Please use this identifier to cite or link to this item: https://www.um.edu.mt/library/oar/handle/123456789/22596
Title: Monoaminergic neuropathology in Alzheimer’s disease
Authors: Simic, Goran
Babic Leko, Mirjana
Wray, Selina
Harrington, Charles R.
Delalle, Ivana
Jovanov-Milosevic, Natasa
Bazadona, Danira
Buee, Luc
De Silva, Rohan
Di Giovanni, Giuseppe
Wischik, Claude M.
Hof, Patrick R.
Keywords: Alzheimer's disease
Serotonin
Amyloid beta-peptides
Blood-brain barrier
Cerebrospinal fluid
Epigenetics
Locus coeruleus
Phosphorylation
Sleep-wake cycle
Issue Date: 2017
Publisher: Pergamon Press
Citation: Šimić, G., Babić Leko, M., Wray, S., Harrington, C. R., Delalle, I., Jovanov-Milošević...,Hof, P. R. (2017). Monoaminergic neuropathology in Alzheimer's disease. Progress in Neurobiology, 151, 101-138.
Abstract: None of the proposed mechanisms of Alzheimer’s disease (AD) fully explains the distribution patterns of the neuropathological changes at the cellular and regional levels, and their clinical correlates. One aspect of this problem lies in the complex genetic, epigenetic, and environmental landscape of AD: early-onset AD is often familial with autosomal dominant inheritance, while the vast majority of AD cases are late-onset, with the ε4 variant of the gene encoding apolipoprotein E (APOE) known to confer a 5–20 fold increased risk with partial penetrance. Mechanisms by which genetic variants and environmental factors influence the development of AD pathological changes, especially neurofibrillary degeneration, are not yet known. Here we review current knowledge of the involvement of the monoaminergic systems in AD. The changes in the serotonergic, noradrenergic, dopaminergic, histaminergic, and melatonergic systems in AD are briefly described. We also summarize the possibilities for monoamine-based treatment in AD. Besides neuropathologic AD criteria that include the noradrenergic locus coeruleus (LC), special emphasis is given to the serotonergic dorsal raphe nucleus (DRN). Both of these brainstem nuclei are among the first to be affected by tau protein abnormalities in the course of sporadic AD, causing behavioral and cognitive symptoms of variable severity. The possibility that most of the tangle-bearing neurons of the LC and DRN may release amyloid β as well as soluble monomeric or oligomeric tau protein trans-synaptically by their diffuse projections to the cerebral cortex emphasizes their selective vulnerability and warrants further investigations of the monoaminergic systems in AD.
URI: https://www.um.edu.mt/library/oar//handle/123456789/22596
Appears in Collections:Scholarly Works - FacM&SPB

Files in This Item:
File Description SizeFormat 
Goran, In Press.pdf
  Restricted Access
3.67 MBAdobe PDFView/Open Request a copy


Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.