Please use this identifier to cite or link to this item: https://www.um.edu.mt/library/oar/handle/123456789/26748
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLecours, Vincent-
dc.contributor.authorDolan, Margaret F. J.-
dc.contributor.authorMicallef, Aaron-
dc.contributor.authorLucieer, Vanessa L.-
dc.date.accessioned2018-02-14T14:31:01Z-
dc.date.available2018-02-14T14:31:01Z-
dc.date.issued2016-
dc.identifier.citationDolan, M. F., & Lucieer, V. L. (2016). A review of marine geomorphometry, the quantitative study of the seafloor. Hydrology and Earth System Sciences, 20(8), 3207-3244.en_GB
dc.identifier.urihttps://www.um.edu.mt/library/oar//handle/123456789/26748-
dc.description.abstractGeomorphometry, the science of quantitative terrain characterization, has traditionally focused on the investigation of terrestrial landscapes. However, the dramatic increase in the availability of digital bathymetric data and the increasing ease by which geomorphometry can be investigated using geographic information systems (GISs) and spatial analysis software has prompted interest in employing geomorphometric techniques to investigate the marine environment. Over the last decade or so, a multitude of geomorphometric techniques (e.g. terrain attributes, feature extraction, automated classification) have been applied to characterize seabed terrain from the coastal zone to the deep sea. Geomorphometric techniques are, however, not as varied, nor as extensively applied, in marine as they are in terrestrial environments. This is at least partly due to difficulties associated with capturing, classifying, and validating terrain characteristics underwater. There is, nevertheless, much common ground between terrestrial and marine geomorphometry applications and it is important that, in developing marine geomorphometry, we learn from experiences in terrestrial studies. However, not all terrestrial solutions can be adopted by marine geomorphometric studies since the dynamic, four-dimensional (4-D) nature of the marine environment causes its own issues throughout the geomorphometry workflow. For instance, issues with underwater positioning, variations in sound velocity in the water column affecting acousticbased mapping, and our inability to directly observe and measure depth and morphological features on the seafloor are all issues specific to the application of geomorphometry in the marine environment. Such issues fuel the need for a dedicated scientific effort in marine geomorphometry. This review aims to highlight the relatively recent growth of marine geomorphometry as a distinct discipline, and offers the first comprehensive overview of marine geomorphometry to date. We address all the five main steps of geomorphometry, from data collection to the application of terrain attributes and features. We focus on how these steps are relevant to marine geomorphometry and also highlight differences and similarities from terrestrial geomorphometry. We conclude with recommendations and reflections on the future of marine geomorphometry. To ensure that geomorphometry is used and developed to its full potential, there is a need to increase awareness of (1) marine geomorphometry amongst scientists already engaged in terrestrial geomorphometry, and of (2) geomorphometry as a science amongst marine scientists with a wide range of backgrounds and experiences.en_GB
dc.language.isoenen_GB
dc.publisherCopernicus GmbHen_GB
dc.rightsinfo:eu-repo/semantics/openAccessen_GB
dc.subjectGeographic information systemsen_GB
dc.subjectGeomorphology -- Researchen_GB
dc.subjectUnderwater acoustics -- Techniqueen_GB
dc.subjectMarine ecology -- Environmental aspectsen_GB
dc.titleA review of marine geomorphometry, the quantitative study of the seaflooren_GB
dc.typearticleen_GB
dc.rights.holderThe copyright of this work belongs to the author(s)/publisher. The rights of this work are as defined by the appropriate Copyright Legislation or as modified by any successive legislation. Users may access this work and can make use of the information contained in accordance with the Copyright Legislation provided that the author must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the prior permission of the copyright holderen_GB
dc.description.reviewedpeer-revieweden_GB
dc.identifier.doi10.5194/hess-20-3207-2016-
dc.publication.titleHydrology and Earth System Sciencesen_GB
Appears in Collections:Scholarly Works - FacSciGeo

Files in This Item:
File Description SizeFormat 
A_review_of_marine_geomorphometry_the_quantitative_study_of_the_seafloor.pdf10.45 MBAdobe PDFView/Open


Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.