Rhinitis is a very common disease and results in a significant number of GP consultations. The two most common forms of rhinitis a GP encounters are allergic rhinitis and rhinitis due to viral illness. It is a well known fact that the global prevalence of allergic rhinitis has been on the increase and Malta has shown a similar trend. The peak prevalence of allergic rhinitis is observed in children and young adults. Prevalence estimates range from 10 to 30 percent of adults and up to 40 percent of children, making allergic rhinitis currently the most common chronic condition found in children. Malta was one of the centres that participated in The International Study of Asthma and Allergies in Childhood (ISAAC) and from this study it resulted that Malta had the second highest cumulative prevalence rate of allergic rhinitis in the world.

Although rhinitis may appear to be a trivial illness it can cause a significant degree of morbidity. Rhinitis can alter the social life of patients, affect school performance, impair cognitive function, work productivity and has significant implication on costs. Furthermore rhinitis is associated with a number of other co-morbidities, such as asthma, sinusitis, sleep disturbance etc. Up to 40% of patients with allergic rhinitis also have asthma and up to 80% of patients with asthma experience nasal symptoms. Furthermore, patients with allergic rhinitis have three times the risk of developing asthma compared with those without allergic rhinitis. Children who develop rhinitis within the first year of life have twice as much chance of developing asthma compared to those who develop rhinitis later in life. Treating allergic rhinitis has beneficial effects on asthma, suggesting that upper airway disease is a risk factor for asthma.

Aetiology

Over the past years, increasing number of studies support the fact that the pathophysiology of allergic rhinitis and asthma share the same mechanisms “one airway, one disease” (the unifying theory). Allergic rhinitis, like asthma, is thought to be the result of an IgE-mediated reversible inflammation of the nasal mucosa that occurs on exposure to allergens. Risk factors for allergic rhinitis include:

- family history of atopy
- serum IgE > 100 IU/mL before age 6
- higher socioeconomic class
- exposure to indoor allergens such as animals and dust mites
- presence of a positive allergy skin prick test.
People of a high socioeconomic class tend to be exposed to less “dirt” and microbes when young. Together with a genetic predisposition (atopy) this provides the perfect combination for predominance of Th2 cells over Th1 cells. Such individuals will develop allergic diseases on exposure to indoor allergens at a later age – The Hygiene Hypothesis. Th2 cells promote the production of IgE antibodies that interact with mast cells and basophils to produce the acute-phase response resulting in sneezing, congestion and/or rhinorrhea. A late-phase response then peaks after 6-12 hours resulting mainly in nasal obstruction. Aeroallergens include pollen and mould for intermittent allergic rhinitis, and for persistent rhinitis allergens include house dust mites, moulds, animal allergens, cockroaches, certain occupational allergens, as well as pollen in areas where pollen is prevalent perennially.

Although the symptoms of allergic and non-allergic rhinitis overlap significantly, the causes appear to be entirely different. Infective rhinitis is usually due to one of a large number of viruses (e.g. Rhinovirus), and bacterial infection is usually a secondary complication. The pathophysiology of NARES (non-allergic rhinitis with eosinophilia syndrome) is poorly understood, but a key component involves a self-perpetuating, chronic eosinophilic nasal inflammation with development of nasal micropolyposis and polyposis. Mast cells are likely to play an important role as well. NARES is a risk factor for the development of nasal polyposis and aspirin sensitivity, as well as obstructive sleep apnoea. Unlike NARES, in vasomotor rhinitis there are no abundant eosinophils in the nasal mucosa and current theories for vasomotor rhinitis include increased cholinergic glandular secretory activity (for runners; have mainly rhinorrhea), and nociceptive neurons with heightened sensitivity to usually innocent stimuli (for dry patients; have mainly nasal obstruction).

In both allergic and non-allergic rhinitis once an inflammatory process is set in, one ends up with non-specific nasal hyperreactivity: there is an increased nasal response to normal stimuli resulting in sneezing, nasal congestion and/or secretion.

Diagnosis

Differentiating allergic rhinitis from other causes of rhinitis can be difficult because the diagnostic criteria for various forms of rhinitis are not always clear-cut. To date most of the literature has focused on the diagnosis and management of allergic rhinitis. Recommendations for specific diagnostic criteria and treatment options for non-allergic rhinitis are often lacking compared with those addressing allergic rhinitis. Accurate diagnosis is important because therapies that are effective for allergic rhinitis (i.e. antihistamines) may be less effective for other types of rhinitis.

To complicate things further, it is known that a number of people suffer from a combination of allergic and non-allergic rhinitis. Research shows that the prevalence of pure allergic rhinitis in the adult population with symptoms is 43%, combination allergic rhinitis and non-allergic rhinitis is 34%, and pure non-allergic rhinitis is 23%. A study in Malta involving 415 patients presenting with rhinitis of 3 months duration showed that 55% of the patients were atopic and common allergens involved house dust mite, cat dander and grass pollen. Skin test-negative patients with idiopathic rhinitis were mostly females and tended to present a decade later.

When one is dealing with a patient with rhinitis, a detailed history and focused physical examination are essential for the correct assessment and management of the patient (Figure 1). Furthermore, it is important that one enquires into the impact the condition has on the patient’s life.

Table 1: Conditions that may mimic rhinitis and their signs and symptoms

Conditions that may mimic rhinitis
- Inflammatory or immunologic conditions e.g. Wegener’s granulomatosis
- Cerebrospinal fluid rhinorrhea (previous head injury)
- Ciliary defects
- Structural or mechanical conditions e.g. choanal atresia, deviated nasal septum, enlarged adenoids, foreign bodies (especially children), nasal tumours

Signs and symptoms associated with the above conditions

History
- Unilateral nasal obstruction and/or unilateral rhinorrhea,
- Nasal bleeding
- Decreased sensation of face, palate and teeth
- Previous head trauma and clear rhinorrhea
- Ulcerative lesion in nose
- Past history of trauma to the Nose

Examination
- Deviated nasal septum
- Visible nasal polyps/foreign body

Table 2: Classification of allergic rhinitis

<table>
<thead>
<tr>
<th>Classification</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermittent</td>
<td>Occurs 4 days or less per week or for less than 4 weeks</td>
</tr>
<tr>
<td>Persistent</td>
<td>Occur more than 4 days per week and for more than 4 weeks</td>
</tr>
<tr>
<td>Mild</td>
<td>All of the following: normal sleep; normal daily activities, sport, leisure; normal work and school; symptoms not troublesome</td>
</tr>
<tr>
<td>Moderate-severe</td>
<td>One or more of the following: abnormal sleep; impairment of daily activities, sport, leisure; problems caused at work or school; troublesome symptoms</td>
</tr>
</tbody>
</table>
and what are the patient’s expectations from treatment. One should always ask what medications the patient has already tried as most patients would tend to have already used a number of over the counter medications.

It is always important to keep in mind that there are a number of conditions that can mimic rhinitis. Even though these tend not to be that common it is important to consider these especially when patients present with certain signs and symptoms (see Table 1).

Investigation

Investigations for rhinitis are carried out in a situation when:
- diagnosis is uncertain and symptoms are severe
- patient is not responding to empirical treatment
- identification of allergen is intended to direct allergen avoidance or immunotherapy.

Empiric treatment is appropriate in patients with classic symptoms, or in patients with an unclear diagnosis who yet have mild symptoms.

The diagnosis of allergic disease depends on identifying both the symptoms occurring on allergen exposure and the relevant allergen-specific test. The most common diagnostic tests for identifying atopy and the particular allergen/s involved are the skin test and the allergen-specific immunoglobulin E (IgE) antibody test. Other diagnostic tools used in rhinitis include nasal provocation testing, nasal cytology (e.g., blown secretions, scraping, lavage, and biopsy), imaging (X-ray, CT, MRI) and nasolaryngoscopy.

Skin Testing

Skin testing involves introducing (percutaneously or intradermally) controlled amounts of allergen and control substances into the skin. A positive test will produce a classic weal reaction that is compared with controls.

Allergen-specific IgE antibody testing (radioallergosorbent testing [RAST])

A raised total blood IgE suggests allergic disease but this result is non-specific. RAST on the other hand is highly specific but generally not as sensitive as skin testing and is more costly. It is recommended when skin testing is not practical or available, when patients are taking medications that interfere with skin testing (e.g. tricyclic antidepressants, antihistamines) or when skin testing is contraindicated (e.g. severe eczema).

Nasal endoscopy

This can detect nasal and sinus pathology that is not detectable with a nasal speculum. Referral for nasal endoscopy is indicated when symptoms persist despite treatment. It is also indicated for the assessment of nasal polyps, crusting high in the nasal cavity, serosanguinous discharge, acute and chronic rhinosinusitis and nasal perforations and ulceration.

Management

The management of rhinitis can be divided into four main categories:
1. Avoidance of inciting factor, whether allergens or irritants
2. Pharmacological therapy
3. Immunotherapy for allergic rhinitis
4. Patient education

Table 3: Treatment options for allergic rhinitis

<table>
<thead>
<tr>
<th>Type of allergic rhinitis</th>
<th>First-line treatments</th>
<th>Alternative or add-on treatments*</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild intermittent</td>
<td>Oral antihistamines, Intranasal antihistamines</td>
<td>InTRANASAL decongestants</td>
<td>Allergen avoidance may eliminate need for drugs</td>
</tr>
<tr>
<td>Mild persistent or is a moderate-severe intermittent</td>
<td>Oral antihistamines, InTRANASAL corticosteroids (CS) (preferred when persistent disease), intranasal antihistamines</td>
<td>InTRANASAL decongestants, Sodium cromoglycate</td>
<td>Sodium cromoglycate useful alternative to antihistamines and corticosteroids, especially in children</td>
</tr>
<tr>
<td>Moderate-severe persistent</td>
<td>InTRANASAL CS</td>
<td>Oral antihistamines, intranasal antihistamines (if sneeze and itch predominant), sodium cromoglycate, Ipratropium bromide (if rhinorrhea predominant), Leukotriene antagonists†</td>
<td>Ipratropium bromide useful for persistent runny nose. Leukotriene antagonists may be useful if there is coexisting asthma. If nasal obstruction predominant try decongestant or oral CS for short term if it fails consider surgical referral</td>
</tr>
</tbody>
</table>

* These drugs should usually be used if initial treatment alone has proved ineffective, although they may be used first if standard first-line drugs are unsuitable or contraindicated.

† Not licensed for use in allergic rhinitis
1. Avoidance of inciting factors

Inciting factors can be divided into aeroallergens in people with allergic rhinitis and irritating factors in all types of non-allergic rhinitis. When it comes to aeroallergen avoidance, it is common opinion that one should consider undergoing antigen testing before committing the patient to the expenses and burden of certain allergen avoidance methods. Allergen avoidance should be targeted towards those allergens the patient has tested positive to. The World Allergy Organisation (WAO) has issued a patient information sheet describing different methods of allergen avoidance. Furthermore WAO together with WHO have issued guidelines on primary, secondary and tertiary prevention of atopy such as breast feeding till 6 months of age and parental smoking avoidance during pregnancy and early childhood, in the case of primary prevention. Even though all the current rhinitis guidelines now suggest that allergen avoidance, including house mites, should be an integral part of a management strategy, more data is needed to fully appreciate the value of allergen avoidance. Some recent studies regarding house dust mite avoidance (including a meta analysis) question the benefits of house dust mite avoidance methods. In the case of non-allergic rhinitis, it is important that the patient learns what factors make their rhinitis worse and tries to avoid them, such as removal of a drug in drug-induced rhinitis, correction of endocrine abnormality in hormonal induced rhinitis and avoidance of irritants in vasomotor rhinitis.

2. Pharmacological therapy

Due to the chronicity of most forms of rhinitis, most patients will need to take their medications either all year round or else...
Allergic rhinitis

- Family history of atopy (eczema, allergic rhinitis, asthma)
- Atopic march (eczema/food allergy, asthma, rhinitis/conjunctivitis)
- Symptoms occur on exposure to common known antigens with seasonal or exposure variation
- Nasal and palatal itch and paroxysm of sneezing
- Clear rhinorrhea
- Nasal congestion
- Allergic conjunctivitis
- Age of onset below 20
- Malaise, headache and fatigue
- Symptoms related to work (allergic occupational rhinitis)

Physical examination

In general practice, the nose can be examined with an auriscope fitted with the largest speculum

- Allergic shiners (blue-grey or purple discoloration under the lower eyelids)
- Allergic salut and transverse nasal crease
- Adenoid facies
- Wheezing in chest (asthma)
- Eczema
- Throat – in allergic rhinitis post-nasal drip is usually not prominent
- Nasal polyps uncommon

Investigation

- Positive skin test and IgE tests to common allergens

Non-allergic rhinitis

Diagnosis mainly based on excluding allergic rhinitis

1. Congestion rather than rhinorrhea/sneezing
2. No FH of Atopy
3. Prominent post nasal drip and enlarged tonsil
4. Usually perennial yet variations can occur with weather changes/irritant exposure
5. Negative skin tests and normal IgE concentrations.

Some specific points on particular types of non-allergic rhinitis:

- **NARES**: Eosinophilic infiltration on nasal cytology. Sneezing paroxysms, profuse watery runny nose, nasal pruritus, occasional loss of smell. Associated with non-IgE mediated asthma, aspirin intolerance, nasal polyps.
- **Vasomotor rhinitis**: Most develop rhinitis (congestion and hyper secretion mainly) in response to environmental conditions, such as cold air, high humidity, strong odours, and inhaled irritants. Diagnosed through exclusion of all other types of rhinitis.
- **Hormonal rhinitis**: pregnancy, puberty, the use of OCP, and hypothyroidism may all be associated with nasal obstruction and discharge.
- **Drug-induced rhinitis** may be caused by several drugs, including ACE, beta-blockers, and OCP. Aspirin and NSAIDS. Use of intranasal decongestants for more than 5-7 days may cause rhinitis medicamentosa.
- **Occupational rhinitis**: symptoms which are temporally related to exposure at work and which improve away from the workplace.

Key: ACE = Angiotensin converting enzyme inhibitor, NARES = Non-allergic rhinitis with eosinophilia syndrome, NSAIDS = Non-steroidal anti-inflammatory drugs, OCP = oral contraceptive pill

Figure 1 continued: Acute symptoms (one week or less)

Allergic rhinitis

- Family history of atopy (eczema, allergic rhinitis, asthma)
- Atopic march (eczema/food allergy, asthma, rhinitis/conjunctivitis)
- Symptoms occur on exposure to common known antigens with seasonal or exposure variation
- Nasal and palatal itch and paroxysm of sneezing
- Clear rhinorrhea
- Nasal congestion
- Allergic conjunctivitis
- Age of onset below 20
- Malaise, headache and fatigue
- Symptoms related to work (allergic occupational rhinitis)

Physical examination

In general practice, the nose can be examined with an auriscope fitted with the largest speculum

- Allergic shiners (blue-grey or purple discoloration under the lower eyelids)
- Allergic salut and transverse nasal crease
- Adenoid facies
- Wheezing in chest (asthma)
- Eczema
- Throat – in allergic rhinitis post-nasal drip is usually not prominent
- Nasal polyps uncommon

Investigation

- Positive skin test and IgE tests to common allergens

Key: ACE = Angiotensin converting enzyme inhibitor, NARES = Non-allergic rhinitis with eosinophilia syndrome, NSAIDS = Non-steroidal anti-inflammatory drugs, OCP = oral contraceptive pill

Non-allergic rhinitis

Diagnosis mainly based on excluding allergic rhinitis

1. Congestion rather than rhinorrhea/sneezing
2. No FH of Atopy
3. Prominent post nasal drip and enlarged tonsil
4. Usually perennial yet variations can occur with weather changes/irritant exposure
5. Negative skin tests and normal IgE concentrations.

Some specific points on particular types of non-allergic rhinitis:

- **NARES**: Eosinophilic infiltration on nasal cytology. Sneezing paroxysms, profuse watery runny nose, nasal pruritus, occasional loss of smell. Associated with non-IgE mediated asthma, aspirin intolerance, nasal polyps.
- **Vasomotor rhinitis**: Most develop rhinitis (congestion and hyper secretion mainly) in response to environmental conditions, such as cold air, high humidity, strong odours, and inhaled irritants. Diagnosed through exclusion of all other types of rhinitis.
- **Hormonal rhinitis**: pregnancy, puberty, the use of OCP, and hypothyroidism may all be associated with nasal obstruction and discharge.
- **Drug-induced rhinitis** may be caused by several drugs, including ACE, beta-blockers, and OCP. Aspirin and NSAIDS. Use of intranasal decongestants for more than 5-7 days may cause rhinitis medicamentosa.
- **Occupational rhinitis**: symptoms which are temporally related to exposure at work and which improve away from the workplace.

Key: ACE = Angiotensin converting enzyme inhibitor, NARES = Non-allergic rhinitis with eosinophilia syndrome, NSAIDS = Non-steroidal anti-inflammatory drugs, OCP = oral contraceptive pill

3. Immunotherapy

This modality of treatment only applies for allergic rhinitis. Allergen-specific immunotherapy can be either given by the subcutaneous or sublingual route (SLIT). It requires 3 or more years of treatment and subcutaneous immunotherapy carries the risk of anaphylaxis. This treatment modality is intended for patients that suffer from allergic rhinitis with demonstrable IgE mediated disease. It is recommended in patients who have had a long duration of symptoms; or in whom pharmacotherapy has been partially or totally ineffective or induced side-effects; or in patients who do not want to take treatment long term. It is most effective for house-dust mite, pollen and cat allergy. Sublingual immunotherapy (SLIT) is effective in reducing rhinitis symptom scores and anti-allergic medication requirements compared to...
placebo. There is insufficient evidence comparing it to injection immunotherapy to quantify the treatment effect.22 It is suitable for people with mite or pollen allergies who have had a systemic reaction to injection immunotherapy or who do not wish to have an injection.14

What is on the horizon?

Apart from the continuous effort by the industry to develop better antihistamines, topical corticosteroids and other small molecules, there appear not to be any novel drug treatments for rhinitis ‘around the corner.’ The most exciting future therapies are safe and effective new vaccinations and all are essentially improvements on traditional desensitisation injections.48

The anti-IgE monoclonal antibody Omalizumab has been shown to be effective in the treatment of allergic rhinitis49,50 and asthma, yet its cost is still too high. However, it does promise to offer a one in all solution for atopic individuals, being effective for all forms of atopic disease (i.e. asthma, allergic rhinitis, eczema) found in these people.

Conclusion

In a survey of sufferers of allergic rhinitis, 60% of all allergic rhinitis patients responded that they are “very interested” in finding a new medication and 25% are “constantly” trying different medications to find one that “works.” Those who were dissatisfied also said their health care provider does not understand their allergy treatment needs and does not take their allergy symptoms seriously.36

It is essential that GPs have a sound understanding of the different forms of rhinitis and all the different treatment options available. They must then take time to understand the implication of the condition on their patients’ life, and what are the patients’ expectations. It is important to always keep in mind that one is treating the patient rather than the rhinitis itself. Thus if a patient is satisfied with symptom control, even though not completely symptom free, there is no need of increasing or adding medication, as this can only impair compliance and add side effects.

References

Table 4: Treatment options for non-allergic rhinitis

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral antihistamine</td>
<td>Have minimal or no benefit in certain Non-Allergic Rhinitis (infectious, vasomotor etc). Can be used as an adjuvant to nasal CS in the treatment of NARES</td>
</tr>
<tr>
<td>Intranasal antihistamine</td>
<td>Effective for sneezing, rhinorrhea, post nasal drip and nasal congestion</td>
</tr>
<tr>
<td>Intranasal CS</td>
<td>Effective in the treatment of certain types of non allergic rhinitis, especially NARES. Very effective in relieving nasal obstruction</td>
</tr>
<tr>
<td>Intranasal anticholinergic</td>
<td>Very effective for rhinorrhea</td>
</tr>
<tr>
<td>Oral/intranasal decongestant</td>
<td>Effective in relieving nasal congestion and post nasal drip</td>
</tr>
<tr>
<td>Leukotriene antagonists</td>
<td>Few studies are available, yet may be used as adjuvant to nasal steroid in NARES</td>
</tr>
</tbody>
</table>

Key: CS = Corticosteroid, NARES = Non-allergic rhinitis with eosinophilia syndrome