Mechanising your proofs in Coq

From zero to Cut-Admissibility in less than three months

Marco Carbone IT University of Copenhagen, Denmark

Goal of this talk...

- Promote proof mechanisation for our community
- Talk about my (short) experience

- Not about
 - How to prove Cut Admissibility
 - How to prove Cut Admissibility in Coq
 - Showing Off my Coq skills

My Coding Background

- Not much coding experience (Basic, Pascal, C, Java, Haskell)
- Almost null experience with Theorem Provers/Proof Assistants:
 - Pre-historic Coq (undergraduate, meaningless exercises, 1999)
 - HLF/TWELF (failed attempt, nothing proven, 2013)

The Ravara's challenge

- @POPL 2019, Cascais (Portugal)
- It's time for our community to start mechanising
- Start with known proofs
- Meet again in Prague (Czech Rep.)

Initial Objective

- Pi-calculus with Binary Sessions + Types
 - ==> Multiparty Sessions + Types

Why Coq?

Considered possibilities: Coq, Isabelle, Agda, Twelf.

Most popular (perception)

Interest from industry

Talked to Jesper Begtson (Psi Calculi)

Learning Phase

Benjamin Pierce's book(s)

softwarefoundations.cis.upenn.edu

- Brilliant (me)
- Not right structures (others)

Learning Phase

Functional Programming in Coq (Basics)

Proof by Induction (Induction)

Working with Structured Data (Lists)

Polymorphism and Higher-Order Functions (Poly)

More Basic Tactics (Tactics)

Logic in Coq (Logic)

Inductively Defined Propositions (IndProp)

Total and Partial Maps (Maps)

The Curry-Howard Correspondence (*ProofObjects*)

Induction Principles (IndPrinciples)

Properties of Relations (Rel)

Simple Imperative Programs (Imp

Lexing and Parsing in Coq (ImpParser)

An Evaluation Function for Imp (ImpCEvalFun)

Extracting ML from Coq (Extraction)

PUMPING LEMMA!!!!!

Intuitionistic Linear Logic

Sequent Calculus

$$A \vdash A$$
 ax $\Gamma \vdash A \qquad \Delta, A \vdash C$ cut

$$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} \otimes R \qquad \frac{\Gamma, A, B \vdash C}{\Gamma, A \otimes B \vdash C} \otimes L \qquad \frac{\Gamma \vdash C}{\Gamma, 1 \vdash C} 1L$$

$$\frac{\Gamma,A \vdash B}{\Gamma \vdash A \multimap B} \multimap R \qquad \frac{\Gamma \vdash A \qquad \Delta,B \vdash C}{\Gamma,\Delta,A \multimap B \vdash C} \multimap L$$

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \& B} \& R \qquad \frac{\Gamma, A \vdash C}{\Gamma, A \& B \vdash C} \&_1 L \qquad \frac{\Gamma, B \vdash C}{\Gamma, A \& B \vdash C} \&_2 L \qquad \overline{1}$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \oplus B} \oplus_{1} R \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \oplus B} \oplus_{2} R \qquad \frac{\Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma, A \oplus B \vdash C} \oplus L \qquad \exists$$

Sequent Calculus in Coq

Cut Admissibility

Theorem. If $\Gamma \vdash A$ and $\Delta, A \vdash C$ then $\Gamma, \Delta \vdash C$.

My proof idea before Coq:

- consider cut as a rule
- permute rules (commuting conversions/structural congruence)
- reduce cuts to cuts on smaller formulas (reduction semantics)

===> very intuitive reasoning.

Commuting Conversion

$$\frac{D_{1}}{\Delta_{1}, B_{1}, B_{2} \Rightarrow A} \xrightarrow{\mathcal{E}} \Delta_{1}, B_{1} \otimes B_{2} \Rightarrow A \xrightarrow{\mathcal{E}} \Delta', A \Rightarrow C
\Delta_{1}, B_{1} \otimes B_{2}, \Delta' \Rightarrow C \qquad (cut_{A})$$

$$\begin{array}{c} \mathcal{D}_{1} & \mathcal{E} \\ \Delta_{1}, B_{1}, B_{2} \Rightarrow A & \Delta', A \Rightarrow C \\ \hline \Delta_{1}, B_{1}, B_{2}, \Delta' \Rightarrow C \\ \hline \Delta_{1}, B_{1} \otimes B_{2}, \Delta' \Rightarrow C \end{array} (\text{cut}_{A})$$

Cut Reductions

Cut Admissibility

$$\begin{array}{ccc} \mathcal{D} & \mathcal{E} \\ \Delta \Rightarrow A & \Delta', A \Rightarrow C \\ \hline \Delta, \Delta' \Rightarrow C \end{array}$$

Proof: By a nested induction, first on the structure of A and second simultaneously on the structures of \mathcal{D} and \mathcal{E} . This means we can appeal to the induction hypothesis

- 1. when the cut formula *A* becomes smaller, or
- 2. the cut formula A stays the same and
 - (a) either \mathcal{D} becomes smaller and \mathcal{E} stays the same, or
 - (b) \mathcal{D} stays the same and \mathcal{E} becomes smaller.

from F. Pfenning Lecture Notes on Linear Logic

Cut Admissibility in Coq

Current/Future Work

- Restriction of Linear Logic for modelling forwarders (BehAPI started at CMU now with C. Schurmann)
 - Formalised (proved): 7 different cut theorems on top of this formalisation
- Subject Reduction for Binary Session Types (see you in Leicester)
- Subject Reduction for Multiparty Session Types
- Subject Reduction for Asynch. Multiparty Session Types