		ii	Beaker		
			Ink cost on paneil line		
			Ink spot on pencil line		
			Solvent		
		iii	The more soluble the component is, the further it moves	1	
			The various components separate into different spots	1	
	С	i	To separate the components of a mixture of liquids	1	
		ii	A suitable example of a simple distillation (e.g. water and ethanol)	1	
			A suitable example of a fractional distillation (e.g. crude oil)	1	
			Simple distillation – when the boiling points of the liquids to be	1	
		iii	separated are widely different		
			Fractional distillation – when the boiling points of the liquids to be	1	
 			separated are close		
			Total	1 5	
			Total	15	

10	а	i	Pork							1	
		ii	21.0% x 1000 g						1		
			= 210 g						1		
	b		Pork							1	
	с		Energy					1			
			Insulation							1	
	d	Iron								1	
	e										Award one
				Carbohydrate	Soluble in water	Found in animal cells	Broken down by carbohydrase	Small molecule	Tested		mark for
									for using iodine solution	5	each
											correct
											column.
				Starch	×	×	~	×	~		
				Glucose	✓	~	×	~	×		
	f	i	Help digest food using carbohydrase / moisten food							1	
		ii	Emulsification							1	
		iii	Increases surface area/breakdown food into smaller bits							1	
			Total								