Typestate Inference for Mungo: Algorithm and
Implementation

Hans Huttel — Department of Computer Science, Aalborg University, Denmark — with

laroslav Golovanov Mikkel Kettunen Mathias Jakobsen
2 March 2020

Mungo is a typed Java-like language in the style of Featherweight Java of Igarashi et
al. that contains usual object-oriented and imperative constructs.

Mungo is also the associated programming tool developed at Glasgow University by
Dardha, Gay et al.

Our contributions to Mungo

Usage
Inference

Added generics Implementation

Introduction: Typestates

Typestate definitions model dynamic program properties by letting types have content
that can give an overapproximation of reachable program states.

Typestates allow us to specify the allowed order of operations.
In our setting, we can statically verify that

e Null-dereferencing does not occur

e Protocols are not violated

Example: Protocol Error

1 public static void main(String[] args) {
2 List list = new LinkedList();

3 list.add(" List");

4 list.add (" Modification”);

5 list.add(” Example”);
6
7
8
9

Listlterator Ilterator = list.listlterator();
[lterator.next();
[lterator.remove();

10 [lterator.set(" Updating”);

1}

Illegal state exception at line 10

Iterator should be invalidated after call to remove

Introduction: Usages

Commonly, pre- and postconditions are used to define typestates

e On variables in Strom & Yemini

e On methods in most OOP contexts

Usages are another approach to typestate definitions.

A usage defines a global typestate instead of annotating each method or variable.

Introduction: Usages cont.

Usages are similar to finite-state automata. We allow three behavioural constructs:
E [Y1E

e Branching {m;; w;} £, Usage = { init; X}

e Choice (/; : uj) ¢,

e Recursion X EWiX=u}

- T:{d ff; X
E:{X:{test;< F-){<oStu ' }> stop; end} }

Each object is associated with a typestate consisting of a class and a usage

Introduction: Example

Let Listing be a class with method addProduct with two parameters

Consider the following Product class:

1 class Product {
2 String sku; Plnfo info;
8
4 void setSku(String x) { sku = x; } start — setSku
5 void setlnfo(PlInfo x) { info = x; }
6
7 Listing addTolstng(Listing 1) { setInfo setlnfo
8 | .addProduct(info, sku);
9 return |;
10) setSku
1}
addTolLstng
Note that the number of reachable usage states grows @

exponentially with each additional linear field.

Introduction: Inference Motivation

Annotating each class with usages has some disadvantages:

1 class Product{
e Usages can be large and trivial 2 {setSku; {setlnfo; X}
e Costly to adopt 3 setinfo; {setSku; X}}
4 [X = {addTolLstng; end}]
e Problems with maintainability 5
e Cannot check external modules o)
7

Introduction: Inference Motivation cont.

It would be good to be able infer usages when protocol specification is not important:

Statically ensures no null-dereferencing errors

Reduces overhead

Better maintainability

Open source external modules can be checked

10

Usage Inference: Problem

’— Problem

Infer usages for classes when not explicitly specified

Principal Usage
A usage that can simulate every other usage that well-types the class

Usage subtyping U C U’ or (U, U') € R
R is a usage simulation iff for all (Uy,Uz) € R we have that:

1. If Uy ™ U] then U ™ U} such that (U, Up) € R
2. I1f Uy 5 U] then Uy 5 U} such that (U, 1) € R

11

Typesystem: Intuition

1. Start from the environment where
all fields are null start

setSku

2. Check that following the usage

setInfo setInfo

type-checks given the current

environment
setSku

3. Finally, make sure that the
environment is terminated when

the usage is addToLstng

12

Typesystem: Definition

Type judgements for classes are of the form

©;envTr g ClU] > envTE

13

Typesystem: Definition

(TCBR) makes sure that when we have a branching usage, all possible branches are
well typed w.r.t. the field typing environment

(TCCH) checks that all labels leads to well-typed behaviour and same resulting

environment

140 Viel . JenvTf .

{this — envTE}; 0 - (this, [x; — t]]) F5 e : t; > {this — envTf£}; 0 - (this, [x; — t]'
terminated(t/’) t; mi(t/ x;){ej} € C.methodsz ©;envT/ -5 Cluf]>envT,
©;envTr 5 C[{m;; u,-},-E;,] >envTf

VlieL.©;envTF -3 C[u,-z'z] >envTf

©;envTr g C[(/; : u,-}FeL] >envTf

(TCBR)

(TCCHh)

14

Typesystem: Definition

(TCALLF) type checks a method call of a field

It does so by making sure that a method call is available at the current type

NA-(0,S)Fe:t>N{o.f— CU}LA - (0,5)
t' m(t x){e'} € C.methodsg u->w
N A-(0,S)F f.m(e) : t'>N{o.f — CW]}; A - (0,5)

(TCALLF)

15

Inference Algorithm: Intuition

We need to do what (TCBR) and (TCCH) typing does in reverse

1. Start from the initial field typing environment

. Typecheck all method bodies with the field typing environment and filter those
from that leads to errors

3. Now continue to typecheck all new field typing environment

4. Build the usage based on the graph generated

16

Inference Algorithm: Intuition

Creating a method availability graph for the previous example
Graph shows a valid sequence of method calls

The red transitions are method calls that lead to errors

setSku setInfo addTolLstng

setSku
addToLstng et sy 22%“{8

17

Inference Algorithm: Rules

We define a transition relation between field typing environments.

A transition only exists if the method call is well typed.

(CLaAss)

envTr 2 envTf

18

Inference Algorithm: Rules

We define a transition relation between field typing environments.

A transition only exists if the method call is well typed.

{this — envTg}; 0 - (this, [x > t]) F? e : ¢/ > {this — envTL}; 0 - (this, [x — t"])

(CLASS)
envTr = envTF

18

Inference Algorithm: Rules

We define a transition relation between field typing environments.

A transition only exists if the method call is well typed.

{this > envTe}; 0 - (this, [x > t]) F? e : ¢/ > {this — envTL}; 0 - (this, [x — t"])

t' m(t x) {e} € C.methods =lin(t”)

(CLAsS)
envTrE = envTf

18

Inference Algorithm: Rules

S is a set of the environments which can lead to a terminated environment.
S ={envTg | envTg, =" envTg N envTg =" envTg } U {end}

The usage graph allows us to reach the terminated usage end.

m m
envTE — envTp envTFp — envTg,

(TRANS) (END)

envTr = envTf envTF = end

19

Inference Algorithm: Rules

The usage is created by creating a usage variable and usage for each field typing
environment

1: function INFER(S, A, =, envTE)

2 function REACH(envTF)

3 return {envT, | 3m € A.envTr = envT}}
4 if REACH(envTg) = 0 then

53 return end”

6 E+ 0

7 for all envTF € S\ {end} do

8 E < EU{Xen 1, = CREATESTATE(envTF)}
9: return XE':;WTFL

20

Inference Algorithm: Rules

1: function CREATESTATE(envTF)

2 u<0

g for all m € A do . .

4 forall s € S do 1. Find all transitions from
53 if envTr = s then envlg

6: if s = end then

7 U« uU {m;end} 2. Create a branch for a

8: if L m(-x){-} € C.methods then transition

9: u < uU{m;(l; :end);er}

10: olse 3. If the method returns a
11: U uU{m; Xs} label, add a choice usage
12: if L m(- x){-} € C.methods then

13: u = uU{m; (i Xs)er}

14: return u

21

Implementation

Haskell implementation of type system and inference module in mungoi
Implemented for only the formalised subset of Java

Motivation: Verify complexity in real-life situations

22

Implementation: Example

We introduce the special usage variable infer to indicate inference

1
2
3
4
5
6
7
8
9

10
11
12
13

class Product {

infer[]

String sku
Plnfo info

void setSku(String[initialised] x) { sku =x }
void setlnfo(PlInfo[initialised] x) { info = x }
Listing[intialised] addTolLstng(Listing[uninitialised] 1) {
| .addPinfo(info); |.addSku(sku);
|

23

Implementation

The example can be inferred, and is also

well-typed " H

setSku

1 $ stack run Product.mg

2 X1[X0 = end setlnfo setlnfo
3 X1 = { setSku; X3

4 setinfo; X4 }

5 X2 = { addTolstng; X0

6 addTolstng; X1 } addTolstng

7 X3 = { setlnfo; X2 }

8 X4 = { setSku; X2 }] @

9 new Right ()

24

Algorithm: Properties

Theorem (Principal Usage Inference)
Let C be a class and U, be an inferred usage, then U, is a principal usage for C.

Proof.
By showing that the inferred usage is the largest and that it makes the class well

typed [

23

Complexity

Size of usages are bounded by

O((lel + If] - [ud])? + 2211) ~ 02217 | m])

Worst case assumption
Every usage state can transition to every other usage state, with every method

call

While technically possible, it is a huge overestimation for actual programs

26

Practical Complexity

Large usages are plausible for usual programs
Classes with n unrelated linear fields will have usages of size O(2")

Non-determinism does not seem to be useful often

27

Practical Complexity

1 class SmartHomeController {

2 DoorController dc:

3 TemperatureController tc;

4 ElectronicsController ec;

6 void initTempController(TemperatureController c) {
7 this.tc = c;

8 this.tc.initialise();

9

10 [
11}

27

Practical Complexity

Large usages are plausible for usual programs
Classes with n unrelated linear fields will have usages of size O(2")

Non-determinism does not seem to be useful often

27

Discussion & Conclusion

Inference makes usages more practical

We infer the largest (principal) usage
e Infer once, use everywhere

Is the extra effort and complexity worth it?

28

