Please use this identifier to cite or link to this item: https://www.um.edu.mt/library/oar/handle/123456789/16870
Title: Bulk metallic glass based tool-making process chain for micro- and nano- replication
Other Titles: Proceedings of the 9th International Conference on Multi-Material Micro Manufacture
Authors: Vella, Pierre
Dimov, Stefan Simeonov
Kolew, Alexander
Minev, Ekaterin
Popov, Krastimir Borisov
Lacan, Franck Andre
Griffiths, Christian Andrew
Hirshy, Hassan
Scholz, Steffen Gerhard
Keywords: Milling (Metal-work)
Focused ion beams
Micromachining
Metallic glasses
Issue Date: 2012
Publisher: Research Publishing
Citation: Vella, Pierre C., Dimov, Stefan Simeonov, Kolew, Alexander, Minev, Ekaterin, Popov, Krastimir Borisov, Lacan, Franck Andre,... Scholz, Steffen Gerhard (2012). Bulk metallic glass based tool-making process chain for micro- and nano- replication. In H. Noll, N. Adamovic, & S. S. Dimov (Eds.), Proceedings of the 9th International Conference on Multi-Material Micro Manufacture (pp. 309-314). Singapore: Research Publishing.
Abstract: Existing and emerging micro-engineered products tend to integrate a multitude of functionalities into single enclosures/packages. Such functions generally require different length scale features. In practice, devices having complex topographies, which incorporate different length scale features cannot be produced by employing a single fabrication technology but by innovatively, integrating several different complementary manufacturing techniques in the form of a process chain. In order to design novel process chains that enable such function and length scale integration into miniaturised devices, it is required to utilise materials that are compatible with the various component manufacturing processes in such chains. At the same time, these materials should be able to satisfy the functional requirements of the produced devices. One family of materials, which can potentially fulfil these criteria, is bulk metallic glasses (BMGs). In particular, the absence of grain boundaries in BMGs makes them mechanically and chemically homogeneous for processing at all length scales down to a few nanometres. In this context, this research presents an experimental study to validate a novel process chain. It utilizes three complementary technologies for producing a Zr-based BMG replication master for a microfluidic device that incorporates micro and nano scale features. Then, to validate the viability of the fabricated BMG masters, they are utilized for serial replication of the microfluidic device by employing micro-injection moulding.
URI: https://www.um.edu.mt/library/oar//handle/123456789/16870
ISBN: 9789810733544
Appears in Collections:Scholarly Works - FacEngIME



Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.