Green fingers

A love for botany, the birth of her children, and a strong interest in public health problems—this is what led Assistant Professor Shirley Micallef to her current position in the Department of Plant Science and Landscape Architecture (University of Maryland). She speaks to Veronica Stivala about beer brewing, native plant gardening, and the safety of our salads.

Continue reading

Of Science & Literature

Prof. Rena Balzan (Department of Physiology and Biochemistry, Faculty of Medicine & Surgery, University of Malta) stands out as one of the first women in Malta to carve out a scientific research career. She is also the author of numerous poems and novels in Maltese. Research colleague Dr Gianluca Farrugia delves into her backstory underlying her lifelong pursuit of both Maltese literature and science, which includes research on the anti-cancer properties of aspirin using Baker’s Yeast. Illustrations by NO MAD.

Continue reading

A Faculty Reborn

During the mid-1970s, the Faculties of Science and Arts were closed down, and the Bachelor programmes phased out. Most of the foreign (mainly British) academics left Malta, as did some Maltese colleagues. Those few who stayed were assigned teaching duties at the newly established Faculty of Education and Faculty of Engineering. Relatively little research took place, except when funds were unneccessary, and it is thanks to these few that scientific publications kept trickling out.

In 1987, the Faculties of Arts and Science were reconstituted. The Faculty of Science had four ‘divisions’ which became the Departments of Biology, Chemistry, Physics, and Mathematics. In the same year, I returned from the UK to join the Faculty.

Things gradually improved as more staff and students joined. However, equipment was either obsolete or beyond repair. The B.Sc. (Bachelor of Science) course was re-launched with an evening course. Faculty members worked flat out in very poor conditions. The Physics and Mathematics building was still shared with Engineering. Despite these problems, we had a Faculty and identity. Nevertheless, we wanted our courses to be of international repute—our guiding principle.

During the 1990s, yearly budgets had improved slightly along with experimental facilities. Computers and the occasional capital investment helped immensely. Research output increased, as did student numbers, while postgraduate Masters and Ph.D. students started to appear.

Since 2005, some faculty members have been working hard to secure European Regional Development Funds (ERDF) by submitting proposals to reinforce our research infrastructure. A total of six projects were approved with a combined budget of nearly €5 million. This has resulted in new, state of the art research facilities and an exponential increase in research output, bolstered by additional academic staff and research student numbers of close to 80.
Students are now organised and active through S-Cubed, the Science Students’ Society. This leading organisation is one of the three faculty pillars: the academic and support staff, and the student body. Together, we have made giant strides and the future looks bright.


Special thanks to Prof. Stanley Fiorini who helped us compile our timeline, aided by Prof. Josef Lauri

Timeline

A Patchwork Mediterranean: Knitting It Together

The Mediterranean is surrounded by over 20 countries each of which claim ownership over its nearby sea. To try and prevent over fishing and other pressures, many countries have set up protected areas. Jessica Edwards talks to Prof. Patrick J. Schembri who leads the Marine Ecology Research Group (Department of Biology) to find out how all of these areas are being linked to protect the Mediterranean Sea from the threats it faces.

Continue reading

Science… Bacteria… Art…

Bacteria are everywhere, from the top of the windswept cliffs of Dwejra, Gozo, right to the core of the ancient catacombs in Rabat, Malta.  Anne Marie Dimech met Dr Gabrielle Zammit to learn about the unique bacteria discovered growing on artworks in ancient Maltese temples and how these bacteria could be useful to medicine.

Continue reading

The Mediterranean: a history to be shared

Professor Mostafa Hassani Idrissi will be one of the keynote speakers at the First Annual International Conference on Cultural Relations in Europe and in the Mediterranean, organised by the Valletta 2018 Foundation with the support of the University of Malta, which will be held at the Valletta Campus on 4th and 5th of September.

Continue reading

How do you cook the perfect steak?

Fillet is the best cut. Trust me. It’s worth the money.

Use molecular gastronomy to take advantage of decades of researching how meat changes with heat. Science indicates that the best cooking temperature is around 55˚C, and definitely not above 60˚C. At a high temperature, myofibrillar (hold 80% of water) and collagen (hold beef together) proteins shrink. Shrinking leads to water loss. In the water lies the flavour.

To cook the fillet use a technique called sous vide. It involves vacuum wrapping the beef and keeping it at 55˚C in a water bath for 24–72 hours. This breaks down the proteins without over heating. The beef becomes tender but retains flavour and juiciness.

Take the beef out. It will look unpalatable. Quickly fry it on high heat on both sides to brown it. The high heat triggers the reduction of proteins or the Maillard reaction. Enjoy with a glass of your favourite red.

Can jetties replace rocky shores?

Leanne Bonnici
Leanne Bonnici

The marine environment needs to be conserved because all enjoy it in summer for leisure and fishermen depend on it for their livelihood. Our rocky shores also hold a unique ecology and it must be studied as a whole to understand how a seemingly insignificant crab or limpet can affect other species we might consider more important.

Our natural environment can be likened to a puzzle having thousands of pieces. If one piece is removed or changed, it will result in a different or incomplete picture. Jetties are artificial structures, in an otherwise natural matrix of rocky shore habitat, which add a new piece to the puzzle. They are built at right angles to the shore and are much smoother than natural rock. These differences are expected to change the environment and species living there. Leanne Bonnici (supervised by Dr Joseph A. Borg and Prof. Patrick J. Schembri) studied these jetties to understand how they would affect the big picture.

Bonnici studied three sites on the northeastern coast of the Maltese Islands (Little Armier, White Tower Bay and Għajn Żejtuna). The organisms on jetties in these areas were sampled from the mediolittoral zone — that part of the shore that is regularly submerged and exposed to the air. Sampling showed that the most abundant algae were low-growing green algae (Cladophoropsis sp.), and a red alga (Jania rubens). The algae serve as a source of food and shelter to other species.

IMG_6874

The most common animals were crustaceans, molluscs, and polychaetes. Polychaetes are worms that possess lots of hair-like structures (chaetae). The most common polychaetes were small voracious predators a few millimetres in length. The diverse crustaceans included small cone shaped barnacles (Chthamalus spp.), which spend most of their life attached to rocks. Other abundant crustaceans included minute shrimp-like swimming animals known as amphipods (Hyale sp. and Ampithoe sp.) that are typically found amidst algae. The molluscs recorded included different species of limpets Patella spp., as well as the chiton Acanthochitona sp.; all of these are usually found attached to the substratum, although they do move to graze on algae.

Bonnici found that jetties share some species with rocky shores; however, jetties always had a lower diversity and fewer numbers of individuals living on them. Therefore one can conclude that jetties cannot replace natural rocky shores.

Keeping to the puzzle analogy, if we know how modifying a ‘piece’ of the environment changes the other pieces, it will help maintain the whole picture. This study will help better manage how jetties affect organisms and make the most out of these artificial structures.

 

This research is part of an M.Sc. in Biology at the Faculty of Science. It was partly funded by the Strategic Educational Pathways Scholarship (Malta), which is part-financed by the European Union – European Social Fund (ESF) under Operational Programme II – Cohesion Policy 2007-2013, “Empowering People for More Jobs and a Better Quality Of Life”.

It’s all in the family

AlexandraFiott

Whatever you inherit comes from your biological family. Unfortunately, this includes disease. Talking about inherited conditions can make people anxious, making them unwilling to discuss the issue with their relatives. After speaking to a number of people my impression is that it seems taboo to discuss these things. People seem to feel that they will be stigmatised or treated differently because of a genetic condition.

A fear of social stigma hinders beneficial research. Research needs the collaboration of patients, since by investigating their condition researchers can in the long run develop a treatment or therapy. Not only that, but avoiding certain discussions means that relatives who might be at risk of developing the same problem would not be aware of it. If a condition is detected too late there might be very little that can be done.

It is very useful to discuss these matters with your family and speak to your doctor together. By building a medical family tree you can easily see who might inherit what. This way, your relatives will learn more about their health and then seek treatment. For example, a cousin might learn that she has an increased risk of breast cancer and would therefore attend screening sessions to catch the cancer before it spreads. Not knowing that something is there does not make it go away but discussing medical matters with your family could save a relative’s life.

“It is very useful to discuss these matters with your family and speak to your doctor together”

Scientific studies need family medical information. Scientific studies using family trees have already shown how useful this information is in identifying families with a high risk for inheritable cancers, like colon and breast cancer. Other research showed that families can benefit from preventative treatments against cardiovascular diseases like diabetes.

Local research has recently used this technique to find new genes, knowledge that can be developed for new treatments. The researchers were studying the genetic background of the protein which carries oxygen in our blood, haemoglobin. This protein switches from foetal haemoglobin to adult haemoglobin 3–6 months after birth. People with thalassemia have a problem with the adult version. Therefore, by studying local families that naturally cope well with the disease, they discovered the KLF1 gene that compensates for the malfunctioning adult protein by raising foetal haemoglobin levels. This was only possible with the help of family trees.

Speaking to a doctor to prepare a medical family tree (pictured) is done in the strictest confidentiality. You may also create your family medical history on https://familyhistory.hhs.gov/fhh-web/home.action to discuss with your family and doctor. I believe that it is in our best interest, apart from being potentially beneficial to the rest of humankind, to help in the creation of our own family medical trees.

If you have any queries when your physician or consultant asks you to prepare a family tree feel free to discuss them rather than avoiding family trees.