Please use this identifier to cite or link to this item: https://www.um.edu.mt/library/oar/handle/123456789/90533
Title: Mechanisms of action underlying the efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson's disease : central role of disease severity
Authors: Stefani, Alessandro
Cerroni, Rocco
Mazzone, Paolo
Liguori, Claudio
Di Giovanni, Giuseppe
Pierantozzi, Mariangela
Galati, Salvatore
Keywords: Parkinson's disease
Subthalamic nucleus
Basal ganglia
Nervous system -- Degeneration
Issue Date: 2018
Publisher: John Wiley & Sons, Inc.
Citation: Stefani, A., Cerroni, R., Mazzone, P., Liguori, C., Di Giovanni, G., Pierantozzi, M., & Galati, S. (2019). Mechanisms of action underlying the efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson's disease : central role of disease severity. The European Journal of Neuroscience, 49(6), 805-816.
Abstract: Despite consensus on some neurophysiological hallmarks of the Parkinsonian state (such as beta) band increase) a single mechanism is unlikely to explain the efficacy of deep brain stimulation (DBS) of the subthalamic nucleus (STN). Most experimental evidence to date correlates with an extreme degree of nigral neurodegeneration and not with different stages of PD progression. It seems inappropriate to combine substantially different patients – newly diagnosed, early fluctuators or advanced dyskinetic individuals – within the same group. An efficacious STN-DBS imposes a new activity pattern within brain circuits, favouring alpha- and gamma-like neuronal discharge, and restores the thalamo-cortical transmission pathway through axonal activation. In addition, stimulation via the dorsal contacts of the macro-electrode may affect cortical activation antidromically. However, basal ganglia (BG) modulation remains cardinal for ‘OFF’-’ON’ transition (as revealed by cGMP increase occurring during STN-DBS in the substantia nigra pars reticulata and internal globus pallidus). New research promises to clarify to what extent STN-DBS restores striato-centric bidirectional plasticity, and whether non-neuronal cellular actions (microglia, neurovascular) play a part. Future studies will assess whether extremely anticipated DBS or lesioning in selected patients are capable of providing neuroprotection to the synuclein-mediated alterations of synaptic efficiency. This review addresses these open issues through the specific mechanisms prevailing in a given disease stage. In patients undergoing early protocol, alteration in endogenous transmitters and recovery of plasticity are concurrent players. In advanced stages, re-modulation of endogenous band frequencies, disruption of pathological pattern and/or antidromic cortical activation are, likely, the prominent modes.
URI: https://www.um.edu.mt/library/oar/handle/123456789/90533
Appears in Collections:Scholarly Works - FacM&SPB



Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.