Please use this identifier to cite or link to this item:
https://www.um.edu.mt/library/oar/handle/123456789/61635| Title: | Automatic benthic habitat mapping using inexpensive underwater drones |
| Authors: | Gauci, Adam Abela, John Cachia, Ernest Dimech, Sean Deidun, Alan |
| Keywords: | Marine benthic ecology -- Malta Benthic ecology -- Malta Autonomous underwater vehicles Marine resources conservation Image analysis -- Data processing Posidonia oceanica |
| Issue Date: | 2020 |
| Publisher: | IEEE |
| Citation: | Gauci, A., Deidun, A., Abela, J., Cachia, E., & Dimech, S. (2020). Automatic benthic habitat mapping using inexpensive underwater drones. IGARSS 2020, IEEE International Geoscience and Remote Sensing Symposium, Hawaii, TH2.R20.5., 2213-2216. |
| Abstract: | The generation of benthic habitat maps relies either on direct in-situ observations made by SCUBA divers swimming in a rectilinear fashion, or on costly remote sensing techniques involving either ROVs or sonar technology. The recent commercialisation of off-the-shelf underwater drones has enhanced benthic mapping possibilities by providing a costeffective alternative. Despite still requiring ground truthing, such drones do not rely extensively on boat-support services. In this study, the applicability and feasibility of using an underwater high-resolution optical platform to automate the generation of benthic maps is investigated. A PowerVision PowerRay [1] was used to capture underwater imagery in an embayment along the north-east coast of the island of Malta (central Mediterranean). A Machine Learning method based on Self-Organizing Maps was then implemented to automate the classification process. Results produced from this technique were evaluated in terms of their accuracy through comparisons with a benthic habitat map of the same area that was generated through conventional means in a previous study. |
| URI: | https://www.um.edu.mt/library/oar/handle/123456789/61635 |
| Appears in Collections: | Scholarly Works - FacSciGeo |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Automatic_benthic_habitat_mapping_using_inexpensive_underwater_drones_2020.pdf Restricted Access | 5.66 MB | Adobe PDF | View/Open Request a copy |
Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.
