Larvalight Screenshots
[The code shown in the screenshots below can be downloaded from here]

Screenshot 1 - An example of a single basic rule
The rule below checks that after a withdrawal, the balance never goes below zero.

The console shows the output of running a faulty implementation which allows the balance to go
below zero.

Fyr————— =)

File Edit Source Refactor Navigate Search Project Run Window Help

. CNPrOvQR v BH O OC Ay P ol v v O v Quick Access D[@
s D Mainjava 11 | 1) Bankjava e
" -

n < public static void main(String[] args) { '

Bank b = new Bank();

/*runtime check declaration and start*/
Rule.create("balance_should_never_fall_below_zero", /*label*/

"import main.Bank;", /*imports*/

new String[] /*variables*/

{ "Bank b", "double d "},

new String[] /*rules*/

{"b.withdraw \\ b.getBalance()<® -X System.out.println(\"Balance fell below zero: \"+b.getBalance());"}) =
.start();

b.login(1234);
b.deposit(5);
b.withdraw(6);
b.logout();

/*runtime check disposal*/
Rule.dispose("balance_should_never_fall_below_zero");

H } -
« ’
© Console ¢ X% AP 2o~ 0
<terminated > Bank larvalight showcase [Aspect)/Java Application] C\Program Files\Java\jdkl.7.0\bin\javaw.exe (01 Mar 2014 14:33:37)
Attempting Login... Logged in successfully! -

Attempting Deposit of £5.0... Deposit successful... new balance is £5.0

Attempting Withdrawal of £6.0... Withdraw successful... new balance is £-1.0

Balance fell below zero: -1.0

Exception in thread "main" java.lang.AssertionError: Log: Rule[balance_should_never_fall_below_zero] ([]) reached bad state
at ruler.balance_should_never_fall_below_zeroRuler.trigger(balance_should never_fall below_zeroRuler.java:26) 2
at larvalight.Monitor.event(Monitor.java:128)
at larvalight.EventCapture.check(EventCapture.aj:139)
at larvalight.EventCapture.ajc$afterReturning$larvalight_EventCapture$2$23764adb(EventCapture.aj:47)
at main.Bank.withdraw(Bank.java:83)
at main.Main.main(Main.java:23)

Writable Smart Insert 2:23 i

Process Engineering, Security and Testing Research Group

Screenshot 2 - An example of a rule taking time into consideration

The check below asserts that at least there is a three second duration between subsequent
failed login attempts.

File Eoit Source Refactor Nawigate Search Project Run Window Help
P NSO AT E G S E Y R U e e
s @ Mainjava 11) Bankjava

n public static void main(String[] args) {

Quick Access

Bank b = new Bank();

/*runtime check declaration and start*/
Rule.crecte("delay_failed_login_attempts_by_3_seconds”, /*label*/

new String[] /*variables*/
{ "boolean verdict", "Timer t"},
new String(] /*rules®/

{"verdict=login \\ !verdict & t==null -/ t = new Timer(\"a\",30001); t.reset();",

“verdict=login \\ lverdict && t.time()>=3000 -/ t.reset();",

"verdict=login \\ !verdict && t.time()<300@ -X System.out.println(\"Subsequent failed login in \"+t.time()+\"ms\");"}.
.start();

b.login(1);
b.login(12);
b.login(1234);
b.deposit(5);
b.withdraw(6);
b.logout();

/*runtime check disposal*/
Rule.dispose("delav failed login attemots bv 3 seconds"):

« m "B
.) © Console ex%k LWEEPP 20 rnv=n
<terminated> Bank larvalight showcase [Aspect)/Java Application] C:\Program Files\lava\jdk1.7.0\bin\javaw.exe (01 Mar 2014 1524:07)
Attempting Login... Login failed! -
Attempting Login... Login failed!
Subsequent failed login in 1@ms
Exception in thread "main" java.lang.AssertionError: Log: Rule[delay_failed_login_attempts_by_3_seconds] ([]) reached bad state
at ruler.delay_failed_login_attempts_by_3_secondsRuler.trigger(delay failed login_attempts by 3_secondsRuler.java:39) 3
at larvalight.Monitor.event(Monitor.java:128) 1
at larvalight.EventCapture.check(EventCapture.aj:139)
at larvalight.EventCapture.ajc$afterReturning$larvalight_EventCapture$2$23764adb(EventCapture.aj:47)
at main.Bank.login(Bank.java:33)
at main.Main.main(Main.java:22) s

Writable Smart Insert 2:21

Process Engineering, Security and Testing Research Group

Screenshot 3 - A time-triggered rule

The rule checks that there is no five-second period during which there is no activity. Note how
the last event is timer-based, i.e. it fires upon the elapsing of 5 seconds.

D Java-
File Edit Source Refactor Navigate Search Project Run Window Help

v~ EIEE R0 R R HCR 6 T= ik 48] . FACTICTER SR AR A I Quick Access ‘Uibm
| @ Mainlnactivityjava &2 =n
BB =

Bank b = new Bank();

/*runtime check declaration and start*/

Rule.create("inactive_for_5_seconds"”, /*label*/
new String[] /*variables*/
{ "Timer t=new Timer(5eeel1);" },
new String[] /*rules*/

{"login -/ t.reset();",
"deposit -/ t.reset();",
"withdraw -/ t.reset();",
"logout -/ t.disable();",
B "t.fire -X System.out.println(\"Bank session has been inactive for at least 5s\");"})
: .start();

"

b.login(1234);

b.deposit(5);

b.withdraw(6);

try { Thread.sleep(6000); } catch(Exception ex) {ex.printStackTrace();}
b.logout();

= mm e me o am om mm w am m =

B Console =2 "% ABEEP -3y =n
<terminated> Mainlnactivity [Java Application] C:\Program Files\Java\jdk1.7.0\bin\javaw.exe (05 Mar 2014 11:09:45)
| Attempting Login... Logged in successfully! -
Attempting Deposit of £5.0... Deposit successful... new balance is £5.0
Attempting Withdrawal of £6.0... Withdraw successful... new balance is £-1.0
Bank session has been inactive for at least Ss
Attempting Logout... Logged out successfully!
Exception in thread "main" java.lang.AssertionError: Log: Rule[inactive_for_5_seconds] ([]) reached bad state
at ruler.inactive_for_5_secondsRuler.trigger(inactive for 5_secondsRuler.java:58)
at larvalight.Monitor.event(Monitor.java:128)
at larvalight.EventCapture.check(EventCapture.aj:139)
at larvalight.EventCapture.ajc$afterReturning$larvalight_EventCapture$2$23764adb(EventCapture.aj:47)
at timers.Timer.fire(Timer.java:166)
at timers.TimerManager.run(TimerManager.java:78)
at java.lang.Thread.run(Thread.java:722) -

« » |
Writable Smart Insert 26:80

Process Engineering, Security and Testing Research Group

Screenshot 4 - A finite state machine example

The finite state machine below checks the log in logic of the system. Note that it is completely up
to the user to decide the level of abstract the checking goes into.

S i e =

Blle Eoit Source Refactor Navigate Search Project Bun Window Help
oA SNBYOYQ v B O™ Ay P 0 I Quick Access o | @)

' s | Bankjava (D Mainjava 2L
L]

FSM.create("bank_login_process_check",
“import main.Bank;",
"Bank b", m
new String[] { "boolean verdict", "int password”, "int badPasswordCount = @;" },
new String[] {
“start [verdict=b.login(password) "
+ "\\ password==1234 &% verdict] loggedin”,
“start [verdict=b.login(password) "
+ "\\ password==1234 && !verdict "
+ ">> System.out.println(\"Login refused on correct password\");] bad",
“start [verdict=b.login(password) "
+ "\\ password!=1234 8& !verdict && badPasswordCount<3 " B
+ ">> badPasswordCount++;] start”,
“start [verdict=b.login(password) "
+ "\\ password!=1234 8& !verdict "
+ ">> System.out.println(\"3 bad password limit exceeded\");] bad",
“loggedin [b.logout "
+ ">> badPasswordCount=0;] start"

! }).start();

b.login(124);
b.login(123);
b.login(134);
b.login(234);

© Console x%k hBE@E Oy
«terminated > Bank larvalight showcase [Aspect)/Java Application] CA\Program Files\Java\ydk1.7.0\bin\javaw.exe (01 Mar 2014 18:24:27)
Attempting Login... Login failed!
Attempting Login... Login failed!
Attempting Login... Login failed!
3 bad password limit exceeded
Exception in thread "main" java.lang.AssertionError: Log: Rule[bank_login_process_check_fsmToRules] ([main.Bank@1d@74@e]) reached bad state
at ruler.bank_login_process_check_fsmToRulesRuler.trigger(bank_login_process_check fsmToRulesRuler.java:57)
at larvalight.Monitor.event(Monitor.java:128)
at larvalieht FuventCanturs. chack(FuentCanture. ai:141) =

"

Writable Smart Insert 36:22

Process Engineering, Security and Testing Research Group

Screenshot 5 - A regular expression

Using the regular expression below, we show how the lifecycle of a bank session can be captured

very succinctly.

@ Java - Showcase/src/main/Mainjava - Ediipse N

{wieaini
12 Package Explorer & BE%le =0
¥ Showcase
“®stc
4 [8 main
) Bankjava
) Bankljava
@ Mainjava
) Main2java
D) Main3java
4) MainBelowZero java
&) Mainlnactivity java
) MainTimeBelow3sjava
= JRE System Library [JavaSE-17)

File Eoit Source Refactor Navigate Search Project Run Window Help
CINB O QU BHGYOC A PO AUl oy
8 @ Mainjava & 1) Bankjava

Quick Access | o

0 Main2java =

public static void main(String[] args) {
Bank b = new Bank();

/*runtime check declaration and start*/

RE.create("bank_life_cycle", /*label*/
"import main.*;", /*imports*/
“Bank b", /*check for each Bank instance*/
RE.Matching.EXPECTED_BEHAVIOUR, /*regexp represents correct behaviour*/
new String[] { /*event list*/
"i = b.login", "o = b.logout", "d = b.deposit”, "w = b.withdraw"},

wes xg)*" * = =
™ Referenced Libraries start(); (i(dlw)*0)*") [regexp™/
m Aspect) Runtime Library : ’
1) balance should never fail below zeroRulerjava :::‘::g%:‘;) v
@ balance_should_never_fall_below_zeroRulerjay b.l o:out() i
. H

W) bankLifeCycleRuler java b.depcsit(o);
i bankloginCheck fsmToRulesRulerjava
:j bankloginChedRulerjova v Rule.dispose("bank_life_cycle");
{ delay_failed_login_attempts_by_3_secondsRule « 3 ’
1) inactive_for_S_secondsRulerjava
&) larvalightjar © Console & x% REFB e riv-o
W regular_g 9 X Bank larvalight showcase C:\Program Files\) 17, (01 Mar 2014 16:32:29)

Attempting Login... Logged in successfully! -

Attempting Deposit of £5.0...
Attempting Logout...
Attempting Deposit of £0.0...
Exception in thread "main" java.lang.AssertionError: Log: Rule[bank_life_cycle_regexToFsm_fsmToRules] ([main.Bank@135c

Deposit successful... new balance is £5.8
Logged out successfully!
Deposit failed... you must be logged in!

at ruler.bank_life_cycle_regexToFsm_fsmToRulesRuler.trigger(bank life cycle regexToFsm_fsmToRulesRuler.java:71
at larvalight.Monitor.event(Monitor.java:128)

at larvalight.EventCapture.check(EventCapture.aj:141)

at larvalight.EventCapture.ajc$afterReturning$larvalight_EventCapture$2$23764adb(EventCapture.aj:47)
at main.Bank.deposit(Bank.java:62)

at main.Main.main(Main.java:25)

Smart Insert 25:22

Process Engineering, Security and Testing Research Group

Screenshot 6 - JUnit with monitor annotations

Complementing typical assertions, monitors can provide extra power to capture checks easily
across your tests.

o o

Eile Edit Source Refactor Navigate Search Project Bun Window Help

frie~e CNBvOrQrNEey e vy P a s fivilvt oY o] - Quick Access o |[§7ieva) © Debug
@ Unit 11 = O [§ variousihdependentChecksjava It TS
tRARwE . . . " Sl
Finished after 7.768 seconds //this @Rule intercepts any test being executed and starts the relevant monitors P
//note that it also takes care to stop and RESET the monitor at the end of the test &
Runs: 3/3 8 Emors 0 o Failures: 3 @org. junit.Rule 1
I public MonitorRule mr = new MonitorRule();
4 8 testVariousindependentChecks [Funne t4] (60 aTest
I : mf‘:‘mm g @Monitor("balance_should_never_fall_below_zero")
N I satanceseionzerorest 0005 5 = vub!;:nr’;ﬂ_8:2";::;?)’(11"0"“() {
= H
b.login(1234);
b.deposit(5);
b.withdraw(6);
ﬂ b.logout();
}
' @Test
@Monitor("bank_life_cycle")
“ public void test() {
Bank b = new Bank();
P W . b.login(1234);
b.deposit(5);
= Failure Trace (53] b.logout();
%1 javalang AssertionError: Log: Rule(inactive_for_S_second b.deposit(e);
= at rulerinactive_for_5_secondsRuler.trigger(inactive_for. }
= at larvalight Monitor.event(Monitor javac128) =
= at larvalight EventCapture check(EventCapture.aj:139) @Test
= at larvalight EventCapture. @Monitor("inactive_for_5_seconds")
= at timers.Timer fire(Timer java:166) - public void InactivityDurationTest()throws Throwable {
= at timersTimerManager.sun(TimerManager java:78) Bank b = new Bank();
= atjava.lang Thread.run(Thread java722) b.login(1234);
b.deposit(5);
b.withdraw(6);
try { Thread.sleep(6000); } catch(Exception ex) {ex.printStackTrace();}
b.logout();
. - I}
« I ’ « i 0
Witable Smart Insert 56:47 J

Process Engineering, Security and Testing Research Group

Screenshot 7 - Managing multiple monitors

To make it easier to handle a number of monitors, Larvalight provide the Oracle class -
essentially a collection of monitors which can be started, reset, or disposed all at once.

- Showcase/sic/est Checks java - Eclipse.
file Edit Source Refactor Navigate Search Project Bun Window Help
- RN R R R HCR TRt s DI R SR AR Quick Access | 1| [@Tava) ® Debug
1 Pack ¥ Wnit 2 SUd®BAR W E Y 7= 0 [LoginRelatedTestsSharingSameChecksjava i S| .
Finished after 1634 seconds - &
5 //start the oracle @
Runs: 3/3 @ Emors: 0 ® failures: 2 3 oracle.start(); 8
I } =]
i testLoginRelatedTestsSharingSameChecks (i t4] (01315)
& oneBadLoginFollowedBySuccesstul (0072 5) @Before
& fourSubsequentBadLogins (0026) b public void before() {
& (00295 //reset the oracle at the start of each test
oracle.reset();
}
@Test
- public void oneBadLoginFollowedBySuccessful() {
//this should pass both the timing check
//and the counting check
Bank b = new Bank();
b.login(1);
b.login(1234);
//note there is no need for assertions because the oracle asserts the checks automatically
}
Test
?u.mm« B |, ;,buc voldn oginFoll ful() {
1avalang Assertion€rror: Log: Rulefdelay.failed Jogin_attempts.by_3_seconds| //this should violate the timing check 2
= atruler delay failed jogin_attempts_by 3 _secondsRuler trigger(delay failed | //but not the counting check
= at larvalight Monitor.event(Monitor java:128) Bank b = new Bank();
= at larvalight EventC: ture.a:139) b.login(1);
= atlanvalight EventC _EventCapture$25237 b.login(12);
= at mainBanklogin(Bankjava:33) b.login(1234);
= attest //note there is no need for assertions because the oracle asserts the checks automatically
}
@afterClass
- public static void teardown() {
//after running all the tests dispose of the monitors
oracle.dispose();
« i B « 0 2 B
Writable Smart Insert 52:24

Process Engineering, Security and Testing Research Group

