Please use this identifier to cite or link to this item: https://www.um.edu.mt/library/oar/handle/123456789/56066
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCasha, Aaron R.-
dc.contributor.authorCamilleri, Liberato-
dc.contributor.authorGauci, Marilyn-
dc.contributor.authorGatt, Ruben-
dc.contributor.authorSladden, David-
dc.contributor.authorChetcuti, Stanley-
dc.contributor.authorGrima, Joseph N.-
dc.date.accessioned2020-05-14T08:35:50Z-
dc.date.available2020-05-14T08:35:50Z-
dc.date.issued2018-
dc.identifier.citationCasha, A. R., Camilleri, L., Gauci, M., Gatt, R., Sladden, D., Chetcuti, S., & Grima, J. N. (2018). A mathematical model for pressure-based organs behaving as biological pressure vessels. Journal of Theoretical Biology, 450, 37-42.en_GB
dc.identifier.urihttps://www.um.edu.mt/library/oar/handle/123456789/56066-
dc.description.abstractWe introduce a mathematical model that describes the allometry of physical characteristics of hollow organs behaving as pressure vessels based on the physics of ideal pressure vessels. The model was validated by studying parameters such as body and organ mass, systolic and diastolic pressures, internal and external dimensions, pressurization energy and organ energy output measurements of pressure-based organs in a wide range of mammals and birds. Seven rules were derived that govern amongst others, lack of size efficiency on scaling to larger organ sizes, matching organ size in the same species, equal relative efficiency in pressurization energy across species and direct size matching between organ mass and mass of contents. The lung, heart and bladder follow these predicted theoretical relationships with a similar relative efficiency across various mammalian and avian species; an exception is cardiac output in mammals with a mass exceeding 10 kg. This may limit massive body size in mammals, breaking Cope's rule that populations evolve to increase in body size over time. Such a limit was not found in large flightless birds exceeding 100 kg, leading to speculation about unlimited dinosaur size should dinosaurs carry avian-like cardiac characteristics.en_GB
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_GB
dc.subjectAllometryen_GB
dc.subjectBiomechanicsen_GB
dc.subjectPressure vesselsen_GB
dc.subjectPressure vessels -- Design and constructionen_GB
dc.titleA mathematical model for pressure-based organs behaving as biological pressure vesselsen_GB
dc.typearticleen_GB
dc.rights.holderThe copyright of this work belongs to the author(s)/publisher. The rights of this work are as defined by the appropriate Copyright Legislation or as modified by any successive legislation. Users may access this work and can make use of the information contained in accordance with the Copyright Legislation provided that the author must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the prior permission of the copyright holderen_GB
dc.description.reviewedpeer-revieweden_GB
dc.identifier.doi10.1016/j.jtbi.2018.04.034-
dc.publication.titleJournal of Theoretical Biologyen_GB
Appears in Collections:Scholarly Works - FacSciSOR

Files in This Item:
File Description SizeFormat 
A_mathematical_model_for_pressure_based_organs.pdf
  Restricted Access
920.24 kBAdobe PDFView/Open Request a copy


Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.