
ESE 2023 Summer Training:

Automation and Prototyping

ESE 2023 Summer Training:

Day 2:
Control Systems

Pneumatic Control Systems

The pneumatic system we have considered is the
basic building block around which, a wide range of
assembly processes depend.

However a pneumatic system without a controller
is practically useless!
A complete system will need a controller that will
determine the sequence and mode of operation.

In this short, 3-day course, it is impossible to enter
into detail about controllers and programing, so
we will just provide an overview of two main
categories of controllers.

PLC (Programmable Logic controller)

The PLC has been around for about 40 years and it
is still dominant in the control of pneumatic and
various other systems. The reason for its continued
success, is that major PLC manufacturers such as
Siemens, Allen Bradley, Mitsubishi etc. invested
heavily in continuously upgrading their line of
products such that today’s PLCs can control
practically any manufacturing process.

The main advantage of the PLC is that it is
robust; very reliable and therefore well-suited
for industrial operation, even in harsh
environments. The main disadvantage of PLC
systems is that, as always, Quality comes at a
price, and as such, PLC systems tend to be quite
expensive.

I have personally been involved in the setting-up of PLCs systems that have worked for
over 20 years, working two shifts - and at times, even 3 shifts, with no trouble at all !

Other microcontroller systems:

Here we find a long list of controllers and
among the more well-known makes, we could
mention the Arduino; PIC and the Raspberry pi,
(though the latter bears more resemblance to a
mini-computer).

These low-cost systems are widely used for
educational purposes, but it is also a fact that
they are also extensively used as a controller in
several non-critical applications.

Other microcontroller systems (cont.)

Provided that the application is not one
that is safety-critical, then these controllers
provide an excellent; and in many cases, a
reliable, low-cost solution.

These microcontrollers are especially
useful in Prototype systems. Concepts and
ideas can be tested without having to
commit to using an expensive PLC system
which could be much better-utilised in an
actual manufacturing process.

However, these should never be used for the control of industrial processes since they
are not sufficiently mechanically and electrically robust to withstand harsh environments.

In this training program, we will be using an
Arduino and we shall see how it can be used
to:

1. Operate our pneumatic cylinder according
to a predetermined sequence.

2. Perform a simple functional test on a push-
button switch.

As we have already mentioned, the scope of this exercise is to provide you with a
hands-on experience of how a complete, functional system can be put together.

We will only be guiding you through the set-up sequence to link your laptop to the
Arduino.

1. Atmega Controller chip.

2. Digital input & output pins - these pins can be
configured through the program to be either inputs or
outputs.

3. Analog pins - to process analog signals from sensors
such as thermistors, loadcells etc.

4. USB Connection for power up and communication via a
PC or laptop.

5. LED Power ON indicator.

6. TX/RX these LEDs flash when software is downloaded.

7. dc Power jack - used when the Arduino is powered
from a PSU.

8. Reset button - very useful if you need to do a general
reset and run the program from a fresh start.

9. Pins marked GND are ground, (0 Volt), connections.

1

2

3

4
5

6

7

8

9

The Arduino board – a quick Overview

A few important notes about the Arduino.

Powering up:

The recommended input voltage range of the
Arduino is 7V to 12V.

Applying a supply voltage of less than 7V, may lead
to unstable operation while exceeding 12V, may
result in overheating of the on-board voltage
regulator. In any case, the supply voltage should
not exceed 15V.

In our case, we will be supplying the Arduino with
a 9V, regulated supply.

Input & Output Voltage levels

Note that any High (1) input signal voltage to the
Arduino should never exceed 5V.
The Low (0) voltage level should be less than 1V.

Remember, also, that all inputs to the Arduino should
be pulled down to ground, (0V), via a 100k resistor.

This is necessary to ensure that in the absence of a
High signal, the Arduino input will be securely tied to
the ground, (0V), level, otherwise the input will remain
floating and operation is likely to become unstable.

In general, this principle applies in all digital logic work.

Inputs & Outputs (I.O.) – Operating voltage

Arduino’s onboard regulator sets the I.O. voltage
levels to 5V.

This means that a ‘High’ at an Arduino output pin
will be ≈ +5V while a ‘Low’ will be near to 0V.

Similarly, an input signal to an Arduino that
represents a High, should not exceed 5V.
Exceeding 5V can damage an Arduino’s input.

Important Considerations

In most industrial applications, the solenoids of
the valves operate at a voltage of 24V dc.

Similarly, quite often, a sensor attached to a
cylinder will also operate at 24V dc.

These voltage levels are obviously not compatible
with the Arduino’s 5V levels.

Ignoring these considerations might not have the
catastrophic effect of the picture shown here, but
may nevertheless, damage your Arduino!

Optocoupler - overview

Apart from ensuring that voltage levels are within
limits, circuit protection would be greatly enhanced
if we could isolate the inputs and outputs of the
Arduino from the harsh environment of solenoids or
other devices which generate considerable back
emf, especially when de-energised.

An optocoupler IC will do just that job for us!

Pins 1 and 2 are the input side. When powered-up,
the LED will shine on an optically sensitive transistor
that will then conduct with pins 4 and 3 acting like a
closed circuit.

+24V
Supply

+5V
Supply

3

1

2

4

Note that there is complete electrical
isolation between the diode circuit and
the transistor output.

Interface

Clearly then, we need some kind of interface that will provide the right voltage
levels, at both ends:

1. Input signal levels from the cylinder sensors that work at 24V have to be
brought down to 5V on the input side of the Arduino.

2. The Arduino 5V output has to be increased to 24V to drive the solenoid of
the cylinder.

Arduino
(5V)

Pneumatic
System (24V)Interface

For this course we have designed our own
interface board with the following considerations
in mind:

1. The sensors on the cylinder operate at 24V.
This is way beyond what the Arduino can
handle as an input voltage. The board uses
optocouplers to step down that 24V to the 5V
level Arduino input requirement.

2. Similarly, we will be changing the 5V output
voltage from the Arduino, to the 24V which
the cylinder needs to operate.

3. Bipolar transistors are used at each
optocoupler output to ensure that the O/P
current limit of these ICs is not exceeded.

Interface board walk through:

1. 12 V input terminal.

2. 9V voltage regulator IC supplies the Arduino
with a stable, 9V supply voltage. The LED next
to the regulator, indicates whether or not the
9V output is present.

3. A 100mA fuse protects the 9V regulator
circuit.

4. 24 V terminal block powers cylinder sensors
and the valve solenoid.

5. A 100mA fuse protects the 24V power circuit.

6 4

8

5

7

9 10

1115

17
12

13

14

1

2

3

16

18

19

20

21

22

23
24

25

6. Cylinder sensor cables hook up to this
terminal block.

7 & 8. Optocouplers provide the necessary
isolation for the 24V sensors on the cylinder, to
interface with the 5V input level used by the
Arduino input pins.

9. The transistor, amplifies the current supplied
from opto 7 to keep the current from the opto
output to a low level. This ensures efficient
operation of the opto. The LED next to the
transistor indicates the state of the cylinder
sensor.

10. Transistor - same function as above but
controlled by opto 8.

6 4

8

5

7

9 10

1115

17
12

13

14

1

2

3

16

18

19

20

21

22

23
24

25

11. This opto also changes the 5V Arduino
output to 24V, to power the valve solenoid.

12. These two transistors amplify the current
from the opto to drive the cylinder solenoid.

13. The LED below the transistors indicates the
state of this output.

14. The cylinder solenoid hooks up to this
terminal block.

15. This opto provides the necessary isolation
between the Arduino 5V output and the alarm
buzzer (24V).

6 4

8

5

7

9 10

1115

17
12

13

14

1

2

3

16

18

19

20

21

22

23
24

25

16. The transistor, amplifies the current
supplied from the alarm opto (15), to drive the
buzzer.

17. Alarm buzzer.

18. Alarm, Red LED.

19. DIP switch disables the buzzer, if required.

20. 50mA fuse: Arduino 9V supply protection.

21. Arduino 9V supply terminal block.

6 4

8

5

7

9 10

1115

17
12

13

14

1

2

3

16

18

19

20

21

22

23
24

25

22. This terminal block connects the designated
inputs and outputs of the Arduino.
Pin 1 goes to any of the ground pins on the
Arduino.

Note that pins 2 to 9 on this terminal block have
been purposely arranged to correspond to pins
2 to 9 on the Arduino connector.

23. The switch under test (DUT) connects to this
terminal block.

24. These three green, (or transparent), LEDs
indicate the successive test results of the DUT
in each of the three tests: OFF - ON – OFF.
If the first test is ok, T1 lights up, etc.

25. Is the start button to initiate a test cycle.

6 4

8

5

7

9 10

1115

17
12

13

14

1

2

3

16

18

19

20

21

22

23
24

25

Interface Circuit Diagram

