
A Dynamic Temporal Logic for Quality of
Service in Choreographic Models ‹

Carlos G. Lopez Pombo‹‹1,2, Agust́ın E. Martinez Suñé3, Emilio Tuosto4

1 Centro Interdisciplinario de Telecomunicaciones, Electrónica, Computación y
Ciencia Aplicada - CITECCA, Universidad Nacional de Ŕıo Negro - Sede Andina

2 CONICET–UBA. Instituto de Investigación en Ciencias de la Computación
3 Universidad de Buenos Aires, FCEyN, Departmento de computación

4 Gran Sasso Science Institute

Abstract We propose a framework for expressing and analyzing the
Quality of Service (QoS) of message-passing systems using a choreo-
graphic model that consists of g-choreographies and Communicating Fi-
nite State machines (CFSMs). The following are our three main con-
tributions: (I) an extension of CFSMs with non-functional contracts to
specify quantitative constraints of local computations, (II) a dynamic
temporal logic capable of expressing QoS, properties of systems relat-
ive to the g-choreography that specifies the communication protocol,
(III) the semi-decidability of our logic which enables a bounded model-
checking approach to verify QoS property of communicating systems.

1 Introduction

Over the past two decades, software has steadily changed from monolithic ap-
plications to distributed cooperating components. Choreographic approaches are
gaining momentum in industry (e.g. [1,2,3,5]) which, increasingly, conceives ap-
plications as components interacting over existing communication infrastruc-
tures. Among other models, choreographies stand out for a neat separation of
concerns: choreographic models abstract away local computations from commu-
nications among participants. In fact, since their introduction [6], choreographies

‹ Research partly supported by the EU H2020 RISE programme under the Marie
Sk lodowska-Curie grant agreement No 778233. Research partly supported by the
PRO3 MUR project Software Quality, and PNRR MUR project VITALITY
(ECS00000041), Spoke 2 ASTRA - Advanced Space Technologies and Research
Alliance. Carlos G. Lopez Pombo’s research is partly supported by Universidad
de Buenos Aires by grant UBACyT 20020170100544BA and Agencia Nacional de
Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación Cient́ıfica
through grant PICT-2019-2019-01793.

The authors thank the anonymous reviewers for their constructive comments.

‹‹ On leave from Instituto de Ciencias de la computación CONICET–UBA and De-
partamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad
de Buenos Aires.

2 Carlos G. Lopez Pombo, Agust́ın E. Martinez Suñé, Emilio Tuosto

advocate for a separation between a global view and a local view of communic-
ation. The former is a high-level description of (distributed) interactions. The
latter view is a description of each component in isolation. This is the distinctive
feature of choreographies that we exploit here to reason about quantitative prop-
erties of applications. The basic idea is to specify the values of quality attributes
of local states of components and then aggregate those attributes along runs
involving communications. A simple example can illustrate this. Suppose that a
component A sends another component B a message m and we want to consider
two quality attributes: monetary cost (c) and memory consumption (mem). This
behaviour can be abstracted away with the finite-state machines below

behaviour of A:
q0

tc ď 5,mem “ 0u

q1

t5 ď c ď 10, mem ă 3u
AB!m

behaviour of B:
q0

1

tc “ 0,mem “ 0u

q1
1

t10 ď mem ď 50, c “ 0.01 ¨memu

AB?m

(1)

where AB!m and AB?m respectively denote the output and input communic-
ation actions, and each state is decorated with a specification predicating over
the quality attributes in the local states of A and B. For instance, both A and B
allocate no memory in their initial states, computation in A may cost up to five
monetary units before executing the output, and B has no cost since it’s just
waiting to execute the input (c “ 0). Likewise, after the communication actions,
the local computations of A and B are specified by the formulae associated to
states q1 and q11.

The interaction between A and B depends on the communication infrastruc-
ture; e.g., asynchronous message-passing yields a run like

π :
s0 s1 s2

AB!m AB?m

where first the message is sent by A and then it is eventually received by B.
We are interested in analyzing quality properties that admit a measurement,

thus assuming that the QoS attributes are quantitative. These properties en-
compass both quantitative attributes at the application level as well as resource
consumption metrics. For instance, we could be interested in analyzing the mon-
etary cost or the number of messages retrieved in a messaging system; but we
could also be interested in analyzing its memory usage or CPU time. It’s im-
portant to emphasize that our framework is designed to be agnostic and adapt-
able, allowing for the consideration of any quantifiable attribute, regardless of
its specific nature. Furthermore, our framework is specifically designed to en-
able analysis of how quantitative properties of local computations influence the
system-wide properties. Hence, we envisage the quality constraints as contracts
that the local computations of components should honour. For instance, the
specifications in (1) tell the cost of local computations in A and B, they do not
predicate on the QoS of the communication infrastructure.

Once these quality constraints on local computations are fixed, natural ques-
tions to ask are e.g., “is the memory consumption of B along run π within a given

A Dynamic Temporal Logic for Quality of Service in Choreographic Models 3

range?” or “is the monetary overall monetary cost below a given threshold?”. An-
swers to such questions require checking that the aggregation of the constraints
on the quality attributes along the run π entails the properties. Interestingly,
how to aggregate those constraints depends on the quality attributes. For in-
stance, the aggregation of memory consumption can be computed by taking the
maximum, while the aggregation of monetary cost can be computed as the sum.
We work under the hypothesis that developers have no control over communica-
tion infrastructure. More precisely, QoS aspects related to how communications
are realised are not under the control of applications’ designers. Instead, design-
ers have control over local computations, thus suggesting that QoS constraints
are naturally associated to states of components. Indeed, we rely on behavioural
types (such as [9,10,11,12,13]) which abstract away low level details.

Contributions We propose a framework for the design and analysis of QoS-aware
distributed systems, enabled by the following technical contributions:

Models for QoS attributes. Section 4 presents a straightforward extension
of communicating finite-state machines (CFSMs [14]; reviewed in Section 3)
to express QoS aspects of components. Basically, we assign to each state of
CFSMs a QoS specification as in (1).
We adopt real-closed fields (RCFs, cf. Section 3) to abstractly represent QoS
values; besides being a complete and decidable abstract formalisation of the
first-order theory of the real numbers, RCFs are instrumental for a smooth
definition of our framework.

A dynamic temporal logic for QoS. Section 5 introduces a logic, dubbed
QL, to express QoS properties. Taking inspiration from Propositional Dy-
namic Linear Temporal Logic (DLTL) [15], QL indexes temporal modalit-
ies with global choreographies [16] (g-choreographies, Section 3), a model of
global views of choregraphies, in order to predicate over QoS properties of
the whole system. This is a distinct characteristic of QL that we comment
in Section 2.

A semi-decision procedure for QL. Section 6 provesQL to be semi-decidable
by providing a k-bounded semi-decision procedure and relying on the decid-
ability of the theory of real-closed fields [17] to check QoS constraints in
atomic formulae. A distinctive aspect of the procedure is that it can be used
as a bounded model-checking procedure where the bound is established by
the g-choreographies indexing the modalities of QL formulae.

Section 7 draws some conclusions and points out some further lines of research.

2 Related Work

The relevance of the problem addressed here has been already highlighted by
other researchers [7,8]. There is a vast literature on QoS, spanning a wide range
of contexts and methods [18,19]. This paper can be positioned in the category
of general application-level QoS. The combination of RCFs and our behavioural

4 Carlos G. Lopez Pombo, Agust́ın E. Martinez Suñé, Emilio Tuosto

types aims to capture essential aspects for applications’ quantitative analysis
while striving for generality. In this vein, a proof-of-concept methodology based
on behavioural types has been proposed in [20] for client-server systems. To the
best of our knowledge, our is the first work blending behavioural types with QoS
and offering a decision procedure for multiparty protocols.

In order to abstractly capture QoS (instead of focusing on specific attributes)
we adopt RCFs. Other abstract models of QoS such as quantales [21] or c-
semirings [22,23,24] have been proposed. We opted for RCFs due to their inherent
decidability, which is crucial for ensuring the decidability of our logic. Moreover,
RCFs offer practical advantages as they can be readily employed in modern SMT
(satisfiability modulo theories) solvers [41, Chapter 33].

Theory presentations over QoS attributes are used in [25] to enable the auto-
matic analysis of QoS properties with a specification language that only considers
convex polytopes; this restriction is not present in our language. Also, the ap-
proach in [25] can be thought as “monolithic”, in the sense that specifications
are given considering the system as a black box. We instead assign QoS contracts
to states of components and then aggregate them in order to analyze properties
along executions of the behavior emerging from interactions.

The use of choreographic methods for non-functional analysis yields other
advantages. For instance, QoS contracts of components are derived from global
specifications [7]. These contracts can then be used for run-time prediction, ad-
aptive composition, or compliance checking, similarly to what is done in [8].
This top-down approach can be transferred to behavioural types as well simil-
arly to what has been done in [11,26] for qualitative properties. The framework
proposed in [27] uses CFSMs as a dynamic binding mechanism of services but
only considers the communicational aspects of the software component. Such a
framework could be extended to include QoS attributes as well by leveraging the
results presented in this paper.

OurQL logic takes inspiration from dynamic linear temporal logic (DLTL) [15]
which blends trace semantics (akin linear temporal logic [28]) and regular ex-
pressions over a set of atomic actions (akin propositional dynamic logic [29]).
Intuitively a key difference is that, unlike DLTL, QL does not predicate about
the behaviour of sequential programs; rather QL describes properties of asyn-
chronous message-passing systems. This requires a modification of the syntax
of DLTL; in fact, the syntax of QL is essentially the same of DLTL barred for
the indexes of modalities, which become choreographies of interactions. This
straightforward modification has deep impact on the semantics which requires a
complete redefinition (see Section 7 for further details). Another key difference is
that, while DLTL is propositional, QL’s atomic formulae are first order formulae
on QoS attributes. As a consequence, not only QL can express usual temporal
properties, such as safety and liveness ones, but temporal properties constrain-
ing the value of QoS attributes. These points of comparison with DLTL apply
in the same way to a similar logic called linear dynamic logic (LDL), introduced
first in [30] and later formalized for finite traces in [31].

A Dynamic Temporal Logic for Quality of Service in Choreographic Models 5

3 Preliminaries

This section surveys background material underpinning our work. We first de-
scribe the protocol used as a running example, then we review our choreographic
model and we briefly recall real-closed fields.
A running example. Through the paper we will use a (simplified variant) of the
POP protocol [32]. This protocol allows mail clients to access a remote mailbox
and retrieve e-mails. In the POP protocol a client starts the communication by
sending a message of type helo to a POP server (note that protocol specifications
are oblivious of messages’ payload).5 The server replies with the number of
unread messages in the mailbox using a message of type int. At this point the
client can either halt the protocol or read one of the e-mails. These options are
selected by sending a message of type quit or of type read respectively. In the
former case, the server acknowledges with a message of type bye and the protocol
ends. In the latter case, the server sends the client the number of bytes of the
current unread message in a message of type size. Next, the client has again a
choice between quitting the protocol (as before) or receiving the email (selected
in the read message) by sending the server a message of type retr. In the latter
case the server sends the email with a message of type msg, the client answers
with a message of type ack and the reading process starts again.
A choreographic model. We use global choreographies [16] to specify the
global view of communicating systems whose local view are rendered as commu-
nicating finite state machines [14].

Hereafter, we fix a set P of participants and a set M of (types of) messages
such that PXM “ H. We start by surveying the definition of g-choreographies.

Definition 1 (Global choreographies [16]). A global choreography over P
and M (g-choreography for short) is a term G that can be derived in

G ::“ 0
ˇ

ˇ AÝÑB : m
ˇ

ˇ G;G1
ˇ

ˇ G | G1
ˇ

ˇ G ` G1
ˇ

ˇ G˚

where A,B P P, A ‰ B and m PM.

Intuitively, a g-choreography specifies the communication protocol of participants.
The basic g-choreography is the empty one 0, which specifies that no commu-
nications should happen. An interaction AÝÑB : m specifies that participants A
and B (are expected to) exchange a message of type m; it is worth remarking
that we assume asynchronous communication where the sender A does not wait
for B to consume m to continue its execution. Moreover, g-choreographies can
be composed sequentially (G;G1), in parallel (G | G1), and in non-deterministic
choices (G ` G1); we assume that 0 is the neutral element of ; , | , and ` .
Note that, due to asynchrony in the communication, in a sequential composi-
tion G;G1, outputs in G1 can occur before G is fully executed; for instance, the
distributed execution of AÝÑB : m;CÝÑB : m1 allows the output from C to happen
before the one from A. Finally, a g-choreography may be iterated (G˚).

5 Our framework can handle multiparty protocols; however, our examples are two-
party for simplicity. Also, we stick to the types of messages as carefully described in
the protocol specifications [32].

6 Carlos G. Lopez Pombo, Agust́ın E. Martinez Suñé, Emilio Tuosto

Example 1 (A g-choreography for POP). Our running example can be expressed
as the g-choreography Gpop “ CÝÑS : helo;Gstart ` Gquit where

Gstart “ SÝÑC : int; pGread ` Gread;Gretrq
˚
;Gquit Gread “ CÝÑS : read;SÝÑC : size

Gretr “ CÝÑS : retr;SÝÑC : msg;CÝÑS : ack Gquit “ CÝÑS : quit;SÝÑC : bye

(; takes precedence over `). ˛

The participants of a communicating system interact through channels bor-
rowed from the set C “ t pA,Bq P P ˆ P

ˇ

ˇ A ‰ B u. A channel pA,Bq P C (written
AB for short) allows A to asynchronously send messages to B through an un-
bounded FIFO buffer associated to AB. The set of communication actions is
L “ L! YL? where L! “ tAB!m

ˇ

ˇ AB P C and m PMu and L? “ tAB?m
ˇ

ˇ AB P
C and m PMu are respectively the set of output and input actions. The language
LrGs of a g-choreography G is essentially the set of all possible sequences in L
compatible with the causal relation induced by G. Since LrGs is prefix-closed, we
write L̂rGs for the set of sequences in LrGs that are not proper prefixes of any
other sequence in LrGs. The technical definition of LrGs, immaterial here, can
be found in [16]. We will adapt CFSM [14] to model the QoS-aware local view
of a system.

Definition 2 (Communicating systems [14]). A communicating finite-
state machine (CFSM) is a finite transition system M “ pQ, q0,Ñq where

– Q is a finite set of states with q0 P Q the initial state, and

– Ñ Ď Qˆ LˆQ; we write q
ℓ
ÝÑ q1 for pq, ℓ, q1q PÑ.

For AB!m P L (resp. AB?m P L), let sbjpAB!mq “ A (resp. sbjpAB?mq “ B).

Given A P P, M is A-local if sbjpℓq “ A for each q
ℓ
ÝÑ q1. A (communicating)

system is a map S “ pMAqAPP assigning a A-local CFSM MA to each A P P.

Example 2 (Communicating system for POP). The following CFSM exhibits a
behaviour of a POP client compatible with the protocol in Example 1 because
its executions yield a subset of the client’s execution specified there.

C S!helo S C?int C S!read S C?size C S!retr S C?msg

C S!ack
C S!quit C S!quit

C S!quit

S C?bye

For a POP server, being a two-party protocol, we can use a dual CFSM obtained
by replacing send actions with corresponding receive actions and vice versa. ˛

The asynchronous communication between participants is formalised by a
labelled transition system (LTS) tracking the (local) state of each CFSM and
the content of each buffer (i.e. communication channel) in the system. A con-
figuration of a communicating system S is a pair s “ xq ; by where q and b
respectively map participants to states and channels to sequences of messages;

A Dynamic Temporal Logic for Quality of Service in Choreographic Models 7

state qpAq keeps track of the state of the machine MA and buffer bpABq yields
the messages sent from A to B and not yet consumed. The initial configuration
s0 is the one where, for all A P P, qpAq is the initial state of the corresponding
CFSM and bpABq is the empty sequence for all AB P C.

A configuration s1 “ xq1 ; b1y is reachable from another configuration s “
xq ; by by firing a transition ℓ, written s ℓùñs1, if there is a message m PM such

that either (1) or (2) below holds:

1. ℓ “ AB!m with qpAq
ℓ

ÝÑA q1 and

a. q1
“ qrA ÞÑ q1

s

b. b1
“ brAB ÞÑ bpABq.ms

2. ℓ “ AB?m with qpBq
ℓ

ÝÑB q1 and

a. q1
“ qrB ÞÑ q1

s and
b. b “ b1

rAB ÞÑ m.b1
pABqs.

Condition (1) puts m on channel AB, while (2) gets m from channel AB. In both
cases, any machine or buffer not involved in the transition is left unchanged in
the new configuration s1.

Example 3 (Semantics of CFSMs). For the run π of the communicating system
in (1) (cf. Section 1) we have, for i P t0, 1, 2u, si “ xqi ; biy, where q0 “ tA ÞÑ
q0,B ÞÑ q0

1u, b0 “ tAB ÞÑ ϵ,BA ÞÑ ϵu, q1 “ tA ÞÑ q1,B ÞÑ q0
1u, b1 “ tAB ÞÑ

m,BA ÞÑ ϵu, and q2 “ tA ÞÑ q1,B ÞÑ q11u, b2 “ b0. ˛

Let S be a communicating system. A sequence π “ psi, ℓi, si`1qiPI where I is an
initial segment of natural numbers (i.e., i´ 1 P I for each 0 ă i P I) is a run of
S if si

ℓiùñsi`1 is a transition of S for all i P I. The set of runs of S is denoted

as ∆8S and the set of runs of length k is denoted as ∆k
S . Note that ∆8S may

contain runs of infinite length, the set of finite runs of S is the union of all ∆k
S

and will be denoted as ∆S . Given a run π, we define Lrπs to be the sequence
of labels pℓiqiPI . The language of S is the set LrSs “ tLrπs

ˇ

ˇ π P ∆8S u. Finally,
prf : ∆8S Ñ 2∆S maps each run π P ∆8S to its set of finite prefixes. As usual,
for all π P ∆8S , the empty prefix ϵ belongs to prf pπq. For convenience, we will
occasionally write s0

ℓ0ùñs1 . . . sn
ℓnùùñsn`1 for finite sequences.

Real-closed fields. Real numbers are natural candidates to express quantitat-
ive attributes of a software artifact. We adopt real-closed fields (RCFs), which is
the formalisation of the first-order theory of the real numbers, as a foundation
for QoS values. Let Σfield denote the first-order signature xt0, 1u, t`, ¨u, tăuy.
An ordered field is a first-order theory presentation xΣfield, Γfieldy, where Γfield

consists of the field axioms as well as the axioms defining ă as a strict total
order relation. Real-closed fields are ordered fields whose non-empty subsets all
have a supremum. Tarski’s axiomatization of real-closed fields, denoted here as
xΣRCF, ΓRCFy, was introduced in [17]. Tarski further demonstrated the existence
of a decision procedure for this first-order theory of real numbers in [17, Thm. 37].
Thus, the main reason for selecting RCFs as the foundation for QoS lies in the
fact that first-order theories extending them using elementary operations are
decidable, providing effective means for analysis.

8 Carlos G. Lopez Pombo, Agust́ın E. Martinez Suñé, Emilio Tuosto

4 Quality of Service of Communicating Systems

In this section we extend CFSMs with QoS specifications in order to express QoS
contracts of components in message-passing systems. Basically, each state of CF-
SMs is assigned a QoS contract specifying the usage of computational resources.
We formalise QoS contracts as QoS specifications which are theory presentations
over the RCFs, noted as xΣ,Γ y, paired up with aggregation operators, noted as
‘a, to define how each QoS attribute accumulates along a communicating sys-
tem. These aggregation operators will be essential to formally define the notion
of aggregation along a run, as shown later in Example 9.

Definition 3. A QoS specification xΣ,Γ y is a (first-order) theory presentation
extending xΣRCF, ΓRCFy as follows:

1. Σ “ xt0, 1u Y Q, t`, ¨u Y t‘auaPQ, tăuy, where Q is a finite set of constant
symbols (other that 0 and 1) representing the quantitative attributes (from
now on referred to as QoS attributes) and, for each a P Q, ‘a is an associ-
ative algebraic binary operator and

2. Γ “ ΓRCF Y Γ 1, being Γ 1 a finite set of first-order formulae formalising
specific constraints over the QoS attributes in Q.

The class of QoS specifications will be denoted as CpQq.

In order to preserve decidability of QoS properties, we only consider QoS spe-
cifications involving additional constant symbols representing the QoS attributes
of components. Aggregation operators are required to be algebraic because the
extension of the theory must be kept in the first-order fragment (uninterpreted
function or predicate symbols must be avoided to preserve decidability). It is
worth noticing that aggregation operators strongly depend on the nature of
each specific attribute; for example, natural aggregation operators for memory
and time are the maximum function and sum respectively.

Example 4 (QoS specification). With reference to Example 2, possible quant-
itative attributes of interest in an implementation of POP are Q “ tt, c,mu
representing CPU t ime, monetary cost, and memory usage, respectively. Then a
QoS specification that characterises low computational costs, where no internal
process consumes significant amount of resources, can be written according to
Definition 3 as follows:

Σ “ xt0, 1u Y tt, c,mu, t`, ¨u Y t‘t,‘c,‘mu, tăuy

Γ “ ΓRCF Y Γ
1
Low

where ‘t “ `, ‘c “ `, ‘m “ max , and Γ 1Low “ tt ď .01, c ď .01,m ď .01u ˛

From now on, we fix a set of constant symbols Q which we omit from the set
of QoS specifications, that will be referred to just as C. It is worth noting that,
when Q is fixed, a QoS specification xΣ,ΓRCF Y Γ

1y, is completely determined
by Γ 1. Therefore, we can unabiguously refer to a QoS specification using its set
of formulas Γ 1. Thus, the QoS specification in Example 4 is Γ 1Low.

A Dynamic Temporal Logic for Quality of Service in Choreographic Models 9

Example 5 (QoS for POP). The following QoS specifications formalise the costs
associated to different activities in the POP protocol of Example 2.

Γ 1Chk “ tt ď 5, c “ 0.5,m “ 0u

Γ 1Mem “ t1 ď t ď 6, c “ 0,m ď 64u

Γ 1DB “ tt ď 3 ùñ pDxqp0.5 ď x ď 1^ c “ t ¨ xq, t ą 3 ùñ c “ 10,m ď 5u

Basically, Γ 1Chk formalizes the costs associated to the activity of integrity check-
ing a message, Γ 1Mem to the activity of a server receiving a message, and Γ 1DB

to establishing that the monetary cost is fixed if the insertion takes more than
three time-units and it is a fraction of the execution time, otherwise. ˛

We now extend communicating systems (cf. Section 3) with QoS-specifications.

Definition 4 (QoS-extended CFSMs). A QoS-extended CFSM is a tuple
MQoS “ xM,F, qosy where:

– M “ xQ, q0,Ñy is a CFSM,
– F Ď Q is a set of final states of M , and
– qos : QÑ C maps states of M to QoS specifications.

A QoS-extended communicating system SQoS is a map pMQoS
A qAPP assigning

an A-local QoS-extended CFSM MQoS
A to each A P P. A configuration xq ; by of

SQoS is a final configuration if qpAq P FA for every A P P.

Example 6 (QoS-extended CFSMs). An extended CFSM of the POP client in
Example 2 with the QoS specifications of Example 5 is as follows:

Γ 1
Low

Γ 1
Low Γ 1

DB Γ 1
Low Γ 1

DB Γ 1
Mem Γ 1

Chk

C S!helo S C?int C S!read S C?size C S!retr S C?msg

Γ 1
Low Γ 1

Low

C S!ack
C S!quit

C S!quit

C S!quit

S C?bye

where the filled state is the only final state. Each state is assigned a QoS spe-
cification given in Example 5 according to the following idea. States where the
client performs negligible computations are assigned the QoS specification Γ 1Low.
The remaining states are assigned QoS specifications as follows. The local states
where C performs a database insertion (right after receiving an int or size mes-
sage) and those where C accesses the memory (right before receiving an unread
e-mail) are constrained respectively by Γ 1DB and Γ 1Mem; finally, Γ

1
Chk constrains

the states where C performs an integrity check (right after receiving an unread
e-mail). ˛

Notice that Definition 4 requires every state of a CFSM to be assigned a
QoS specification. However, in most cases, most states will have the same QoS
specification, as it is the case of Γ 1Low in Example 6; typically one only has to
identify the QoS costs specific to few states.

The semantics of QoS-extended communicating systems is defined in the
same way as the semantics of communicating systems. This is a consequence of
the fact that QoS specifications do not have any effect on communications.

10 Carlos G. Lopez Pombo, Agust́ın E. Martinez Suñé, Emilio Tuosto

5 QL: A Dynamic Logic for QoS

To describe QoS properties we introduce QL, a logical language akin DLTL.

Definition 5 (QoS formulae). The QoS logic QL consists of the smallest set
of formulae that can be obtained from the following grammar:

Φ ::“ J
ˇ

ˇ ψ
ˇ

ˇ ␣Φ
ˇ

ˇ Φ_ Φ
ˇ

ˇ Φ UGΦ

where ψ is a formula in a theory presentation in C, and G is a g-choreography
over P and M (see Definition 1).

Atomic formulae express constraints over quantitative attributes. Akin DLTL,
properties of runs are linear temporal formulae where the until operator is in-
dexed with a global choreography G. In essence, the role of G is to restrict the set
of runs to be considered for the satisfiability of the until. Global choreographies
are suitable for this purpose because they are a declarative and compact way
of characterizing the behaviour of asynchronous message-passing systems. The
possibility modality xGyΦ is defined as JUGΦ and the necessity modality rGsΦ is
defined (dually) as ␣xGy␣Φ. Finally, propositional connectives ^ and ùñ are
defined as usual.

The following example shows how to express non-functional properties of
specific runs of the system in QL.

Example 7 (QoS properties of POP protocol). We can use the g-choreographies
and the QL formula below to state that, unless the cost is zero for the first three
e-mails read, the cost is bounded by 10 times the CPU time, and the memory
consumption is bounded by 5. We define

Φ ” rG3spc ą 0q ùñ rG3;Gmsg
˚
s
`

pc ď t ¨ 10q ^ pm ď 5q
˘

where

G3 “ CÝÑS : helo;SÝÑC : int;Gmsg;Gmsg;Gmsg and

Gmsg “ CÝÑS : read;SÝÑC : size;CÝÑS : retr;SÝÑC : msg;SÝÑC : ack

Intuitively, for Φ to hold, either the first three message retrievals must have zero
cost in any run of the system, or on every subsequent message retrieval, the total
cost and memory consumption fall within the specified bounds. ˛

A QL formula (like Φ in Example 7) can be used in quantitative analyses
by aggregating the values of the QoS attributes along the runs of the system.
More precisely, given a run π, our interpretation is that, for each transition
si
ℓiùñsi`1 of π, the obligations stated in the QoS specification of si are met after

aggregating QoS information along π from state s0 up to state si. Therefore, a
central notion in our framework is that of aggregation function. Given a QoS-
extended communicating system S, an aggregation function aggS : ∆S Ñ C
yields a QoS specification capturing the cumulative QoS attributes along a run
π P ∆S by “summing-up” QoS specifications of participants’ local states.

A Dynamic Temporal Logic for Quality of Service in Choreographic Models 11

Example 8 (Aggregation). Recall the run π (1) from Section 1:

q0

tc ď 5,m “ 0u

A: q1

t5 ď c ď 10, m ă 3u
AB!m

q0
1

tc “ 0,m “ 0u

B: q1
1

t10 ď m ď 50, c “ 0.01 ¨mu

AB?m

s0π: s1 s2
AB!m AB?m

Let cqA (resp. cqB) denote the value of the QoS attribute c in the state q of
participant A (resp. B) and likewise for the attribute m. After π, we expect

max tmq0
A ,m

q1
A ,m

q1
0

B ,m
q1
1

B u and c
q0
A ` c

q1
A ` c

q1
0

B ` c
q1
1

B to respectively be the memory
consumption and the overall monetary cost in s2. This boils down to aggregate
the QoS attributes c and m using the maximization and addition operations,
respectively. ˛

Essentially, the aggregation in this case is obtained by (1) instantiating the
QoS specification associated to the local state of participants (this is done by
renaming attributes as in Example 8); and (2) adding an equation combining all
the instances of QoS specifications. The following formula captures this intuition
and exemplifies one way in which the aggregation function could be defined.

Example 9 (Aggregation). Let S “ pxMA, qosAyqAPP , we define the aggregation
function aggS : ∆S Ñ C to be aggSpπq “ fpπq Y gpπq where

fpπq “
ď

APP
0ďiďn

qosApqipAqq
qipAq
A and gpϵq “

#

a “

˜

a
à

APP
a
q0pAq
A

¸

ˇ

ˇ a P Q

+

gpπq “

$

’

&

’

%

a “

¨

˚

˝

a
à

0ďiăn
A“sbjpℓiq

a
qipAq
A

˛

‹

‚

‘a

˜

a
à

APP
a
qnpAq
A

¸

ˇ

ˇ a P Q

,

/

.

/

-

if π ‰ ϵ

where π “ xq0 ; b0y
ℓ0ùñ . . . ℓn´1ùùùñxqn ; bny P ∆S , and Πq

A “ tψqA
ˇ

ˇ ψ P Πu for a

set of QL formulae Π, and ψqA is obtained by replacing each QoS attribute c
with the symbol cqA in the atomic formula ψ. The intuition is that fpπq collects
all the QoS specifications of the local states of the participants along the run
π, and gpπq uses the aggregation operators to calculate the aggregated values of
the QoS attributes in the run π. If we apply this aggregation function to the run
π in Example 8, we obtain the following:

fpπq “ tcq0A ď 5,mq0
A “ 0u Y t5 ď cq1A ď 10, mq1

A ă 3u

Y tcq0
1

B “ 0,mq0
1

B “ 0u Y t10 ď m
q1
1

B ď 50, c
q1
1

B “ 0.01 ¨m
q1
1

B u

gpπq “
!

m “ max tmq0
A ,m

q1
A ,m

q1
0

B ,m
q1
1

B u, c “ cq0A ` c
q1
A ` c

q1
0

B ` c
q1
1

B

)

˛

12 Carlos G. Lopez Pombo, Agust́ın E. Martinez Suñé, Emilio Tuosto

It is important to emphasize that, in our conception, an aggregation function
relies on a run of the system as its input. This run inherently encompasses a
specific sequential ordering of the actions carried out by the participants. The
aggregation operators max and ` used in Example 8 follow this interpration. As
will become clear in Definition 6, this interpretation is sufficient for the purposes
of this paper, since it enables QL to specify temporal QoS properties about runs
of the system. However, one might be interested in a different kind of aggregation
that is aware of local states that are executed in parallel. This may require some
care and possibly to exploit truly-concurrent models, such as pomsets; this is
left for future work.

The semantics of our logic is defined in terms of QoS-extended communicat-
ing systems.

Definition 6 (QL semantics). A run is terminating if its last configuration is
a final conf. (see Definition 4). Given a QoS-extended communicating system S,
an S-model for a QoS property Φ is a pair xπ, π1y, where π P ∆8S is a terminating
run and π1 P prf pπq, such that xπ, π1y |ùS Φ where the relation |ùS is

xπ, π1y |ùS Φ iff aggSpπ
1q $RCF Φ if Φ is an atomic formula

xπ, π1y |ùS ␣Φ iff xπ, π1y |ùS Φ does not hold
xπ, π1y |ùS Φ1 _ Φ2 iff xπ, π1y |ùS Φ1 or xπ, π1y |ùS Φ2

xπ, π1y |ùS Φ1 UG Φ2 iff there exists π2 such that π1π2 P prf pπq and Lrπ2s P L̂rGs,
satisfying xπ, π1π2y |ùS Φ2 and, for all π3 P prf pπ2q,
if π3 ‰ π2 then xπ, π1π3y |ùS Φ1.

A QoS property Φ is satisfiable in S if there exists a terminating run π P ∆8S
such that xπ, ϵy |ùS Φ, and it is valid (denoted as |ùS Φ) if xπ, ϵy |ùS Φ for all
terminating runs π P ∆8S .

Negation and disjunction are handled in the standard way. The definition of the
until operator is similar to the standard operator: Φ2 must hold at some point
in the future, i.e., π1π2 and Φ1 must hold up to that point; the key difference
is that the satisfaction of Φ2 is restricted to runs where the extension π2 is in
L̂rGs. Finally, atomic formulae are handled by obtaining the aggregated QoS of
the accumulated run π1 and using the entailment relation of RCFs.

6 A semidecision procedure for QL

We now establish the semi-decidability of QL by presenting a k-bounded semi-
decision procedure relying on three algorithms: qSat, qModels, and qUntil. The
qSat algorithm is the main algorithm of the procedure and determines whether
a given formula is satisfiable in a given system. It relies on qModels to check if
there is a run that satisfies the formula which, in turn, uses qUntil to handle
the U operator. Let us start by looking at qSat defined as

A Dynamic Temporal Logic for Quality of Service in Choreographic Models 13

1 qSat(Φ, S, k):
2 i “ 0
3 while i ď k do
4 foreach π P ∆i

S do
5 if π is a terminating run and qModels(Φ, S, π, ϵ) then
6 return true

7 i “ i` 1

8 return false

Basically, qSat enumerates all the runs of S up to a given bound k and checks
whether any of them satisfies Φ (recall that ∆i

S is the set of all runs of S with
length i). Let us now focus on qModels:

1 qModels(Φ, S, π, π1):
2 switch Φ do
3 case J do
4 return true
5 case ψ do
6 return whether aggSpπ

1
q $RCF ψ

7 case ␣Φ1 do
8 return not qModels(Φ1, S, π, π

1)
9 case Φ1 _ Φ2 do

10 return qModels(Φ1, S, π, π
1) or qModels(Φ2, S, π, π

1)

11 case Φ1 UG Φ2 do
12 return qUntil(Φ1,G, Φ2, S, π, π

1, ϵ)

Following Definition 6, qModels recursively inspects the QL formula. It invokes
qUntil to handle the U operator and the decision procedure of the theory of
real-closed fields to check the atomic formulae. Let us now look at qUntil:

1 qUntil(Φ1,G, Φ2, S, π, π
1, π2):

2 if Lrπ2
s P L̂rGs and qModels(Φ2, S, π, π

1π2) then
3 return true

4 else if not qModels(Φ1, S, π, π
1π2) then

5 return false
6 else
7 Let

ℓ
ùñ q be the transition such that π1π2 ℓ

ùñ q P prf pπq

(takes the first transition in π if π1π2
“ ϵ,

and it is not defined if π1π2
“ π)

8 if π1π2
“ π or Lrπ2 ℓ

ùñ qs R LrGs then
9 return false

10 else
11 return qUntil(Φ1,G, Φ2, S, π, π

1, π2 ℓ
ùñ q)

This procedure takes care of searching for a witness of the existential in the
semantics of U by starting in the current prefix π1 and following the transitions
of π. According to Definition 6, qUntil searches for a witness of the existential
part of U . It takes as parameters the complete run π, the prefix π1 at which the
U is being evaluated, and the current extension π2 that is used to search for
the witness. If π2 is enough to reach a verdict, the algorithm returns true or
false accordingly (Lines 3 and 5). Otherwise, it tries to extend π2 by borrowing
the next transition of π (Line 7). If such extension exists and is a candidate for
being in the language of G, the algorithm recursively calls itself with the extended
prefix (Line 11). Hereafter, we fix a QoS-extended communicating system S.

Theorem 1 (qSat is sound and k-bounded complete). Given a QoS for-
mula Φ P QL and a bound k, qSat(Φ, S, k) returns true iff there exists π P ∆i

S

such that xπ, ϵy |ùS Φ, for some i ď k.

14 Carlos G. Lopez Pombo, Agust́ın E. Martinez Suñé, Emilio Tuosto

The soundness of qSat immediately follows from the soundness of qModels (es-
tablished in Lemma 1 below) which, in turn, relies on the soundness and com-
pleteness of qUntil (cf. Lemmas 2 and 3, respectively). This guarantees that
the call to qModels in Line 5 of qSat returns true iff the run π satisfies Φ. Note
that qSat is not guaranteed to be complete due to the bound k.

Lemma 1 (qModels is sound and complete). Given a QoS formula Φ P QL
and runs π, π1 P ∆S, where π

1 P prf pπq, qModels(Φ, S, π, π1) returns true iff
xπ, π1y |ùS Φ.

Proof. By structural induction on Φ. If Φ is J, the result follows trivially. If Φ
is an atomic formula, the algorithm computes the aggregation over the run π1

(Line 6) and invokes the decision procedure of RCFs to check whether aggSpπ
1q

entails Φ in the theory of real closed fields. If Φ is Φ1_Φ2, the algorithm perform
two recursive calls and returns true iff either xπ, π1y |ùS Φ1 or xπ, π1y |ùS Φ2. If Φ
is Φ1 UG Φ2, the algorithm returns true iff qUntil(Φ1,G, Φ2, S, π, π

1, ϵ) returns
true. By Lemmas 2 and 3 this is equivalent to xπ, π1y |ùS Φ1 UG Φ2. [\

We now prove the soundness and completeness of qUntil.

Lemma 2 (qUntil is sound). Given a QoS formula Φ1, Φ2 P QL, a g-
choreography G, and runs π, π1, π2 such that

a) π1π2 P prf pπq and π P ∆S, and

b) for all π3 P prf pπ2q, if π3 ‰ π2 then xπ, π1π3y |ùS Φ1

if qUntil(Φ1,G, Φ2, S, π, π
1, π2) returns true then xπ, π1y |ùS Φ1 UG Φ2.

Proof. The call to qUntil(Φ1,G, Φ2, S, π, π
1, π2) either reaches Line 3 or it reaches

Line 11 and the recursive call returns true. In the first case, we know Lrπ2s P L̂rGs
and that qModels(Φ2, S, π, π

1π2) returned true. By Lemma 1 it follows that
xπ, π1π2y |ùS Φ2. Together with hypotheses a) and b) the conditions of the se-
mantics of the formula Φ1 UG Φ2 (see Definition 6) are met. In the case of reaching
Line 11 we know the recursive call qUntil(Φ1,G, Φ2, S, π, π

1, π2 ℓ
ùñ q) returned

true. Conditions a) and b) applied to the input of the recursive call holds be-
cause of the way transition ℓ

ùñ q was chosen and the fact that condition on Line 4

returned false. Therefore, we can take the output of the recursive call to satisfy
Lemma 2 as an inductive hypothesis and conclude xπ, π1y |ùS Φ1 UG Φ2. [\

Lemma 3 (Completeness of qUntil). Given a QoS formula Φ1, Φ2 P QL,
a g-choreography G, and runs π, π1, π2 such that

a) π1π2 P prf pπq and π P ∆S, and

b) for all π3 P prf pπ2q, if π3 ‰ π2 then either Lrπ3s R L̂rGs or xπ, π1π3y *S Φ2

if qUntil(Φ1,G, Φ2, S, π, π
1, π2) returns false then xπ, π1y *S Φ1 UG Φ2

A Dynamic Temporal Logic for Quality of Service in Choreographic Models 15

Proof. The call to qUntil(Φ1,G, Φ2, S, π, π
1, π2) reaches either Line 5, Line 9 or

it reaches Line 11 and the recursive call returns false. In all cases, by condition b)
we know that no prefix of π2 could be witness of the existential in the semantics
of Φ1 UG Φ2 (see Definition 6) because it would need to both be in L̂rGs and
satisfy Φ2. Run π

2 itself cannot be the witness for the same reasons due to the
fact that condition in Line 2 was not met. Which means either Lrπ2s R L̂rGs or
qModels(Φ2, S, π, π

1π2) returned false, therefore, using Lemma 1, either Lrπ2s R
L̂rGs or xπ, π1π2y *S Φ2. The only remaining possibility is for the witness to be
a π‹ such that π2 P prf pπ‹q and π‹ ‰ π2. In the case of reaching Line 5, we
know that qModels(Φ1, S, π, π

1π2) returned false. By Lemma 1 it follows that
xπ, π1π2y *S Φ1. Therefore, extension π

‹ couldn’t be a witness for the existential
in the semantics of Φ1 UG Φ2. In the case of reaching Line 9, candidate extension
π‹ does not exist or it is not in L̂rGs. In the case of reaching Line 11, we know
that qUntil(Φ1,G, Φ2, S, π, π

1, π2 ℓ
ùñ q) returned false. Notice that conditions

a) and b) applied to the input of the recursive calls holds because of the way
transition ℓ

ùñ q was chosen and that condition in Line 2 was not met. Therefore,

we can take the output of the recursive calls to satisfy Lemma 3 as an inductive
hypothesis and conclude that xπ, π1y * Φ1 UG Φ2. [\

Notice that the proof for Lemma 1 uses Lemma 3 and Lemma 2, and that the
proofs for Lemma 3 and Lemma 2 use Lemma 1. This does not undermine the
soundness of the proofs because the lemmas are always (inductively) applied on
smaller QL formulas. Now that the soundness and completeness of qModels and
qUntil is established, it remains to show their termination. Termination follows
from the fact that both the number of logical operators in Φ and the number of
transitions in π are finite. The first guarantees qModels eventually reaches a base
case and the second guarantees qUntil eventually reaches a base case. Finally,
the base case in qModels, computing aggregation and checking entailment in the
theory of real closed fields, terminates due to the decidability of RCFs [17].

6.1 A bounded model-checking approach for QL

Previous results allow for a straightforward bounded model-checking approach
forQL. Like for other model-checking procedures for a language that admits neg-
ation, qSat can be used to check validity of a QL formula in a system S by check-
ing the satisfiability of the negated formula. This constitutes a counterexample-
finding procedure for QL. The caveat is that qSat is a k-bounded semidecision
procedure rather than a decision procedure. However, restricting toQL´, namely
QL formulae that do not contain the ˚ operator in their choregraphies, we can
find finite models of satisfiable formulae of QL´ (cf. Theorem 2). Thus, qSat
can serve as a decision procedure for QL´, if one computes a suitable bound k.

Theorem 2 (Finite model property of QL´). Given a QoS formula Φ P
QL´, and runs π P ∆8S , π

1 P ∆S such that π1 P prf pπq. If xπ, π1y |ùS Φ then
there exists a finite run π´ P ∆S such that π´ P prf pπq and xπ´, π1y |ùS Φ.

16 Carlos G. Lopez Pombo, Agust́ın E. Martinez Suñé, Emilio Tuosto

Proof. By structural induction on Φ. If Φ is J or an atomic formula, take π´ “
π1. If Φ is Φ1 _ Φ2, we have that either xπ, π1y |ùS Φ1 or xπ, π1y |ùS Φ2. By
inductive hypothesis, either xπ´1 , π

1y |ùS Φ1 or xπ´2 , π
1y |ùS Φ2 for some finite

π´1 , π
´
2 P prf pπq. Therefore, either xπ

´
1 , π

1y |ùS Φ1 _ Φ2 or xπ´2 , π
1y |ùS Φ1 _ Φ2.

If Φ is Φ1 UG Φ2, by Definition 6 we have there exists π2 such that π1π2 P
prf pπq and Lrπ2s P LrGs, and xπ, π1π2y |ùS Φ2, and for all π3 P prf pπ2q, if
π3 ‰ π2 then xπ, π1π3y |ùS Φ1. If we apply the inductive hypothesis to Φ1 and
Φ2, we have there exists π2 such that π1π2 P prf pπq and Lrπ2s P LrGs, and
xπ´2 , π

1π2y |ùS Φ2 for some π´2 P prf pπq, and for all π3 P prf pπ2q, if π3 ‰ π2

then xπ´1 , π
1π3y |ùS Φ1 for some π´1 P prf pπq. Notice that since G is ˚-free, run

π2 in the language LrGs is necessarily finite and so is the number of quantified
runs π3. Therefore, the number of runs π´1 involved in the previous statement
is finite, and there is a maximum among their lengths, so we can take π´ as
the longest between π´2 and runs π´1 . Since π

´
2 and all the π´1 are prefixes of π,

then they will also be prefixes of π´, and therefore we have the conditions to
conclude xπ´, π1y |ùS Φ1 UG Φ2.

If the outermost operator in Φ is ␣, we need to consider al the possible cases
for the immediate subformula of Φ. If Φ is ␣ψ with ψ atomic formula, we have
that xπ, π1y *S ψ. It follows that xπ1, π1y *S ψ and we can take π´ “ π1. If Φ
is ␣pΦ1 _ Φ2q, we have that xπ, π1y *S Φ1 _ Φ2. It follows that xπ, π1y *S Φ1

and xπ, π1y *S Φ2. By inductive hypothesis, there exists π´1 P ∆S such that
π´1 P prf pπq and xπ

´
1 , π

1y *S Φ1 and there exists π´2 P ∆S such that π´2 P prf pπq
and xπ´2 , π

1y *S Φ2. It is enough to take π´ as the longest between π´1 and
π´2 . If Φ is ␣pΦ1 UG Φ2q, we have that xπ, π1y *S Φ1 UG Φ2. Therefore, for
all π2 such that π1π2 P prf pπq, if Lrπ2s P LrGs, and xπ, π1π2y |ùS Φ2, then
there exists π3 P prf pπ2q, with π3 ‰ π2 such that xπ, π1π3y |ùS ␣Φ1. If we
apply the inductive hypothesis to Φ2 and ␣Φ1, we have that for all π2 such
that π1π2 P prf pπq, if Lrπ2s P LrGs, and xπ´2 , π1π2y |ùS Φ2 for some π´2 P ∆S

with π´2 P prf pπq, then there exists π3 P prf pπ2q, with π3 ‰ π2 such that
xπ´1 , π

1π3y |ùS ␣Φ1 for some π´1 P ∆S with π´1 P prf pπq. Notice that since G is
˚-free, any run in the language LrGs is necessarily finite. Therefore, there is a
maximum among the lengths of the runs π´2 , and we can take π´ as the longest
between π´2 and π´1 . [\

The proof of Thm. 2 suggests how to compute a bound on the length of the
model π´ that satisfies the lemma. That is, recursively in the structure of Φ by
taking the maximum between the bounds of the immediate subformulae and, for
the case of the UG operator, the length of the longest run in LrGs. This bound
can be used as k in qSat to obtain a full decision procedure for QL´. Searching
for counterexamples of an arbitrary formula Φ P QL up to a bounded number
of unfoldings of ˚ is equivalent to searching for counterexamples in a formula
Φ̂ in QL´ where each ˚ has been replaced by a finite number of unfoldings.
Which means that the bound computed for QL´ can be used to search for
counterexamples in QL. Notice that qSat can be easily extended to return the
run that satisfies the formula, if there is one. Which can help identify the source
of QoS formula violations when used as a counterexample-finding procedure.

A Dynamic Temporal Logic for Quality of Service in Choreographic Models 17

7 Conclusions

We presented a framework for the design and analysis of QoS-aware distributed
message-passing systems using choreographies and a general model of QoS. We
tackle this problem by: 1) abstractly representing QoS attributes as symbols
denoting real values, whose behaviour is completely captured by a decidable
RCFs theory, 2) extending the choreographic model of CFSM by associating QoS
specifications to each state of the machine, 3) introducing QL, a logic based on
DLTL, for expressing QoS properties with a straightforward satisfaction relation
based on runs of communicating systems, and 4) giving a semi-decision procedure
for QL and defining a decidable fragment QL´ that allowed us to give a bounded
model-checking procedure for the full logic. A prototype implementation of our
procedure is under development. It relies on the SMT solver Z3 [34] for the
satisfiability of the QoS constraints in atomic formulae and on ChorGram [35,36]
for the semantics of g-choreographies and CFSMs. An interesting by-product of
our framework is that it could be used for the monitoring of local computations
to check at run-time if they stay in the constraint of QoS specifications. If static
guarantees on QoS specifications are not possible, run-time monitors can be
easily attained by adapting techniques for monitor generation from behavioural
types [37,38].

We identify two further main future research directions. On the one hand,
there is the theoretical question of whether QL is decidable or not. In this re-
spect, the similarity ofQL with DLTL (cf. Section 2) hints towards an affirmative
answer suggesting that the problem can be resolved to emptyness of Büchi auto-
mata [39] corresponding to QL formulae. However, the decidability of QL is not
so easy to attain. In general, a QL formula may yield an infinite state space
due to instantiation of QoS attributes. On the other hand, the usability of the
framework could be improved through two extensions of QL and a less demand-
ing way of modeling QoS-extended communicating systems. The first extension
of QL are selective aggregation, enabling the aggregation of QoS attributes only
for some specific states of runs. This can be done by extending the grammar
of g-choreographies given in Definition 1 with an extra production of the shape
G ::“ ¨ ¨ ¨

ˇ

ˇ rGu, “bracketing” the part of the choreography relevant for the
aggregation. Notice that the run still has to match the whole choreography. A
second extension of QL is the introduction of wildcards as a mechanism to “ig-
nore” a subchoreography. Syntactically, it can be represented by, once again,
extending the grammar given in Definition 1 with an extra production, with
shape G ::“ ¨ ¨ ¨

ˇ

ˇ , where is interpreted as a wildcard and plays the role of
matching any possible g-choreography. In this case, the shape of the part of the
run that matches the wildcard is disregarded but attributes are aggregated along
the whole run. Finally, a less demanding way of modeling QoS-extended systems
could be achieved by extending g-choreographies with QoS specifications annot-
ating specific interactions and extending the projection of g-choregraphies into
CFSMs taking into account such annotations.

18 Carlos G. Lopez Pombo, Agust́ın E. Martinez Suñé, Emilio Tuosto

References

1. Obj. Mgmt. Group: Business Process Model and Notation http://www.bpmn.org.
2. Bonér, J.: Reactive Microsystems - The Evolution Of Microservices At Scale.

O’Reilly (2018)
3. Frittelli, L., Maldonado, F., Melgratti, H.C., Tuosto, E.: A choreography-driven

approach to apis: The opendxl case study. In [4], 107–124.
4. Bliudze, S., Bocchi, L.: Proc. of COORDINATION - 22nd Intl. Conf. IFIP WG

6.1, Valletta, Malta, June 15-19, 2020. Vol. 12134 of LNCS, Springer (2020).
5. Autili, M., Inverardi, P., Tivoli, M.: Automated synthesis of service choreographies.

IEEE Softw. 32(1) (2015) 50–57.
6. World Wide Web Consortium: Web services description language (wsdl) version

2.0 part 1: Core language. On-line Available at https://www.w3.org/TR/wsdl20/.
7. Ivanović, D., Carro, M., Hermenegildo, M.V.: A constraint-based approach to

quality assurance in service choreographies. In Liu, C., et.al. eds.: Proc. of SOC
(2012) 252–267.

8. Kattepur, A., Georgantas, N., Issarny, V.: Qos analysis in heterogeneous choreo-
graphy interactions. In Basu, S., et.al. eds.: Proc. of SOC (2013) 23–38.

9. Güdemann, M., Poizat, P., Salaün, G., Ye, L.: Verchor: A framework for the
design and verification of choreographies. IEEE Trans. Serv. Comput. 9(4) (2016)
647–660.

10. Autili, M., Salle, A.D., Gallo, F., Pompilio, C., Tivoli, M.: Chorevolution: Auto-
mating the realization of highly-collaborative distributed applications. In: Proc. of
COORDINATION - 21st Intl. Conf. IFIP WG 6.1, 2019. Springer (2019) 92–108.

11. Bocchi, L., Melgratti, H.C., Tuosto, E.: On resolving non-determinism in choreo-
graphies. Log. Methods Comput. Sci. 16(3) (2020).

12. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In Field,
J., et.al. eds.: Proc. of the 39th ACM SIGPLAN-SIGACT POPL 2012. ACM (2012)
191–202.

13. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of session types and behavioural contracts. ACM Comput. Surv. 49(1)
(2016) 3:1–3:36.

14. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
ACM 30(2) (1983) 323–342.

15. Henriksen, J.G., Thiagarajan, P.: Dynamic linear time temporal logic. Annals of
Pure and Applied Logic 96(1–3) (1999) 187–207.

16. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. Journal of
Logical and Algebraic Methods in Programming 95 (2018) 17–40.

17. Tarski, A.: A decision method for elementary algebra and geometry. Memorandum
RM-109, RAND Corporation (1951).

18. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software archi-
tecture optimization methods: A systematic literature review. IEEE Transactions
on Software Engineering 39 (2013) 658–683.

19. Hayyolalam, V., Pourhaji Kazem, A.A.: A systematic literature review on QoS-
aware service composition and selection in cloud environment. Journal of Network
and Comp. Applications 110 (Timothy C. May 2018) 52–74.

20. Giachino, E., de Gouw, S., Laneve, C., Nobakht, B.: Statically and dynamically
verifiable SLA metrics. In Ábrahám, E., et.al. eds.: Theory and Practice of Formal
Methods - Essays Dedicated to Frank de Boer on the Occasion of His 60th Birthday.
Vol. 9660 of LNCS, Springer (2016) 211–225.

http://www.bpmn.org
https://www.w3.org/TR/wsdl20/

A Dynamic Temporal Logic for Quality of Service in Choreographic Models 19

21. Rosenthal, K.: Quantales and Their Applications. Vol. 234 of Pitman Research
Notes in Mathematics Series. Longman Scientific & Technical (1990).

22. Buscemi, M.G., Montanari, U.: Cc-pi: A constraint-based language for specifying
service level agreements. In DeNicola, R., ed.: Proc. of 16th ESOP. Vol. 4421 of
LNCS, Springer (2007) 18–32.

23. Lluch-Lafuente, A., Montanari, U.: Quantitative µ-calculus and CTL based on
constraint semirings. In Proc. of QAPL, 2004. Elec. Notes in Theo. Comp. Sci.
112 (2005) 37–59.

24. De Nicola, R., Ferrari, G., Montanari, U., Pugliese, R., Tuosto, E.: A process cal-
culus for QoS-aware applications. In Jacquet, J., et.al. eds.: Proc. of COORDIN-
ATION, 2005. Vol. 3454 of LNCS, Springer (2005) 33–48.

25. Martinez Suñé, A.E., Lopez Pombo, C.G.: Automatic quality-of-service evaluation
in service-oriented computing. In Nielson, H.R., et.al. eds.: Proc. of COORDIN-
ATION - 21st Intl. Conf. IFIP WG 6.1. Vol. 11533 of LNCS, Springer (2019)
221–236.

26. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract
for distributed multiparty interactions. In Gastin, P.,et.al. eds.: Proc. of 21th
CONCUR 2010. Vol. 6269 of LNCS, Springer (2010) 162–176.

27. Vissani, I., Lopez Pombo, C.G., Tuosto, E.: Communicating machines as a dynamic
binding mechanism of services. In Gay, D., et.al. eds.: Proc. of PLACES. Vol. 203
of Elect. Proc. in Theo. Comp. Sci.. (April 2016) 85–98.

28. Pnueli, A.: The temporal semantics of concurrent programs. Theo. Comp. Sci.
13(1) (1981) 45–60.

29. Pratt, V.R.: Semantical consideration on floyd-hoare logic. In Carlyle, et.al. eds.:
Proc. of 17th SFCS, IEEE Computer Society (1976) 109–121.

30. Vardi, M.Y.: The Rise and Fall of LTL: Invited Talk at the 2nd. Games, Automata,
Logics and Formal Verification. Elec. Proc. in Theo. Comp. Sci. 54 (2011).

31. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proc. of 23rd IJCAI, 2013, AAAI Press (2013) 854–860.

32. Post Office Protocol: Version 2. RFC 937 (1985).
33. Pratt, V.R.: Modeling concurrency with partial orders. Intl. Journal Parallel

Programming 15(1) (1986) 33–71.
34. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In Ramakrishnan, et.al.

eds.: Proc. of 14th TACAS, 2008. Vol. 4963 of LNCS, Springer (2008) 337–340.
35. Coto, A., Guanciale, R., Tuosto, E.: Choreographic development of message-

passing applications - A tutorial. In [4], 20–36.
36. Coto, A., Guanciale, R., Lange, J., Tuosto, E.: ChorGram: tool support for choreo-

graphic deveelopment. Available at https://bitbucket.org/eMgssi/chorgram/

src/master/ (2015).
37. Francalanza, A., Mezzina, C.A., Tuosto, E.: Towards choreographic-based monit-

oring. In: Reversible Computation: Extending Horizons of Computing - Selected
Results of the COST Action IC1405. Vol. 12070 of LNCS, Springer (2020) 128–150.

38. Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks
through multiparty session types. Theor. Comput. Sci. 669 (2017) 33–58.

39. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc.
of the Intl. Congress on Logic, Method, and Philosophy of Science, Stanford, CA,
USA, Stanford University, Stanford University Press (1962) 1–11.

40. Hilbert, D., Ackermann, W.: Principles of mathematical logic. Chelsea publishing
company (1928).

41. Biere, A., Heule, M., Van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability:
Second Edition. IOS Press (February 2021)

https://bitbucket.org/eMgssi/chorgram/src/master/
https://bitbucket.org/eMgssi/chorgram/src/master/

	 A Dynamic Temporal Logic for Quality of Service in Choreographic Models
	Carlos G. Lopez Pombo, Agustín E. Martinez Suñé, Emilio Tuosto

